/* * util/netevent.c - event notification * * Copyright (c) 2007, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains event notification functions. */ #include "config.h" #include #include "util/netevent.h" #include "util/log.h" #include "util/net_help.h" #include "util/fptr_wlist.h" #ifdef HAVE_OPENSSL_SSL_H #include #endif #ifdef HAVE_OPENSSL_ERR_H #include #endif /* -------- Start of local definitions -------- */ /** if CMSG_ALIGN is not defined on this platform, a workaround */ #ifndef CMSG_ALIGN # ifdef _CMSG_DATA_ALIGN # define CMSG_ALIGN _CMSG_DATA_ALIGN # else # define CMSG_ALIGN(len) (((len)+sizeof(long)-1) & ~(sizeof(long)-1)) # endif #endif /** if CMSG_LEN is not defined on this platform, a workaround */ #ifndef CMSG_LEN # define CMSG_LEN(len) (CMSG_ALIGN(sizeof(struct cmsghdr))+(len)) #endif /** if CMSG_SPACE is not defined on this platform, a workaround */ #ifndef CMSG_SPACE # ifdef _CMSG_HDR_ALIGN # define CMSG_SPACE(l) (CMSG_ALIGN(l)+_CMSG_HDR_ALIGN(sizeof(struct cmsghdr))) # else # define CMSG_SPACE(l) (CMSG_ALIGN(l)+CMSG_ALIGN(sizeof(struct cmsghdr))) # endif #endif /** The TCP reading or writing query timeout in seconds */ #define TCP_QUERY_TIMEOUT 120 #ifndef NONBLOCKING_IS_BROKEN /** number of UDP reads to perform per read indication from select */ #define NUM_UDP_PER_SELECT 100 #else #define NUM_UDP_PER_SELECT 1 #endif /* We define libevent structures here to hide the libevent stuff. */ #ifdef USE_MINI_EVENT # ifdef USE_WINSOCK # include "util/winsock_event.h" # else # include "util/mini_event.h" # endif /* USE_WINSOCK */ #else /* USE_MINI_EVENT */ /* we use libevent */ # ifdef HAVE_EVENT_H # include # else # include "event2/event.h" # include "event2/event_struct.h" # include "event2/event_compat.h" # endif #endif /* USE_MINI_EVENT */ /** * The internal event structure for keeping libevent info for the event. * Possibly other structures (list, tree) this is part of. */ struct internal_event { /** the comm base */ struct comm_base* base; /** libevent event type, alloced here */ struct event ev; }; /** * Internal base structure, so that every thread has its own events. */ struct internal_base { /** libevent event_base type. */ struct event_base* base; /** seconds time pointer points here */ uint32_t secs; /** timeval with current time */ struct timeval now; /** the event used for slow_accept timeouts */ struct event slow_accept; /** true if slow_accept is enabled */ int slow_accept_enabled; }; /** * Internal timer structure, to store timer event in. */ struct internal_timer { /** the comm base */ struct comm_base* base; /** libevent event type, alloced here */ struct event ev; /** is timer enabled */ uint8_t enabled; }; /** * Internal signal structure, to store signal event in. */ struct internal_signal { /** libevent event type, alloced here */ struct event ev; /** next in signal list */ struct internal_signal* next; }; /** create a tcp handler with a parent */ static struct comm_point* comm_point_create_tcp_handler( struct comm_base *base, struct comm_point* parent, size_t bufsize, comm_point_callback_t* callback, void* callback_arg); /* -------- End of local definitions -------- */ #ifdef USE_MINI_EVENT /** minievent updates the time when it blocks. */ #define comm_base_now(x) /* nothing to do */ #else /* !USE_MINI_EVENT */ /** fillup the time values in the event base */ static void comm_base_now(struct comm_base* b) { if(gettimeofday(&b->eb->now, NULL) < 0) { log_err("gettimeofday: %s", strerror(errno)); } b->eb->secs = (uint32_t)b->eb->now.tv_sec; } #endif /* USE_MINI_EVENT */ struct comm_base* comm_base_create(int sigs) { struct comm_base* b = (struct comm_base*)calloc(1, sizeof(struct comm_base)); if(!b) return NULL; b->eb = (struct internal_base*)calloc(1, sizeof(struct internal_base)); if(!b->eb) { free(b); return NULL; } #ifdef USE_MINI_EVENT (void)sigs; /* use mini event time-sharing feature */ b->eb->base = event_init(&b->eb->secs, &b->eb->now); #else # if defined(HAVE_EV_LOOP) || defined(HAVE_EV_DEFAULT_LOOP) /* libev */ if(sigs) b->eb->base=(struct event_base *)ev_default_loop(EVFLAG_AUTO); else b->eb->base=(struct event_base *)ev_loop_new(EVFLAG_AUTO); # else (void)sigs; # ifdef HAVE_EVENT_BASE_NEW b->eb->base = event_base_new(); # else b->eb->base = event_init(); # endif # endif #endif if(!b->eb->base) { free(b->eb); free(b); return NULL; } comm_base_now(b); /* avoid event_get_method call which causes crashes even when * not printing, because its result is passed */ verbose(VERB_ALGO, #if defined(HAVE_EV_LOOP) || defined(HAVE_EV_DEFAULT_LOOP) "libev" #elif defined(USE_MINI_EVENT) "event " #else "libevent " #endif "%s uses %s method.", event_get_version(), #ifdef HAVE_EVENT_BASE_GET_METHOD event_base_get_method(b->eb->base) #else "not_obtainable" #endif ); return b; } void comm_base_delete(struct comm_base* b) { if(!b) return; if(b->eb->slow_accept_enabled) { if(event_del(&b->eb->slow_accept) != 0) { log_err("could not event_del slow_accept"); } } #ifdef USE_MINI_EVENT event_base_free(b->eb->base); #elif defined(HAVE_EVENT_BASE_FREE) && defined(HAVE_EVENT_BASE_ONCE) /* only libevent 1.2+ has it, but in 1.2 it is broken - assertion fails on signal handling ev that is not deleted in libevent 1.3c (event_base_once appears) this is fixed. */ event_base_free(b->eb->base); #endif /* HAVE_EVENT_BASE_FREE and HAVE_EVENT_BASE_ONCE */ b->eb->base = NULL; free(b->eb); free(b); } void comm_base_timept(struct comm_base* b, uint32_t** tt, struct timeval** tv) { *tt = &b->eb->secs; *tv = &b->eb->now; } void comm_base_dispatch(struct comm_base* b) { int retval; retval = event_base_dispatch(b->eb->base); if(retval != 0) { fatal_exit("event_dispatch returned error %d, " "errno is %s", retval, strerror(errno)); } } void comm_base_exit(struct comm_base* b) { if(event_base_loopexit(b->eb->base, NULL) != 0) { log_err("Could not loopexit"); } } void comm_base_set_slow_accept_handlers(struct comm_base* b, void (*stop_acc)(void*), void (*start_acc)(void*), void* arg) { b->stop_accept = stop_acc; b->start_accept = start_acc; b->cb_arg = arg; } struct event_base* comm_base_internal(struct comm_base* b) { return b->eb->base; } /** see if errno for udp has to be logged or not uses globals */ static int udp_send_errno_needs_log(struct sockaddr* addr, socklen_t addrlen) { /* do not log transient errors (unless high verbosity) */ #if defined(ENETUNREACH) || defined(EHOSTDOWN) || defined(EHOSTUNREACH) || defined(ENETDOWN) switch(errno) { # ifdef ENETUNREACH case ENETUNREACH: # endif # ifdef EHOSTDOWN case EHOSTDOWN: # endif # ifdef EHOSTUNREACH case EHOSTUNREACH: # endif # ifdef ENETDOWN case ENETDOWN: # endif if(verbosity < VERB_ALGO) return 0; default: break; } #endif /* squelch errors where people deploy AAAA ::ffff:bla for * authority servers, which we try for intranets. */ if(errno == EINVAL && addr_is_ip4mapped( (struct sockaddr_storage*)addr, addrlen) && verbosity < VERB_DETAIL) return 0; /* SO_BROADCAST sockopt can give access to 255.255.255.255, * but a dns cache does not need it. */ if(errno == EACCES && addr_is_broadcast( (struct sockaddr_storage*)addr, addrlen) && verbosity < VERB_DETAIL) return 0; return 1; } int tcp_connect_errno_needs_log(struct sockaddr* addr, socklen_t addrlen) { return udp_send_errno_needs_log(addr, addrlen); } /* send a UDP reply */ int comm_point_send_udp_msg(struct comm_point *c, ldns_buffer* packet, struct sockaddr* addr, socklen_t addrlen) { ssize_t sent; log_assert(c->fd != -1); #ifdef UNBOUND_DEBUG if(ldns_buffer_remaining(packet) == 0) log_err("error: send empty UDP packet"); #endif log_assert(addr && addrlen > 0); sent = sendto(c->fd, (void*)ldns_buffer_begin(packet), ldns_buffer_remaining(packet), 0, addr, addrlen); if(sent == -1) { if(!udp_send_errno_needs_log(addr, addrlen)) return 0; #ifndef USE_WINSOCK verbose(VERB_OPS, "sendto failed: %s", strerror(errno)); #else verbose(VERB_OPS, "sendto failed: %s", wsa_strerror(WSAGetLastError())); #endif log_addr(VERB_OPS, "remote address is", (struct sockaddr_storage*)addr, addrlen); return 0; } else if((size_t)sent != ldns_buffer_remaining(packet)) { log_err("sent %d in place of %d bytes", (int)sent, (int)ldns_buffer_remaining(packet)); return 0; } return 1; } #if defined(AF_INET6) && defined(IPV6_PKTINFO) && (defined(HAVE_RECVMSG) || defined(HAVE_SENDMSG)) /** print debug ancillary info */ static void p_ancil(const char* str, struct comm_reply* r) { if(r->srctype != 4 && r->srctype != 6) { log_info("%s: unknown srctype %d", str, r->srctype); return; } if(r->srctype == 6) { char buf[1024]; if(inet_ntop(AF_INET6, &r->pktinfo.v6info.ipi6_addr, buf, (socklen_t)sizeof(buf)) == 0) { strncpy(buf, "(inet_ntop error)", sizeof(buf)); } buf[sizeof(buf)-1]=0; log_info("%s: %s %d", str, buf, r->pktinfo.v6info.ipi6_ifindex); } else if(r->srctype == 4) { #ifdef IP_PKTINFO char buf1[1024], buf2[1024]; if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_addr, buf1, (socklen_t)sizeof(buf1)) == 0) { strncpy(buf1, "(inet_ntop error)", sizeof(buf1)); } buf1[sizeof(buf1)-1]=0; #ifdef HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_spec_dst, buf2, (socklen_t)sizeof(buf2)) == 0) { strncpy(buf2, "(inet_ntop error)", sizeof(buf2)); } buf2[sizeof(buf2)-1]=0; #else buf2[0]=0; #endif log_info("%s: %d %s %s", str, r->pktinfo.v4info.ipi_ifindex, buf1, buf2); #elif defined(IP_RECVDSTADDR) char buf1[1024]; if(inet_ntop(AF_INET, &r->pktinfo.v4addr, buf1, (socklen_t)sizeof(buf1)) == 0) { strncpy(buf1, "(inet_ntop error)", sizeof(buf1)); } buf1[sizeof(buf1)-1]=0; log_info("%s: %s", str, buf1); #endif /* IP_PKTINFO or PI_RECVDSTDADDR */ } } #endif /* AF_INET6 && IPV6_PKTINFO && HAVE_RECVMSG||HAVE_SENDMSG */ /** send a UDP reply over specified interface*/ static int comm_point_send_udp_msg_if(struct comm_point *c, ldns_buffer* packet, struct sockaddr* addr, socklen_t addrlen, struct comm_reply* r) { #if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_SENDMSG) ssize_t sent; struct msghdr msg; struct iovec iov[1]; char control[256]; #ifndef S_SPLINT_S struct cmsghdr *cmsg; #endif /* S_SPLINT_S */ log_assert(c->fd != -1); #ifdef UNBOUND_DEBUG if(ldns_buffer_remaining(packet) == 0) log_err("error: send empty UDP packet"); #endif log_assert(addr && addrlen > 0); msg.msg_name = addr; msg.msg_namelen = addrlen; iov[0].iov_base = ldns_buffer_begin(packet); iov[0].iov_len = ldns_buffer_remaining(packet); msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_control = control; #ifndef S_SPLINT_S msg.msg_controllen = sizeof(control); #endif /* S_SPLINT_S */ msg.msg_flags = 0; #ifndef S_SPLINT_S cmsg = CMSG_FIRSTHDR(&msg); if(r->srctype == 4) { #ifdef IP_PKTINFO msg.msg_controllen = CMSG_SPACE(sizeof(struct in_pktinfo)); log_assert(msg.msg_controllen <= sizeof(control)); cmsg->cmsg_level = IPPROTO_IP; cmsg->cmsg_type = IP_PKTINFO; memmove(CMSG_DATA(cmsg), &r->pktinfo.v4info, sizeof(struct in_pktinfo)); cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo)); #elif defined(IP_SENDSRCADDR) msg.msg_controllen = CMSG_SPACE(sizeof(struct in_addr)); log_assert(msg.msg_controllen <= sizeof(control)); cmsg->cmsg_level = IPPROTO_IP; cmsg->cmsg_type = IP_SENDSRCADDR; memmove(CMSG_DATA(cmsg), &r->pktinfo.v4addr, sizeof(struct