/* * validator/val_anchor.c - validator trust anchor storage. * * Copyright (c) 2007, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains storage for the trust anchors for the validator. */ #include "config.h" #include #include "validator/val_anchor.h" #include "validator/val_sigcrypt.h" #include "validator/autotrust.h" #include "util/data/packed_rrset.h" #include "util/data/dname.h" #include "util/log.h" #include "util/net_help.h" #include "util/config_file.h" #include "util/as112.h" #include "sldns/sbuffer.h" #include "sldns/rrdef.h" #include "sldns/str2wire.h" #ifdef HAVE_GLOB_H #include #endif int anchor_cmp(const void* k1, const void* k2) { int m; struct trust_anchor* n1 = (struct trust_anchor*)k1; struct trust_anchor* n2 = (struct trust_anchor*)k2; /* no need to ntohs(class) because sort order is irrelevant */ if(n1->dclass != n2->dclass) { if(n1->dclass < n2->dclass) return -1; return 1; } return dname_lab_cmp(n1->name, n1->namelabs, n2->name, n2->namelabs, &m); } struct val_anchors* anchors_create(void) { struct val_anchors* a = (struct val_anchors*)calloc(1, sizeof(*a)); if(!a) return NULL; a->tree = rbtree_create(anchor_cmp); if(!a->tree) { anchors_delete(a); return NULL; } a->autr = autr_global_create(); if(!a->autr) { anchors_delete(a); return NULL; } lock_basic_init(&a->lock); lock_protect(&a->lock, a, sizeof(*a)); lock_protect(&a->lock, a->autr, sizeof(*a->autr)); return a; } /** delete assembled rrset */ static void assembled_rrset_delete(struct ub_packed_rrset_key* pkey) { if(!pkey) return; if(pkey->entry.data) { struct packed_rrset_data* pd = (struct packed_rrset_data*) pkey->entry.data; free(pd->rr_data); free(pd->rr_ttl); free(pd->rr_len); free(pd); } free(pkey->rk.dname); free(pkey); } /** destroy locks in tree and delete autotrust anchors */ static void anchors_delfunc(rbnode_type* elem, void* ATTR_UNUSED(arg)) { struct trust_anchor* ta = (struct trust_anchor*)elem; if(!ta) return; if(ta->autr) { autr_point_delete(ta); } else { struct ta_key* p, *np; lock_basic_destroy(&ta->lock); free(ta->name); p = ta->keylist; while(p) { np = p->next; free(p->data); free(p); p = np; } assembled_rrset_delete(ta->ds_rrset); assembled_rrset_delete(ta->dnskey_rrset); free(ta); } } void anchors_delete(struct val_anchors* anchors) { if(!anchors) return; lock_unprotect(&anchors->lock, anchors->autr); lock_unprotect(&anchors->lock, anchors); lock_basic_destroy(&anchors->lock); if(anchors->tree) traverse_postorder(anchors->tree, anchors_delfunc, NULL); free(anchors->tree); autr_global_delete(anchors->autr); free(anchors); } void anchors_init_parents_locked(struct val_anchors* anchors) { struct trust_anchor* node, *prev = NULL, *p; int m; /* nobody else can grab locks because we hold the main lock. * Thus the previous items, after unlocked, are not deleted */ RBTREE_FOR(node, struct trust_anchor*, anchors->tree) { lock_basic_lock(&node->lock); node->parent = NULL; if(!prev || prev->dclass != node->dclass) { prev = node; lock_basic_unlock(&node->lock); continue; } (void)dname_lab_cmp(prev->name, prev->namelabs, node->name, node->namelabs, &m); /* we know prev is smaller */ /* sort order like: . com. bla.com. zwb.com. net. */ /* find the previous, or parent-parent-parent */ for(p = prev; p; p = p->parent) /* looking for name with few labels, a parent */ if(p->namelabs <= m) { /* ==: since prev matched m, this is closest*/ /* <: prev matches more, but is not a parent, * this one is a (grand)parent */ node->parent = p; break; } lock_basic_unlock(&node->lock); prev = node; } } /** initialise parent pointers in the tree */ static void init_parents(struct val_anchors* anchors) { lock_basic_lock(&anchors->lock); anchors_init_parents_locked(anchors); lock_basic_unlock(&anchors->lock); } struct trust_anchor* anchor_find(struct val_anchors* anchors, uint8_t* name, int namelabs, size_t namelen, uint16_t dclass) { struct