in_addr)); cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_addr)); #else verbose(VERB_ALGO, "no IP_PKTINFO or IP_SENDSRCADDR"); msg.msg_control = NULL; #endif /* IP_PKTINFO or IP_SENDSRCADDR */ } else if(r->srctype == 6) { msg.msg_controllen = CMSG_SPACE(sizeof(struct in6_pktinfo)); log_assert(msg.msg_controllen <= sizeof(control)); cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; memmove(CMSG_DATA(cmsg), &r->pktinfo.v6info, sizeof(struct in6_pktinfo)); cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo)); } else { /* try to pass all 0 to use default route */ msg.msg_controllen = CMSG_SPACE(sizeof(struct in6_pktinfo)); log_assert(msg.msg_controllen <= sizeof(control)); cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; memset(CMSG_DATA(cmsg), 0, sizeof(struct in6_pktinfo)); cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo)); } #endif /* S_SPLINT_S */ if(verbosity >= VERB_ALGO) p_ancil("send_udp over interface", r); sent = sendmsg(c->fd, &msg, 0); if(sent == -1) { if(!udp_send_errno_needs_log(addr, addrlen)) return 0; verbose(VERB_OPS, "sendmsg failed: %s", strerror(errno)); log_addr(VERB_OPS, "remote address is", (struct sockaddr_storage*)addr, addrlen); return 0; } else if((size_t)sent != ldns_buffer_remaining(packet)) { log_err("sent %d in place of %d bytes", (int)sent, (int)ldns_buffer_remaining(packet)); return 0; } return 1; #else (void)c; (void)packet; (void)addr; (void)addrlen; (void)r; log_err("sendmsg: IPV6_PKTINFO not supported"); return 0; #endif /* AF_INET6 && IPV6_PKTINFO && HAVE_SENDMSG */ } void comm_point_udp_ancil_callback(int fd, short event, void* arg) { #if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_RECVMSG) struct comm_reply rep; struct msghdr msg; struct iovec iov[1]; ssize_t rcv; char ancil[256]; int i; #ifndef S_SPLINT_S struct cmsghdr* cmsg; #endif /* S_SPLINT_S */ rep.c = (struct comm_point*)arg; log_assert(rep.c->type == comm_udp); if(!(event&EV_READ)) return; log_assert(rep.c && rep.c->buffer && rep.c->fd == fd); comm_base_now(rep.c->ev->base); for(i=0; ibuffer); rep.addrlen = (socklen_t)sizeof(rep.addr); log_assert(fd != -1); log_assert(ldns_buffer_remaining(rep.c->buffer) > 0); msg.msg_name = &rep.addr; msg.msg_namelen = (socklen_t)sizeof(rep.addr); iov[0].iov_base = ldns_buffer_begin(rep.c->buffer); iov[0].iov_len = ldns_buffer_remaining(rep.c->buffer); msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_control = ancil; #ifndef S_SPLINT_S msg.msg_controllen = sizeof(ancil); #endif /* S_SPLINT_S */ msg.msg_flags = 0; rcv = recvmsg(fd, &msg, 0); if(rcv == -1) { if(errno != EAGAIN && errno != EINTR) { log_err("recvmsg failed: %s", strerror(errno)); } return; } rep.addrlen = msg.msg_namelen; ldns_buffer_skip(rep.c->buffer, rcv); ldns_buffer_flip(rep.c->buffer); rep.srctype = 0; #ifndef S_SPLINT_S for(cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if( cmsg->cmsg_level == IPPROTO_IPV6 && cmsg->cmsg_type == IPV6_PKTINFO) { rep.srctype = 6; memmove(&rep.pktinfo.v6info, CMSG_DATA(cmsg), sizeof(struct in6_pktinfo)); break; #ifdef IP_PKTINFO } else if( cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_PKTINFO) { rep.srctype = 4; memmove(&rep.pktinfo.v4info, CMSG_DATA(cmsg), sizeof(struct in_pktinfo)); break; #elif defined(IP_RECVDSTADDR) } else if( cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_RECVDSTADDR) { rep.srctype = 4; memmove(&rep.pktinfo.v4addr, CMSG_DATA(cmsg), sizeof(struct in_addr)); break; #endif /* IP_PKTINFO or IP_RECVDSTADDR */ } } if(verbosity >= VERB_ALGO) p_ancil("receive_udp on interface", &rep); #endif /* S_SPLINT_S */ fptr_ok(fptr_whitelist_comm_point(rep.c->callback)); if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) { /* send back immediate reply */ (void)comm_point_send_udp_msg_if(rep.c, rep.c->buffer, (struct sockaddr*)&rep.addr, rep.addrlen, &rep); } if(rep.c->fd == -1) /* commpoint closed */ break; } #else (void)fd; (void)event; (void)arg; fatal_exit("recvmsg: No support for IPV6_PKTINFO. " "Please disable interface-automatic"); #endif /* AF_INET6 && IPV6_PKTINFO && HAVE_RECVMSG */ } void comm_point_udp_callback(int fd, short event, void* arg) { struct comm_reply rep; ssize_t rcv; int i; rep.c = (struct comm_point*)arg; log_assert(rep.c->type == comm_udp); if(!(event&EV_READ)) return; log_assert(rep.c && rep.c->buffer && rep.c->fd == fd); comm_base_now(rep.c->ev->base); for(i=0; ibuffer); rep.addrlen = (socklen_t)sizeof(rep.addr); log_assert(fd != -1); log_assert(ldns_buffer_remaining(rep.c->buffer) > 0); rcv = recvfrom(fd, (void*)ldns_buffer_begin(rep.c->buffer), ldns_buffer_remaining(rep.c->buffer), 0, (struct sockaddr*)&rep.addr, &rep.addrlen); if(rcv == -1) { #ifndef USE_WINSOCK if(errno != EAGAIN && errno != EINTR) log_err("recvfrom %d failed: %s", fd, strerror(errno)); #else if(WSAGetLastError() != WSAEINPROGRESS && WSAGetLastError() != WSAECONNRESET && WSAGetLastError()!= WSAEWOULDBLOCK) log_err("recvfrom failed: %s", wsa_strerror(WSAGetLastError())); #endif return; } ldns_buffer_skip(rep.c->buffer, rcv); ldns_buffer_flip(rep.c->buffer); rep.srctype = 0; fptr_ok(fptr_whitelist_comm_point(rep.c->callback)); if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) { /* send back immediate reply */ (void)comm_point_send_udp_msg(rep.c, rep.c->buffer, (struct sockaddr*)&rep.addr, rep.addrlen); } if(rep.c->fd != fd) /* commpoint closed to -1 or reused for another UDP port. Note rep.c cannot be reused with TCP fd. */ break; } } /** Use a new tcp handler for new query fd, set to read query */ static void setup_tcp_handler(struct comm_point* c, int fd) { log_assert(c->type == comm_tcp); log_assert(c->fd == -1); ldns_buffer_clear(c->buffer); c->tcp_is_reading = 1; c->tcp_byte_count = 0; comm_point_start_listening(c, fd, TCP_QUERY_TIMEOUT); } void comm_base_handle_slow_accept(int ATTR_UNUSED(fd), short ATTR_UNUSED(event), void* arg) { struct comm_base* b = (struct comm_base*)arg; /* timeout for the slow accept, re-enable accepts again */ if(b->start_accept) { verbose(VERB_ALGO, "wait is over, slow accept disabled"); fptr_ok(fptr_whitelist_start_accept(b->start_accept)); (*b->start_accept)(b->cb_arg); b->eb->slow_accept_enabled = 0; } } int comm_point_perform_accept(struct comm_point* c, struct sockaddr_storage* addr, socklen_t* addrlen) { int new_fd; *addrlen = (socklen_t)sizeof(*addr); new_fd = accept(c->fd, (struct sockaddr*)addr, addrlen); if(new_fd == -1) { #ifndef USE_WINSOCK /* EINTR is signal interrupt. others are closed connection. */ if( errno == EINTR || errno == EAGAIN #ifdef EWOULDBLOCK || errno == EWOULDBLOCK #endif #ifdef ECONNABORTED || errno == ECONNABORTED #endif #ifdef EPROTO || errno == EPROTO #endif /* EPROTO */ ) return -1; #if defined(ENFILE) && defined(EMFILE) if(errno == ENFILE || errno == EMFILE) { /* out of file descriptors, likely outside of our * control. stop accept() calls for some time */ if(c->ev->base->stop_accept) { struct comm_base* b = c->ev->base; struct timeval tv; verbose(VERB_ALGO, "out of file descriptors: " "slow accept"); b->eb->slow_accept_enabled = 1; fptr_ok(fptr_whitelist_stop_accept( b->stop_accept)); (*b->stop_accept)(b->cb_arg); /* set timeout, no mallocs */ tv.tv_sec = NETEVENT_SLOW_ACCEPT_TIME/1000; tv.tv_usec = NETEVENT_SLOW_ACCEPT_TIME%1000; event_set(&b->eb->slow_accept, -1, EV_TIMEOUT, comm_base_handle_slow_accept, b); if(event_base_set(b->eb->base, &b->eb->slow_accept) != 0) { /* we do not want to log here, because * that would spam the logfiles. * error: "event_base_set failed." */ } if(event_add(&b->eb->slow_accept, &tv) != 0) { /* we do not want to log here, * error: "event_add failed." */ } } return -1; } #endif log_err("accept failed: %s", strerror(errno)); #else /* USE_WINSOCK */ if(WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAECONNRESET) return -1; if(WSAGetLastError() == WSAEWOULDBLOCK) { winsock_tcp_wouldblock(&c->ev->ev, EV_READ); return -1; } log_err("accept failed: %s", wsa_strerror(WSAGetLastError())); #endif log_addr(0, "remote address is", addr, *addrlen); return -1; } fd_set_nonblock(new_fd); return new_fd; } #ifdef USE_WINSOCK static long win_bio_cb(BIO *b, int oper, const char* ATTR_UNUSED(argp), int ATTR_UNUSED(argi), long argl, long retvalue) { verbose(VERB_ALGO, "bio_cb %d, %s %s %s", oper, (oper&BIO_CB_RETURN)?"return":"before", (oper&BIO_CB_READ)?"read":((oper&BIO_CB_WRITE)?"write":"other"), WSAGetLastError()==WSAEWOULDBLOCK?"wsawb":""); /* on windows, check if previous operation caused EWOULDBLOCK */ if( (oper == (BIO_CB_READ|BIO_CB_RETURN) && argl == 0) || (oper == (BIO_CB_GETS|BIO_CB_RETURN) && argl == 0)) { if(WSAGetLastError() == WSAEWOULDBLOCK) winsock_tcp_wouldblock((struct event*) BIO_get_callback_arg(b), EV_READ); } if( (oper == (BIO_CB_WRITE|BIO_CB_RETURN) && argl == 0) || (oper == (BIO_CB_PUTS|BIO_CB_RETURN) && argl == 0)) { if(WSAGetLastError() == WSAEWOULDBLOCK) winsock_tcp_wouldblock((struct event*) BIO_get_callback_arg(b), EV_WRITE); } /* return original return value */ return retvalue; } /** set win bio callbacks for nonblocking operations */ void comm_point_tcp_win_bio_cb(struct comm_point* c, void* thessl) { SSL* ssl = (SSL*)thessl; /* set them both just in case, but usually they are the same BIO */ BIO_set_callback(SSL_get_rbio(ssl), &win_bio_cb); BIO_set_callback_arg(SSL_get_rbio(ssl), (char*)&c->ev->ev); BIO_set_callback(SSL_get_wbio(ssl), &win_bio_cb); BIO_set_callback_arg(SSL_get_wbio(ssl), (char*)&c->ev->ev); } #endif void comm_point_tcp_accept_callback(int fd, short event, void* arg) { struct comm_point* c = (struct comm_point*)arg, *c_hdl; int new_fd; log_assert(c->type == comm_tcp_accept); if(!(event & EV_READ)) { log_info("ignoring tcp accept event %d", (int)event); return; } comm_base_now(c->ev->base); /* find free tcp handler. */ if(!c->tcp_free) { log_warn("accepted too many tcp, connections full"); return; } /* accept incoming connection. */ c_hdl = c->tcp_free; log_assert(fd != -1); new_fd = comm_point_perform_accept(c, &c_hdl->repinfo.addr, &c_hdl->repinfo.addrlen); if(new_fd == -1) return; if(c->ssl) { c_hdl->ssl = incoming_ssl_fd(c->ssl, new_fd); if(!c_hdl->ssl) { c_hdl->fd = new_fd; comm_point_close(c_hdl); return; } c_hdl->ssl_shake_state = comm_ssl_shake_read; #ifdef USE_WINSOCK comm_point_tcp_win_bio_cb(c_hdl, c_hdl->ssl); #endif } /* grab the tcp handler buffers */ c->tcp_free = c_hdl->tcp_free; if(!c->tcp_free) { /* stop accepting incoming queries for now. */ comm_point_stop_listening(c); } /* addr is dropped. Not needed for tcp reply. */ setup_tcp_handler(c_hdl, new_fd); } /** Make tcp handler free for next assignment */ static void reclaim_tcp_handler(struct comm_point* c) { log_assert(c->type == comm_tcp); if(c->ssl) { #ifdef HAVE_SSL SSL_shutdown(c->ssl); SSL_free(c->ssl); c->ssl = NULL; #endif } comm_point_close(c); if(c->tcp_parent) { c->tcp_free = c->tcp_parent->tcp_free; c->tcp_parent->tcp_free = c; if(!c->tcp_free) { /* re-enable listening on accept socket */ comm_point_start_listening(c->tcp_parent, -1, -1); } } } /** do the callback when writing is done */ static void tcp_callback_writer(struct comm_point* c) { log_assert(c->type == comm_tcp); ldns_buffer_clear(c->buffer); if(c->tcp_do_toggle_rw) c->tcp_is_reading = 1; c->tcp_byte_count = 0; /* switch from listening(write) to listening(read) */ comm_point_stop_listening(c); comm_point_start_listening(c, -1, -1); } /** do the callback when reading is done */ static void tcp_callback_reader(struct comm_point* c) { log_assert(c->type == comm_tcp || c->type == comm_local); ldns_buffer_flip(c->buffer); if(c->tcp_do_toggle_rw) c->tcp_is_reading = 0; c->tcp_byte_count = 0; if(c->type == comm_tcp) comm_point_stop_listening(c); fptr_ok(fptr_whitelist_comm_point(c->callback)); if( (*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, &c->repinfo) ) { comm_point_start_listening(c, -1, TCP_QUERY_TIMEOUT); } } /** continue ssl handshake */ #ifdef HAVE_SSL static int ssl_handshake(struct comm_point* c) { int r; if(c->ssl_shake_state == comm_ssl_shake_hs_read) { /* read condition satisfied back to writing */ comm_point_listen_for_rw(c, 1, 1); c->ssl_shake_state = comm_ssl_shake_none; return 1; } if(c->ssl_shake_state == comm_ssl_shake_hs_write) { /* write condition satisfied, back to reading */ comm_point_listen_for_rw(c, 1, 0); c->ssl_shake_state = comm_ssl_shake_none; return 1; } ERR_clear_error(); r = SSL_do_handshake(c->ssl); if(r != 1) { int want = SSL_get_error(c->ssl, r); if(want == SSL_ERROR_WANT_READ) { if(c->ssl_shake_state == comm_ssl_shake_read) return 1; c->ssl_shake_state = comm_ssl_shake_read; comm_point_listen_for_rw(c, 1, 0); return 1; } else if(want == SSL_ERROR_WANT_WRITE) { if(c->ssl_shake_state == comm_ssl_shake_write) return 1; c->ssl_shake_state = comm_ssl_shake_write; comm_point_listen_for_rw(c, 0, 1); return 1; } else if(r == 0) { return 0; /* closed */ } else if(want == SSL_ERROR_SYSCALL) { /* SYSCALL and errno==0 means closed uncleanly */ if(errno != 0) log_err("SSL_handshake syscall: %s", strerror(errno)); return 0; } else { log_crypto_err("ssl handshake failed"); log_addr(1, "ssl handshake failed", &c->repinfo.addr, c->repinfo.addrlen); return 0; } } /* this is where peer verification could take place */ log_addr(VERB_ALGO, "SSL DNS connection", &c->repinfo.addr, c->repinfo.addrlen); /* setup listen rw correctly */ if(c->tcp_is_reading) { if(c->ssl_shake_state != comm_ssl_shake_read) comm_point_listen_for_rw(c, 1, 0); } else { comm_point_listen_for_rw(c, 1, 1); } c->ssl_shake_state = comm_ssl_shake_none; return 1; } #endif /* HAVE_SSL */ /** ssl read callback on TCP */ static int ssl_handle_read(struct comm_point* c) { #ifdef HAVE_SSL int r; if(c->ssl_shake_state != comm_ssl_shake_none) { if(!ssl_handshake(c)) return 0; if(c->ssl_shake_state != comm_ssl_shake_none) return 1; } if(c->tcp_byte_count < sizeof(uint16_t)) { /* read length bytes */ ERR_clear_error(); if((r=SSL_read(c->ssl, (void*)ldns_buffer_at(c->buffer, c->tcp_byte_count), (int)(sizeof(uint16_t) - c->tcp_byte_count))) <= 0) { int want = SSL_get_error(c->ssl, r); if(want == SSL_ERROR_ZERO_RETURN) { return 0; /* shutdown, closed */ } else if(want == SSL_ERROR_WANT_READ) { return 1; /* read more later */ } else if(want == SSL_ERROR_WANT_WRITE) { c->ssl_shake_state = comm_ssl_shake_hs_write; comm_point_listen_for_rw(c, 0, 1); return 1; } else if(want == SSL_ERROR_SYSCALL) { if(errno != 0) log_err("SSL_read syscall: %s", strerror(errno)); return 0; } log_crypto_err("could not SSL_read"); return 0; } c->tcp_byte_count += r; if(c->tcp_byte_count != sizeof(uint16_t)) return 1; if(ldns_buffer_read_u16_at(c->buffer, 0) > ldns_buffer_capacity(c->buffer)) { verbose(VERB_QUERY, "ssl: dropped larger than buffer"); return 0; } ldns_buffer_set_limit(c->buffer, ldns_buffer_read_u16_at(c->buffer, 0)); if(ldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) { verbose(VERB_QUERY, "ssl: dropped bogus too short."); return 0; } verbose(VERB_ALGO, "Reading ssl tcp query of length %d", (int)ldns_buffer_limit(c->buffer)); } log_assert(ldns_buffer_remaining(c->buffer) > 0); ERR_clear_error(); r = SSL_read(c->ssl, (void*)ldns_buffer_current(c->buffer), (int)ldns_buffer_remaining(c->buffer)); if(r <= 0) { int want = SSL_get_error(c->ssl, r); if(want == SSL_ERROR_ZERO_RETURN) { return 0; /* shutdown, closed */ } else if(want == SSL_ERROR_WANT_READ) { return 1; /* read more later */ } else if(want == SSL_ERROR_WANT_WRITE) { c->ssl_shake_state = comm_ssl_shake_hs_write; comm_point_listen_for_rw(c, 0, 1); return 1; } else if(want == SSL_ERROR_SYSCALL) { if(errno != 0) log_err("SSL_read syscall: %s", strerror(errno)); return 0; } log_crypto_err("could not SSL_read"); return 0; } ldns_buffer_skip(c->buffer, (ssize_t)r); if(ldns_buffer_remaining(c->buffer) <= 0) { tcp_callback_reader(c); } return 1; #else (void)c; return 0; #endif /* HAVE_SSL */ } /** ssl write callback on TCP */ static int ssl_handle_write(struct comm_point* c) { #ifdef HAVE_SSL int r; if(c->ssl_shake_state != comm_ssl_shake_none) { if(!ssl_handshake(c)) return 0; if(c->ssl_shake_state != comm_ssl_shake_none) return 1; } /* ignore return, if fails we may simply block */ (void)SSL_set_mode(c->ssl, SSL_MODE_ENABLE_PARTIAL_WRITE); if(c->tcp_byte_count < sizeof(uint16_t)) { uint16_t len = htons(ldns_buffer_limit(c->buffer)); ERR_clear_error(); r = SSL_write(c->ssl, (void*)(((uint8_t*)&len)+c->tcp_byte_count), (int)(sizeof(uint16_t)-c->tcp_byte_count)); if(r <= 0) { int want = SSL_get_error(c->ssl, r); if(want == SSL_ERROR_ZERO_RETURN) { return 0; /* closed */ } else if(want == SSL_ERROR_WANT_READ) { c->ssl_shake_state = comm_ssl_shake_read; comm_point_listen_for_rw(c, 1, 0); return 1; /* wait for read condition */ } else if(want == SSL_ERROR_WANT_WRITE) { return 1; /* write more later */ } else if(want == SSL_ERROR_SYSCALL) { if(errno != 0) log_err("SSL_write syscall: %s", strerror(errno)); return 0; } log_crypto_err("could not SSL_write"); return 0; } c->tcp_byte_count += r; if(c->tcp_byte_count < sizeof(uint16_t)) return 1; ldns_buffer_set_position(c->buffer, c->tcp_byte_count - sizeof(uint16_t)); if(ldns_buffer_remaining(c->buffer) == 0) { tcp_callback_writer(c); return 1; } } log_assert(ldns_buffer_remaining(c->buffer) > 0); ERR_clear_error(); r = SSL_write(c->ssl, (void*)ldns_buffer_current(c->buffer), (int)ldns_buffer_remaining(c->buffer)); if(r <= 0) { int want = SSL_get_error(c->ssl, r); if(want == SSL_ERROR_ZERO_RETURN) { return 0; /* closed */ } else if(want == SSL_ERROR_WANT_READ) { c->ssl_shake_state = comm_ssl_shake_read; comm_point_listen_for_rw(c, 1, 0); return 1; /* wait for read condition */ } else if(want == SSL_ERROR_WANT_WRITE) { return 1; /* write more later */ } else if(want == SSL_ERROR_SYSCALL) { if(errno != 0) log_err("SSL_write syscall: %s", strerror(errno)); return 0; } log_crypto_err("could not SSL_write"); return 0; } ldns_buffer_skip(c->buffer, (ssize_t)r); if(ldns_buffer_remaining(c->buffer) == 0) { tcp_callback_writer(c); } return 1; #else (void)c; return 0; #endif /* HAVE_SSL */ } /** handle ssl tcp connection with dns contents */ static int ssl_handle_it(struct comm_point* c) { if(c->tcp_is_reading) return ssl_handle_read(c); return ssl_handle_write(c); } /** Handle tcp reading callback. * @param fd: file descriptor of socket. * @param c: comm point to read from into buffer. * @param short_ok: if true, very short packets are OK (for comm_local). * @return: 0 on error */ static int comm_point_tcp_handle_read(int fd, struct comm_point* c, int short_ok) { ssize_t r; log_assert(c->type == comm_tcp || c->type == comm_local); if(c->ssl) return ssl_handle_it(c); if(!c->tcp_is_reading) return 0; log_assert(fd != -1); if(c->tcp_byte_count < sizeof(uint16_t)) { /* read length bytes */ r = recv(fd,(void*)ldns_buffer_at(c->buffer,c->tcp_byte_count), sizeof(uint16_t)-c->tcp_byte_count, 0); if(r == 0) return 0; else if(r == -1) { #ifndef USE_WINSOCK if(errno == EINTR || errno == EAGAIN) return 1; #ifdef ECONNRESET if(errno == ECONNRESET && verbosity < 2) return 0; /* silence reset by peer */ #endif log_err("read (in tcp s): %s", strerror(errno)); #else /* USE_WINSOCK */ if(WSAGetLastError() == WSAECONNRESET) return 0; if(WSAGetLastError() == WSAEINPROGRESS) return 1; if(WSAGetLastError() == WSAEWOULDBLOCK) { winsock_tcp_wouldblock(&c->ev->ev, EV_READ); return 1; } log_err("read (in tcp s): %s", wsa_strerror(WSAGetLastError())); #endif log_addr(0, "remote address is", &c->repinfo.addr, c->repinfo.addrlen); return 0; } c->tcp_byte_count += r; if(c->tcp_byte_count != sizeof(uint16_t)) return 1; if(ldns_buffer_read_u16_at(c->buffer, 0) > ldns_buffer_capacity(c->buffer)) { verbose(VERB_QUERY, "tcp: dropped larger than buffer"); return 0; } ldns_buffer_set_limit(c->buffer, ldns_buffer_read_u16_at(c->buffer, 0)); if(!short_ok && ldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) { verbose(VERB_QUERY, "tcp: dropped bogus too short."); return 0; } verbose(VERB_ALGO, "Reading tcp query of length %d", (int)ldns_buffer_limit(c->buffer)); } log_assert(ldns_buffer_remaining(c->buffer) > 0); r = recv(fd, (void*)ldns_buffer_current(c->buffer), ldns_buffer_remaining(c->buffer), 0); if(r == 0) { return 0; } else if(r == -1) { #ifndef USE_WINSOCK if(errno == EINTR || errno == EAGAIN) return 1; log_err("read (in tcp r): %s", strerror(errno)); #else /* USE_WINSOCK */ if(WSAGetLastError() == WSAECONNRESET) return 0; if(WSAGetLastError() == WSAEINPROGRESS) return 1; if(WSAGetLastError() == WSAEWOULDBLOCK) { winsock_tcp_wouldblock(&c->ev->ev, EV_READ); return 1; } log_err("read (in tcp r): %s", wsa_strerror(WSAGetLastError())); #endif log_addr(0, "remote address is", &c->repinfo.addr, c->repinfo.addrlen); return 0; } ldns_buffer_skip(c->buffer, r); if(ldns_buffer_remaining(c->buffer) <= 0) { tcp_callback_reader(c); } return 1; } /** * Handle tcp writing callback. * @param fd: file descriptor of socket. * @param c: comm point to write buffer out of. * @return: 0 on error */ static int comm_point_tcp_handle_write(int fd, struct comm_point* c) { ssize_t r; log_assert(c->type == comm_tcp); if(c->tcp_is_reading && !c->ssl) return 0; log_assert(fd != -1); if(c->tcp_byte_count == 0 && c->tcp_check_nb_connect) { /* check for pending error from nonblocking connect */ /* from Stevens, unix network programming, vol1, 3rd ed, p450*/ int error = 0; socklen_t len = (socklen_t)sizeof(error); if(getsockopt(fd, SOL_SOCKET, SO_ERROR, (void*)&error, &len) < 0){ #ifndef USE_WINSOCK error = errno; /* on solaris errno is error */ #else /* USE_WINSOCK */ error = WSAGetLastError(); #endif } #ifndef USE_WINSOCK #if defined(EINPROGRESS) && defined(EWOULDBLOCK) if(error == EINPROGRESS || error == EWOULDBLOCK) return 1; /* try again later */ else #endif if(error != 0 && verbosity < 2) return 0; /* silence lots of chatter in the logs */ else if(error != 0) { log_err("tcp connect: %s", strerror(error)); #else /* USE_WINSOCK */ /* examine error */ if(error == WSAEINPROGRESS) return 1; else if(error == WSAEWOULDBLOCK) { winsock_tcp_wouldblock(&c->ev->ev, EV_WRITE); return 1; } else if(error != 0 && verbosity < 2) return 0; else if(error != 0) { log_err("tcp connect: %s", wsa_strerror(error)); #endif /* USE_WINSOCK */ log_addr(0, "remote address is", &c->repinfo.addr, c->repinfo.addrlen); return 0; } } if(c->ssl) return ssl_handle_it(c); if(c->tcp_byte_count < sizeof(uint16_t)) { uint16_t len = htons(ldns_buffer_limit(c->buffer)); #ifdef