trust_anchor key; rbnode_type* n; if(!name) return NULL; key.node.key = &key; key.name = name; key.namelabs = namelabs; key.namelen = namelen; key.dclass = dclass; lock_basic_lock(&anchors->lock); n = rbtree_search(anchors->tree, &key); if(n) { lock_basic_lock(&((struct trust_anchor*)n->key)->lock); } lock_basic_unlock(&anchors->lock); if(!n) return NULL; return (struct trust_anchor*)n->key; } /** create new trust anchor object */ static struct trust_anchor* anchor_new_ta(struct val_anchors* anchors, uint8_t* name, int namelabs, size_t namelen, uint16_t dclass, int lockit) { #ifdef UNBOUND_DEBUG rbnode_type* r; #endif struct trust_anchor* ta = (struct trust_anchor*)malloc( sizeof(struct trust_anchor)); if(!ta) return NULL; memset(ta, 0, sizeof(*ta)); ta->node.key = ta; ta->name = memdup(name, namelen); if(!ta->name) { free(ta); return NULL; } ta->namelabs = namelabs; ta->namelen = namelen; ta->dclass = dclass; lock_basic_init(&ta->lock); if(lockit) { lock_basic_lock(&anchors->lock); } #ifdef UNBOUND_DEBUG r = #else (void) #endif rbtree_insert(anchors->tree, &ta->node); if(lockit) { lock_basic_unlock(&anchors->lock); } log_assert(r != NULL); return ta; } /** find trustanchor key by exact data match */ static struct ta_key* anchor_find_key(struct trust_anchor* ta, uint8_t* rdata, size_t rdata_len, uint16_t type) { struct ta_key* k; for(k = ta->keylist; k; k = k->next) { if(k->type == type && k->len == rdata_len && memcmp(k->data, rdata, rdata_len) == 0) return k; } return NULL; } /** create new trustanchor key */ static struct ta_key* anchor_new_ta_key(uint8_t* rdata, size_t rdata_len, uint16_t type) { struct ta_key* k = (struct ta_key*)malloc(sizeof(*k)); if(!k) return NULL; memset(k, 0, sizeof(*k)); k->data = memdup(rdata, rdata_len); if(!k->data) { free(k); return NULL; } k->len = rdata_len; k->type = type; return k; } /** * This routine adds a new RR to a trust anchor. The trust anchor may not * exist yet, and is created if not. The RR can be DS or DNSKEY. * This routine will also remove duplicates; storing them only once. * @param anchors: anchor storage. * @param name: name of trust anchor (wireformat) * @param type: type or RR * @param dclass: class of RR * @param rdata: rdata wireformat, starting with rdlength. * If NULL, nothing is stored, but an entry is created. * @param rdata_len: length of rdata including rdlength. * @return: NULL on error, else the trust anchor. */ static struct trust_anchor* anchor_store_new_key(struct val_anchors* anchors, uint8_t* name, uint16_t type, uint16_t dclass, uint8_t* rdata, size_t rdata_len) { struct ta_key* k; struct trust_anchor* ta; int namelabs; size_t namelen; namelabs = dname_count_size_labels(name, &namelen); if(type != LDNS_RR_TYPE_DS && type != LDNS_RR_TYPE_DNSKEY) { log_err("Bad type for trust anchor"); return 0; } /* lookup or create trustanchor */ ta = anchor_find(anchors, name, namelabs, namelen, dclass); if(!ta) { ta = anchor_new_ta(anchors, name, namelabs, namelen, dclass, 1); if(!ta) return NULL; lock_basic_lock(&ta->lock); } if(!rdata) { lock_basic_unlock(&ta->lock); return ta; } /* look for duplicates */ if(anchor_find_key(ta, rdata, rdata_len, type)) { lock_basic_unlock(&ta->lock); return ta; } k = anchor_new_ta_key(rdata, rdata_len, type); if(!k) { lock_basic_unlock(&ta->lock); return NULL; } /* add new key */ if(type == LDNS_RR_TYPE_DS) ta->numDS++; else ta->numDNSKEY++; k->next = ta->keylist; ta->keylist = k; lock_basic_unlock(&ta->lock); return ta; } /** * Add new RR. It converts ldns RR to wire format. * @param anchors: anchor storage. * @param rr: the wirerr. * @param rl: length of rr. * @param dl: length of dname. * @return NULL on error, else the trust anchor. */ static struct trust_anchor* anchor_store_new_rr(struct val_anchors* anchors, uint8_t* rr, size_t rl, size_t dl) { struct trust_anchor* ta; if(!