HAVE_WRITEV struct iovec iov[2]; iov[0].iov_base = (uint8_t*)&len + c->tcp_byte_count; iov[0].iov_len = sizeof(uint16_t) - c->tcp_byte_count; iov[1].iov_base = ldns_buffer_begin(c->buffer); iov[1].iov_len = ldns_buffer_limit(c->buffer); log_assert(iov[0].iov_len > 0); log_assert(iov[1].iov_len > 0); r = writev(fd, iov, 2); #else /* HAVE_WRITEV */ r = send(fd, (void*)(((uint8_t*)&len)+c->tcp_byte_count), sizeof(uint16_t)-c->tcp_byte_count, 0); #endif /* HAVE_WRITEV */ if(r == -1) { #ifndef USE_WINSOCK #ifdef EPIPE if(errno == EPIPE && verbosity < 2) return 0; /* silence 'broken pipe' */ #endif if(errno == EINTR || errno == EAGAIN) return 1; log_err("tcp writev: %s", strerror(errno)); #else if(WSAGetLastError() == WSAENOTCONN) return 1; if(WSAGetLastError() == WSAEINPROGRESS) return 1; if(WSAGetLastError() == WSAEWOULDBLOCK) { winsock_tcp_wouldblock(&c->ev->ev, EV_WRITE); return 1; } log_err("tcp send s: %s", wsa_strerror(WSAGetLastError())); #endif log_addr(0, "remote address is", &c->repinfo.addr, c->repinfo.addrlen); return 0; } c->tcp_byte_count += r; if(c->tcp_byte_count < sizeof(uint16_t)) return 1; ldns_buffer_set_position(c->buffer, c->tcp_byte_count - sizeof(uint16_t)); if(ldns_buffer_remaining(c->buffer) == 0) { tcp_callback_writer(c); return 1; } } log_assert(ldns_buffer_remaining(c->buffer) > 0); r = send(fd, (void*)ldns_buffer_current(c->buffer), ldns_buffer_remaining(c->buffer), 0); if(r == -1) { #ifndef USE_WINSOCK if(errno == EINTR || errno == EAGAIN) return 1; log_err("tcp send r: %s", strerror(errno)); #else if(WSAGetLastError() == WSAEINPROGRESS) return 1; if(WSAGetLastError() == WSAEWOULDBLOCK) { winsock_tcp_wouldblock(&c->ev->ev, EV_WRITE); return 1; } log_err("tcp send r: %s", wsa_strerror(WSAGetLastError())); #endif log_addr(0, "remote address is", &c->repinfo.addr, c->repinfo.addrlen); return 0; } ldns_buffer_skip(c->buffer, r); if(ldns_buffer_remaining(c->buffer) == 0) { tcp_callback_writer(c); } return 1; } void comm_point_tcp_handle_callback(int fd, short event, void* arg) { struct comm_point* c = (struct comm_point*)arg; log_assert(c->type == comm_tcp); comm_base_now(c->ev->base); if(event&EV_READ) { if(!comm_point_tcp_handle_read(fd, c, 0)) { reclaim_tcp_handler(c); if(!c->tcp_do_close) { fptr_ok(fptr_whitelist_comm_point( c->callback)); (void)(*c->callback)(c, c->cb_arg, NETEVENT_CLOSED, NULL); } } return; } if(event&EV_WRITE) { if(!comm_point_tcp_handle_write(fd, c)) { reclaim_tcp_handler(c); if(!c->tcp_do_close) { fptr_ok(fptr_whitelist_comm_point( c->callback)); (void)(*c->callback)(c, c->cb_arg, NETEVENT_CLOSED, NULL); } } return; } if(event&EV_TIMEOUT) { verbose(VERB_QUERY, "tcp took too long, dropped"); reclaim_tcp_handler(c); if(!c->tcp_do_close) { fptr_ok(fptr_whitelist_comm_point(c->callback)); (void)(*c->callback)(c, c->cb_arg, NETEVENT_TIMEOUT, NULL); } return; } log_err("Ignored event %d for tcphdl.", event); } void comm_point_local_handle_callback(int fd, short event, void* arg) { struct comm_point* c = (struct comm_point*)arg; log_assert(c->type == comm_local); comm_base_now(c->ev->base); if(event&EV_READ) { if(!comm_point_tcp_handle_read(fd, c, 1)) { fptr_ok(fptr_whitelist_comm_point(c->callback)); (void)(*c->callback)(c, c->cb_arg, NETEVENT_CLOSED, NULL); } return; } log_err("Ignored event %d for localhdl.", event); } void comm_point_raw_handle_callback(int ATTR_UNUSED(fd), short event, void* arg) { struct comm_point* c = (struct comm_point*)arg; int err = NETEVENT_NOERROR; log_assert(c->type == comm_raw); comm_base_now(c->ev->base); if(event&EV_TIMEOUT) err = NETEVENT_TIMEOUT; fptr_ok(fptr_whitelist_comm_point_raw(c->callback)); (void)(*c->callback)(c, c->cb_arg, err, NULL); } struct comm_point* comm_point_create_udp(struct comm_base *base, int fd, ldns_buffer* buffer, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->ev->base = base; c->fd = fd; c->buffer = buffer; c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_udp; c->tcp_do_close = 0; c->do_not_close = 0; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->inuse = 0; c->callback = callback; c->cb_arg = callback_arg; evbits = EV_READ | EV_PERSIST; /* libevent stuff */ event_set(&c->ev->ev, c->fd, evbits, comm_point_udp_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0) { log_err("could not baseset udp event"); comm_point_delete(c); return NULL; } if(fd!=-1 && event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add udp event"); comm_point_delete(c); return NULL; } return c; } struct comm_point* comm_point_create_udp_ancil(struct comm_base *base, int fd, ldns_buffer* buffer, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->ev->base = base; c->fd = fd; c->buffer = buffer; c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_udp; c->tcp_do_close = 0; c->do_not_close = 0; c->inuse = 0; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->callback = callback; c->cb_arg = callback_arg; evbits = EV_READ | EV_PERSIST; /* libevent stuff */ event_set(&c->ev->ev, c->fd, evbits, comm_point_udp_ancil_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0) { log_err("could not baseset udp event"); comm_point_delete(c); return NULL; } if(fd!