(ta=anchor_store_new_key(anchors, rr, sldns_wirerr_get_type(rr, rl, dl), sldns_wirerr_get_class(rr, rl, dl), sldns_wirerr_get_rdatawl(rr, rl, dl), sldns_wirerr_get_rdatalen(rr, rl, dl)+2))) { return NULL; } log_nametypeclass(VERB_QUERY, "adding trusted key", rr, sldns_wirerr_get_type(rr, rl, dl), sldns_wirerr_get_class(rr, rl, dl)); return ta; } /** * Insert insecure anchor * @param anchors: anchor storage. * @param str: the domain name. * @return NULL on error, Else last trust anchor point */ static struct trust_anchor* anchor_insert_insecure(struct val_anchors* anchors, const char* str) { struct trust_anchor* ta; size_t dname_len = 0; uint8_t* nm = sldns_str2wire_dname(str, &dname_len); if(!nm) { log_err("parse error in domain name '%s'", str); return NULL; } ta = anchor_store_new_key(anchors, nm, LDNS_RR_TYPE_DS, LDNS_RR_CLASS_IN, NULL, 0); free(nm); return ta; } struct trust_anchor* anchor_store_str(struct val_anchors* anchors, sldns_buffer* buffer, const char* str) { struct trust_anchor* ta; uint8_t* rr = sldns_buffer_begin(buffer); size_t len = sldns_buffer_capacity(buffer), dname_len = 0; int status = sldns_str2wire_rr_buf(str, rr, &len, &dname_len, 0, NULL, 0, NULL, 0); if(status != 0) { log_err("error parsing trust anchor %s: at %d: %s", str, LDNS_WIREPARSE_OFFSET(status), sldns_get_errorstr_parse(status)); return NULL; } if(!(ta=anchor_store_new_rr(anchors, rr, len, dname_len))) { log_err("out of memory"); return NULL; } return ta; } /** * Read a file with trust anchors * @param anchors: anchor storage. * @param buffer: parsing buffer. * @param fname: string. * @param onlyone: only one trust anchor allowed in file. * @return NULL on error. Else last trust-anchor point. */ static struct trust_anchor* anchor_read_file(struct val_anchors* anchors, sldns_buffer* buffer, const char* fname, int onlyone) { struct trust_anchor* ta = NULL, *tanew; struct sldns_file_parse_state pst; int status; size_t len, dname_len; uint8_t* rr = sldns_buffer_begin(buffer); int ok = 1; FILE* in = fopen(fname, "r"); if(!in) { log_err("error opening file %s: %s", fname, strerror(errno)); return 0; } memset(&pst, 0, sizeof(pst)); pst.default_ttl = 3600; pst.lineno = 1; while(!feof(in)) { len = sldns_buffer_capacity(buffer); dname_len = 0; status = sldns_fp2wire_rr_buf(in, rr, &len, &dname_len, &pst); if(len == 0) /* empty, $TTL, $ORIGIN */ continue; if(status != 0) { log_err("parse error in %s:%d:%d : %s", fname, pst.lineno, LDNS_WIREPARSE_OFFSET(status), sldns_get_errorstr_parse(status)); ok = 0; break; } if(sldns_wirerr_get_type(rr, len, dname_len) != LDNS_RR_TYPE_DS && sldns_wirerr_get_type(rr, len, dname_len) != LDNS_RR_TYPE_DNSKEY) { continue; } if(!(tanew=anchor_store_new_rr(anchors, rr, len, dname_len))) { log_err("mem error at %s line %d", fname, pst.lineno); ok = 0; break; } if(onlyone && ta && ta != tanew) { log_err("error at %s line %d: no multiple anchor " "domains allowed (you can have multiple " "keys, but they must have the same name).", fname, pst.lineno); ok = 0; break; } ta = tanew; } fclose(in); if(!ok) return NULL; /* empty file is OK when multiple anchors are allowed */ if(!onlyone && !ta) return (struct trust_anchor*)1; return ta; } /** skip file to end of line */ static void skip_to_eol(FILE* in) { int c; while((c = getc(in)) != EOF ) { if(c == '\n') return; } } /** true for special characters in bind configs */ static int is_bind_special(int c) { switch(c) { case '{': case '}': case '"': case ';': return 1; } return 0; } /** * Read a keyword skipping bind comments; spaces, specials, restkeywords. * The file is split into the following tokens: * * special characters, on their own, rdlen=1, { } doublequote ; * * whitespace becomes a single ' ' or tab. Newlines become spaces. * * other words ('keywords') * * comments are skipped if desired * / / C++ style comment to end of line * # to end of line * / * C style comment * / * @param in: file to read from. * @param buf: buffer, what is read is stored after current buffer position. * Space is left in the buffer to write a terminating 0. * @param line: line number is increased per line, for error reports. * @param comments: if 0, comments are not possible and become text. * if 1, comments are skipped entirely. * In BIND files, this is when reading quoted strings, for example * " base 64 text with / / in there " * @return the number of character written to the buffer. * 0 on end of file. */ static int readkeyword_bindfile(FILE* in, sldns_buffer* buf, int* line, int comments) { int c; int numdone = 0; while((c = getc(in)) != EOF ) { if(comments && c == '#') { /* # blabla */ skip_to_eol(in); (*line)++; continue; } else if(comments && c=='/' && numdone>0 && /* /_/ bla*/ sldns_buffer_read_u8_at(buf, sldns_buffer_position(buf)-1) == '/') { sldns_buffer_skip(buf, -1); numdone--; skip_to_eol(in); (*line)++; continue; } else if(comments && c=='*' && numdone>0 && /* /_* bla *_/ */ sldns_buffer_read_u8_at(buf, sldns_buffer_position(buf)-1) == '/') { sldns_buffer_skip(buf, -1); numdone--; /* skip to end of comment */ while(c != EOF && (c=getc(in)) != EOF ) { if(c == '*') { if((c=getc(in)) == '/') break; } if(c == '\n') (*line)++; } continue; } /* not a comment, complete the keyword */ if(numdone > 0) { /* check same type */ if(isspace((unsigned char)c)) { ungetc(c, in); return numdone; } if(is_bind_special(c)) { ungetc(c, in); return numdone; } } if(c == '\n') { c = ' '; (*line)++; } /* space for 1 char + 0 string terminator */ if(sldns_buffer_remaining(buf) < 2) { fatal_exit("trusted-keys, %d, string too long", *line); } sldns_buffer_write_u8(buf, (uint8_t)c); numdone++; if(isspace((unsigned char)c)) { /* collate whitespace into ' ' */ while((c = getc(in)) != EOF ) { if(c == '\n') (*line)++; if(!isspace((unsigned char)c)) { ungetc(c, in); break; } } return numdone; } if(is_bind_special(c)) return numdone; } return numdone; } /** skip through file to { or ; */ static int skip_to_special(FILE* in, sldns_buffer* buf, int* line, int spec) { int rdlen; sldns_buffer_clear(buf); while((rdlen=readkeyword_bindfile(in, buf, line, 1))) { if(rdlen == 1 && isspace((unsigned char)*sldns_buffer_begin(buf))) { sldns_buffer_clear(buf); continue; } if(rdlen != 1 || *sldns_buffer_begin(buf) != (uint8_t)spec) { sldns_buffer_write_u8(buf, 0); log_err("trusted-keys, line %d, expected %c", *line, spec); return 0; } return 1; } log_err("trusted-keys, line %d, expected %c got EOF", *line, spec); return 0; } /** * read contents of trusted-keys{ ... ; clauses and insert keys into storage. * @param anchors: where to store keys * @param buf: buffer to use * @param line: line number in file * @param in: file to read from. * @return 0 on error. */ static int process_bind_contents(struct val_anchors* anchors, sldns_buffer* buf, int* line, FILE* in) { /* loop over contents, collate strings before ; */ /* contents is (numbered): 0 1 2 3 4 5 6 7 8 */ /* name. 257 3 5 base64 base64 */ /* quoted value: 0 "111" 0 0 0 0 0 0 0 */ /* comments value: 1 "000" 1 1 1 "0 0 0 0" 1 */ int contnum = 0; int quoted = 0; int comments = 1; int rdlen; char* str = 0; sldns_buffer_clear(buf); while((rdlen=readkeyword_bindfile(in, buf, line, comments))) { if(rdlen == 1 && sldns_buffer_position(buf) == 1 && isspace((unsigned char)*sldns_buffer_begin(buf))) { /* starting whitespace is removed */ sldns_buffer_clear(buf); continue; } else if(rdlen == 1 && sldns_buffer_current(buf)[-1] == '"') { /* remove " from the string */ if(contnum == 0) { quoted = 1; comments = 0; } sldns_buffer_skip(buf, -1); if(contnum > 0 && quoted) { if(sldns_buffer_remaining(buf) < 8+1) { log_err("line %d, too long", *line); return 0; } sldns_buffer_write(buf, " DNSKEY ", 8); quoted = 0; comments = 1; } else if(contnum > 0) comments = !comments; continue; } else if(rdlen == 1 && sldns_buffer_current(buf)[-1] == ';') { if(contnum < 5) { sldns_buffer_write_u8(buf, 0); log_err("line %d, bad key", *line); return 0; } sldns_buffer_skip(buf, -1); sldns_buffer_write_u8(buf, 0); str = strdup((char*)sldns_buffer_begin(buf)); if(!str) { log_err("line %d, allocation failure", *line); return 0; } if(!anchor_store_str(anchors, buf, str)) { log_err("line %d, bad key", *line); free(str); return 0; } free(str); sldns_buffer_clear(buf); contnum = 0; quoted = 0; comments = 1; continue; } else if(rdlen == 1 && sldns_buffer_current(buf)[-1] == '}') { if(contnum > 0) { sldns_buffer_write_u8(buf, 0); log_err("line %d, bad key before }", *line); return 0; } return 1; } else if(rdlen == 1 && isspace((unsigned char)sldns_buffer_current(buf)[-1])) { /* leave whitespace here */ } else { /* not space or whatnot, so actual content */ contnum ++; if(contnum == 1 && !quoted) { if(sldns_buffer_remaining(buf) < 8+1) { log_err("line %d, too long", *line); return 0; } sldns_buffer_write(buf, " DNSKEY ", 8); } } } log_err("line %d, EOF before }", *line); return 0; } /** * Read a BIND9 like file with trust anchors in named.conf format. * @param anchors: anchor storage. * @param buffer: parsing buffer. * @param fname: string. * @return false on error. */ static int anchor_read_bind_file(struct val_anchors* anchors, sldns_buffer* buffer, const char* fname) { int line_nr = 1; FILE* in = fopen(fname, "r"); int rdlen = 0; if(!in) { log_err("error opening file %s: %s", fname, strerror(errno)); return 0; } verbose(VERB_QUERY, "reading in bind-compat-mode: '%s'", fname); /* scan for trusted-keys keyword, ignore everything else */ sldns_buffer_clear(buffer); while((rdlen=readkeyword_bindfile(in, buffer, &line_nr, 1)) != 0) { if(rdlen != 12 || strncmp((char*)sldns_buffer_begin(buffer), "trusted-keys", 12) != 0) { sldns_buffer_clear(buffer); /* ignore everything but trusted-keys */ continue; } if(!skip_to_special(in, buffer, &line_nr, '{')) { log_err("error in trusted key: \"%s\"", fname); fclose(in); return 0; } /* process contents */ if(!process_bind_contents(anchors, buffer, &line_nr, in)) { log_err("error in trusted key: \"%s\"", fname); fclose(in); return 0; } if(!skip_to_special(in, buffer, &line_nr, ';')) { log_err("error in trusted key: \"%s\"", fname); fclose(in); return 0; } sldns_buffer_clear(buffer); } fclose(in); return 1; } /** * Read a BIND9 like files with trust anchors in named.conf format. * Performs wildcard processing of name. * @param anchors: anchor storage. * @param buffer: parsing buffer. * @param pat: pattern string. (can be wildcarded) * @return false on error. */ static int anchor_read_bind_file_wild(struct val_anchors* anchors, sldns_buffer* buffer, const char* pat) { #ifdef HAVE_GLOB glob_t g; size_t i; int r, flags; if(!strchr(pat, '*') && !strchr(pat, '?') && !strchr(pat, '[') && !strchr(pat, '{') && !strchr(pat, '~')) { return anchor_read_bind_file(anchors, buffer, pat); } verbose(VERB_QUERY, "wildcard found, processing %s", pat); flags = 0 #ifdef GLOB_ERR | GLOB_ERR #endif #ifdef GLOB_NOSORT | GLOB_NOSORT #endif #ifdef GLOB_BRACE | GLOB_BRACE #endif #ifdef GLOB_TILDE | GLOB_TILDE #endif ; memset(&g, 0, sizeof(g)); r = glob(pat, flags, NULL, &g); if(r) { /* some error */ if(r == GLOB_NOMATCH) { verbose(VERB_QUERY, "trusted-keys-file: " "no matches for %s", pat); return 1; } else if(r == GLOB_NOSPACE) { log_err("wildcard trusted-keys-file %s: " "pattern out of memory", pat); } else if(r == GLOB_ABORTED) { log_err("wildcard trusted-keys-file %s: expansion " "aborted (%s)", pat, strerror(errno)); } else { log_err("wildcard trusted-keys-file %s: expansion " "failed (%s)", pat, strerror(errno)); } /* ignore globs that yield no files */ return 1; } /* process files found, if any */ for(i=0; i<(size_t)g.gl_pathc; i++) { if(!anchor_read_bind_file(anchors, buffer, g.gl_pathv[i])) { log_err("error reading wildcard " "trusted-keys-file: %s", g.gl_pathv[i]); globfree(&g); return 0; } } globfree(&g); return 1; #else /* not HAVE_GLOB */ return anchor_read_bind_file(anchors, buffer, pat); #endif /* HAVE_GLOB */ } /** * Assemble an rrset structure for the type * @param ta: trust anchor. * @param num: number of items to fetch from list. * @param type: fetch only items of this type. * @return rrset or NULL on error. */ static struct ub_packed_rrset_key* assemble_it(struct trust_anchor* ta, size_t num, uint16_t type) { struct ub_packed_rrset_key* pkey = (struct ub_packed_rrset_key*) malloc(sizeof(*pkey)); struct packed_rrset_data* pd; struct ta_key* tk; size_t i; if(!pkey) return NULL; memset(pkey, 0, sizeof(*pkey)); pkey->rk.dname = memdup(ta->name, ta->namelen); if(!pkey->rk.dname) { free(pkey); return NULL; } pkey->rk.dname_len = ta->namelen; pkey->rk.type = htons(type); pkey->rk.rrset_class = htons(ta->dclass); /* The rrset is build in an uncompressed way. This means it * cannot be copied in the normal way. */ pd = (struct packed_rrset_data*)malloc(sizeof(*pd)); if(!pd) { free(pkey->rk.dname); free(pkey); return NULL; } memset(pd, 0, sizeof(*pd)); pd->count = num; pd->trust = rrset_trust_ultimate; pd->rr_len = (size_t*)reallocarray(NULL, num, sizeof(size_t)); if(!pd->rr_len) { free(pd); free(pkey->rk.dname); free(pkey); return NULL; } pd->rr_ttl = (time_t*)reallocarray(NULL, num, sizeof(time_t)); if(!pd->rr_ttl) { free(pd->rr_len); free(pd); free(pkey->rk.dname); free(pkey); return NULL; } pd->rr_data = (uint8_t**)reallocarray(NULL, num, sizeof(uint8_t*)); if(!pd->rr_data) { free(pd->rr_ttl); free(pd->rr_len); free(pd); free(pkey->rk.dname); free(pkey); return NULL; } /* fill in rrs */ i=0; for(tk = ta->keylist; tk; tk = tk->next) { if(tk->type != type) continue; pd->rr_len[i] = tk->len; /* reuse data ptr to allocation in talist */ pd->rr_data[i] = tk->data; pd->rr_ttl[i] = 0; i++; } pkey->entry.data = (void*)pd; return pkey; } /** * Assemble structures for the trust DS and DNSKEY rrsets. * @param ta: trust anchor * @return: false on error. */ static int anchors_assemble(struct trust_anchor* ta) { if(ta->numDS > 0) { ta->ds_rrset = assemble_it(ta, ta->numDS, LDNS_RR_TYPE_DS); if(!ta->ds_rrset) return 0; } if(ta->numDNSKEY > 0) { ta->dnskey_rrset = assemble_it(ta, ta->numDNSKEY, LDNS_RR_TYPE_DNSKEY); if(!ta->dnskey_rrset) return 0; } return 1; } /** * Check DS algos for support, warn if not. * @param ta: trust anchor * @return number of DS anchors with unsupported algorithms. */ static size_t anchors_ds_unsupported(struct trust_anchor* ta) { size_t i, num = 0; for(i=0; inumDS; i++) { if(!ds_digest_algo_is_supported(ta->ds_rrset, i) || !ds_key_algo_is_supported(ta->ds_rrset, i)) num++; } return num; } /** * Check DNSKEY algos for support, warn if not. * @param ta: trust anchor * @return number of DNSKEY anchors with unsupported algorithms. */ static size_t anchors_dnskey_unsupported(struct trust_anchor* ta) { size_t i, num = 0; for(i=0; inumDNSKEY; i++) { if(!dnskey_algo_is_supported(ta->dnskey_rrset, i) || !dnskey_size_is_supported(ta->dnskey_rrset, i)) num++; } return num; } /** * Assemble the rrsets in the anchors, ready for use by validator. * @param anchors: trust anchor storage. * @return: false on error. */ static int anchors_assemble_rrsets(struct val_anchors* anchors) { struct trust_anchor* ta; struct trust_anchor* next; size_t nods, nokey; lock_basic_lock(&anchors->lock); ta=(struct trust_anchor*)rbtree_first(anchors->tree); while((rbnode_type*)ta != RBTREE_NULL) { next = (struct trust_anchor*)rbtree_next(&ta->node); lock_basic_lock(&ta->lock); if(ta->autr || (ta->numDS == 0 && ta->numDNSKEY == 0)) { lock_basic_unlock(&ta->lock); ta = next; /* skip */ continue; } if(!anchors_assemble(ta)) { log_err("out of memory"); lock_basic_unlock(&ta->lock); lock_basic_unlock(&anchors->lock); return 0; } nods = anchors_ds_unsupported(ta); nokey = anchors_dnskey_unsupported(ta); if(nods) { log_nametypeclass(NO_VERBOSE, "warning: unsupported " "algorithm for trust anchor", ta->name, LDNS_RR_TYPE_DS, ta->dclass); } if(nokey) { log_nametypeclass(NO_VERBOSE, "warning: unsupported " "algorithm for trust anchor", ta->name, LDNS_RR_TYPE_DNSKEY, ta->dclass); } if(nods == ta->numDS && nokey == ta->numDNSKEY) { char b[257]; dname_str(ta->name, b); log_warn("trust anchor %s has no supported algorithms," " the anchor is ignored (check if you need to" " upgrade unbound and " #ifdef HAVE_LIBRESSL "libressl" #else "openssl" #endif ")", b); (void)rbtree_delete(anchors->tree, &ta->node); lock_basic_unlock(&ta->lock); anchors_delfunc(&ta->node, NULL); ta = next; continue; } lock_basic_unlock(&ta->lock); ta = next; } lock_basic_unlock(&anchors->lock); return 1; } int anchors_apply_cfg(struct val_anchors* anchors, struct config_file* cfg) { struct config_strlist* f; const char** zstr; char* nm; sldns_buffer* parsebuf = sldns_buffer_new(65535); if(!parsebuf) { log_err("malloc error in anchors_apply_cfg."); return 0; } if(cfg->insecure_lan_zones) { for(zstr = as112_zones; *zstr; zstr++) { if(!anchor_insert_insecure(anchors, *zstr)) { log_err("error in insecure-lan-zones: %s", *zstr); sldns_buffer_free(parsebuf); return 0; } } } for(f = cfg->domain_insecure; f; f = f->next) { if(!f->str || f->str[0] == 0) /* empty "" */ continue; if(!anchor_insert_insecure(anchors, f->str)) { log_err("error in domain-insecure: %s", f->str); sldns_buffer_free(parsebuf); return 0; } } for(f = cfg->trust_anchor_file_list; f; f = f->next) { if(!f->str || f->str[0] == 0) /* empty "" */ continue; nm = f->str; if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(nm, cfg->chrootdir, strlen(cfg->chrootdir)) == 0) nm += strlen(cfg->chrootdir); if(!anchor_read_file(anchors, parsebuf, nm, 0)) { log_err("error reading trust-anchor-file: %s", f->str); sldns_buffer_free(parsebuf); return 0; } } for(f = cfg->trusted_keys_file_list; f; f = f->next) { if(!f->str || f->str[0] == 0) /* empty "" */ continue; nm = f->str; if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(nm, cfg->chrootdir, strlen(cfg->chrootdir)) == 0) nm += strlen(cfg->chrootdir); if(!anchor_read_bind_file_wild(anchors, parsebuf, nm)) { log_err("error reading trusted-keys-file: %s", f->str); sldns_buffer_free(parsebuf); return 0; } } for(f = cfg->trust_anchor_list; f; f = f->next) { if(!f->str || f->str[0] == 0) /* empty "" */ continue; if(!anchor_store_str(anchors, parsebuf, f->str)) { log_err("error in trust-anchor: \"%s\"", f->str); sldns_buffer_free(parsebuf); return 0; } } /* do autr last, so that it sees what anchors are filled by other * means can can print errors about double config for the name */ for(f = cfg->auto_trust_anchor_file_list; f; f = f->next) { if(!f->str || f->str[0] == 0) /* empty "" */ continue; nm = f->str; if(cfg->chrootdir && cfg->chrootdir[0] && strncmp(nm, cfg->chrootdir, strlen(cfg->chrootdir)) == 0) nm += strlen(cfg->chrootdir); if(!autr_read_file(anchors, nm)) { log_err("error reading auto-trust-anchor-file: %s", f->str); sldns_buffer_free(parsebuf); return 0; } } /* first assemble, since it may delete useless anchors */ anchors_assemble_rrsets(anchors); init_parents(anchors); sldns_buffer_free(parsebuf); if(verbosity >= VERB_ALGO) autr_debug_print(anchors); return 1; } struct trust_anchor* anchors_lookup(struct val_anchors* anchors, uint8_t* qname, size_t qname_len, uint16_t qclass) { struct trust_anchor key; struct trust_anchor* result; rbnode_type* res = NULL; key.node.key = &key; key.name = qname; key.namelabs = dname_count_labels(qname); key.namelen = qname_len; key.dclass = qclass; lock_basic_lock(&anchors->lock); if(rbtree_find_less_equal(anchors->tree, &key, &res)) { /* exact */ result = (struct trust_anchor*)res; } else { /* smaller element (or no element) */ int m; result = (struct trust_anchor*)res; if(!result || result->dclass != qclass) { lock_basic_unlock(&anchors->lock); return NULL; } /* count number of labels matched */ (void)dname_lab_cmp(result->name, result->namelabs, key.name, key.namelabs, &m); while(result) { /* go up until qname is subdomain of stub */ if(result->namelabs <= m) break; result = result->parent; } } if(result) { lock_basic_lock(&result->lock); } lock_basic_unlock(&anchors->lock); return result; } size_t anchors_get_mem(struct val_anchors* anchors) { struct trust_anchor *ta; size_t s = sizeof(*anchors); if(!anchors) return 0; RBTREE_FOR(ta, struct trust_anchor*, anchors->tree) { s += sizeof(*ta) + ta->namelen; /* keys and so on */ } return s; } int anchors_add_insecure(struct val_anchors* anchors, uint16_t c, uint8_t* nm) { struct trust_anchor key; key.node.key = &key; key.name = nm; key.namelabs = dname_count_size_labels(nm, &key.namelen); key.dclass = c; lock_basic_lock(&anchors->lock); if(rbtree_search(anchors->tree, &key)) { lock_basic_unlock(&anchors->lock); /* nothing to do, already an anchor or insecure point */ return 1; } if(!anchor_new_ta(anchors, nm, key.namelabs, key.namelen, c, 0)) { log_err("out of memory"); lock_basic_unlock(&anchors->lock); return 0; } /* no other contents in new ta, because it is insecure point */ anchors_init_parents_locked(anchors); lock_basic_unlock(&anchors->lock); return 1; } void anchors_delete_insecure(struct val_anchors* anchors, uint16_t c, uint8_t* nm) { struct trust_anchor key; struct trust_anchor* ta; key.node.key = &key; key.name = nm; key.namelabs = dname_count_size_labels(nm, &key.namelen); key.dclass = c; lock_basic_lock(&anchors->lock); if(!(ta=(struct trust_anchor*)rbtree_search(anchors->tree, &key))) { lock_basic_unlock(&anchors->lock); /* nothing there */ return; } /* lock it to drive away other threads that use it */ lock_basic_lock(&ta->lock); /* see if its really an insecure point */ if(ta->keylist || ta->autr || ta->numDS || ta->numDNSKEY) { lock_basic_unlock(&anchors->lock); lock_basic_unlock(&ta->lock); /* its not an insecure point, do not remove it */ return; } /* remove from tree */ (void)rbtree_delete(anchors->tree, &ta->node); anchors_init_parents_locked(anchors); lock_basic_unlock(&anchors->lock); /* actual free of data */ lock_basic_unlock(&ta->lock); anchors_delfunc(&ta->node, NULL); } /** compare two keytags, return -1, 0 or 1 */ static int keytag_compare(const void* x, const void* y) { if(*(uint16_t*)x == *(uint16_t*)y) return 0; if(*(uint16_t*)x > *(uint16_t*)y) return 1; return -1; } size_t anchor_list_keytags(struct trust_anchor* ta, uint16_t* list, size_t num) { size_t i, ret = 0; if(ta->numDS == 0 && ta->numDNSKEY == 0) return 0; /* insecure point */ if(ta->numDS != 0 && ta->ds_rrset) { struct packed_rrset_data* d=(struct packed_rrset_data*) ta->ds_rrset->entry.data; for(i=0; icount; i++) { if(ret == num) continue; list[ret++] = ds_get_keytag(ta->ds_rrset, i); } } if(ta->numDNSKEY != 0 && ta->dnskey_rrset) { struct packed_rrset_data* d=(struct packed_rrset_data*) ta->dnskey_rrset->entry.data; for(i=0; icount; i++) { if(ret == num) continue; list[ret++] = dnskey_calc_keytag(ta->dnskey_rrset, i); } } qsort(list, ret, sizeof(*list), keytag_compare); return ret; } int anchor_has_keytag(struct val_anchors* anchors, uint8_t* name, int namelabs, size_t namelen, uint16_t dclass, uint16_t keytag) { uint16_t* taglist; uint16_t* tl; size_t numtag, i; struct trust_anchor* anchor = anchor_find(anchors, name, namelabs, namelen, dclass); if(!anchor) return 0; if(!anchor->numDS && !anchor->numDNSKEY) { lock_basic_unlock(&anchor->lock); return 0; } taglist = calloc(anchor->numDS + anchor->numDNSKEY, sizeof(*taglist)); if(!taglist) { lock_basic_unlock(&anchor->lock); return 0; } numtag = anchor_list_keytags(anchor, taglist, anchor->numDS+anchor->numDNSKEY); lock_basic_unlock(&anchor->lock); if(!numtag) { free(taglist); return 0; } tl = taglist; for(i=0; i