=-1 && event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add udp event"); comm_point_delete(c); return NULL; } return c; } static struct comm_point* comm_point_create_tcp_handler(struct comm_base *base, struct comm_point* parent, size_t bufsize, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->ev->base = base; c->fd = -1; c->buffer = ldns_buffer_new(bufsize); if(!c->buffer) { free(c->ev); free(c); return NULL; } c->timeout = (struct timeval*)malloc(sizeof(struct timeval)); if(!c->timeout) { ldns_buffer_free(c->buffer); free(c->ev); free(c); return NULL; } c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = parent; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_tcp; c->tcp_do_close = 0; c->do_not_close = 0; c->tcp_do_toggle_rw = 1; c->tcp_check_nb_connect = 0; c->repinfo.c = c; c->callback = callback; c->cb_arg = callback_arg; /* add to parent free list */ c->tcp_free = parent->tcp_free; parent->tcp_free = c; /* libevent stuff */ evbits = EV_PERSIST | EV_READ | EV_TIMEOUT; event_set(&c->ev->ev, c->fd, evbits, comm_point_tcp_handle_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0) { log_err("could not basetset tcphdl event"); parent->tcp_free = c->tcp_free; free(c->ev); free(c); return NULL; } return c; } struct comm_point* comm_point_create_tcp(struct comm_base *base, int fd, int num, size_t bufsize, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; int i; /* first allocate the TCP accept listener */ if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->ev->base = base; c->fd = fd; c->buffer = NULL; c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = num; c->tcp_handlers = (struct comm_point**)calloc((size_t)num, sizeof(struct comm_point*)); if(!c->tcp_handlers) { free(c->ev); free(c); return NULL; } c->tcp_free = NULL; c->type = comm_tcp_accept; c->tcp_do_close = 0; c->do_not_close = 0; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->callback = NULL; c->cb_arg = NULL; evbits = EV_READ | EV_PERSIST; /* libevent stuff */ event_set(&c->ev->ev, c->fd, evbits, comm_point_tcp_accept_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0 || event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add tcpacc event"); comm_point_delete(c); return NULL; } /* now prealloc the tcp handlers */ for(i=0; itcp_handlers[i] = comm_point_create_tcp_handler(base, c, bufsize, callback, callback_arg); if(!c->tcp_handlers[i]) { comm_point_delete(c); return NULL; } } return c; } struct comm_point* comm_point_create_tcp_out(struct comm_base *base, size_t bufsize, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->ev->base = base; c->fd = -1; c->buffer = ldns_buffer_new(bufsize); if(!c->buffer) { free(c->ev); free(c); return NULL; } c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_tcp; c->tcp_do_close = 0; c->do_not_close = 0; c->tcp_do_toggle_rw = 1; c->tcp_check_nb_connect = 1; c->repinfo.c = c; c->callback = callback; c->cb_arg = callback_arg; evbits = EV_PERSIST | EV_WRITE; event_set(&c->ev->ev, c->fd, evbits, comm_point_tcp_handle_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0) { log_err("could not basetset tcpout event"); ldns_buffer_free(c->buffer); free(c->ev); free(c); return NULL; } return c; } struct comm_point* comm_point_create_local(struct comm_base *base, int fd, size_t bufsize, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->ev->base = base; c->fd = fd; c->buffer = ldns_buffer_new(bufsize); if(!c->buffer) { free(c->ev); free(c); return NULL; } c->timeout = NULL; c->tcp_is_reading = 1; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_local; c->tcp_do_close = 0; c->do_not_close = 1; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->callback = callback; c->cb_arg = callback_arg; /* libevent stuff */ evbits = EV_PERSIST | EV_READ; event_set(&c->ev->ev, c->fd, evbits, comm_point_local_handle_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0 || event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add localhdl event"); free(c->ev); free(c); return NULL; } return c; } struct comm_point* comm_point_create_raw(struct comm_base* base, int fd, int writing, comm_point_callback_t* callback, void* callback_arg) { struct comm_point* c = (struct comm_point*)calloc(1, sizeof(struct comm_point)); short evbits; if(!c) return NULL; c->ev = (struct internal_event*)calloc(1, sizeof(struct internal_event)); if(!c->ev) { free(c); return NULL; } c->ev->base = base; c->fd = fd; c->buffer = NULL; c->timeout = NULL; c->tcp_is_reading = 0; c->tcp_byte_count = 0; c->tcp_parent = NULL; c->max_tcp_count = 0; c->tcp_handlers = NULL; c->tcp_free = NULL; c->type = comm_raw; c->tcp_do_close = 0; c->do_not_close = 1; c->tcp_do_toggle_rw = 0; c->tcp_check_nb_connect = 0; c->callback = callback; c->cb_arg = callback_arg; /* libevent stuff */ if(writing) evbits = EV_PERSIST | EV_WRITE; else evbits = EV_PERSIST | EV_READ; event_set(&c->ev->ev, c->fd, evbits, comm_point_raw_handle_callback, c); if(event_base_set(base->eb->base, &c->ev->ev) != 0 || event_add(&c->ev->ev, c->timeout) != 0 ) { log_err("could not add rawhdl event"); free(c->ev); free(c); return NULL; } return c; } void comm_point_close(struct comm_point* c) { if(!c) return; if(c->fd != -1) if(event_del(&c->ev->ev) != 0) { log_err("could not event_del on close"); } /* close fd after removing from event lists, or epoll.. is messed up */ if(c->fd != -1 && !c->do_not_close) { verbose(VERB_ALGO, "close fd %d", c->fd); #ifndef USE_WINSOCK close(c->fd); #else closesocket(c->fd); #endif } c->fd = -1; } void comm_point_delete(struct comm_point* c) { if(!c) return; if(c->type == comm_tcp && c->ssl) { #ifdef HAVE_SSL SSL_shutdown(c->ssl); SSL_free(c->ssl); #endif } comm_point_close(c); if(c->tcp_handlers) { int i; for(i=0; imax_tcp_count; i++) comm_point_delete(c->tcp_handlers[i]); free(c->tcp_handlers); } free(c->timeout); if(c->type == comm_tcp || c->type == comm_local) ldns_buffer_free(c->buffer); free(c->ev); free(c); } void comm_point_send_reply(struct comm_reply *repinfo) { log_assert(repinfo && repinfo->c); if(repinfo->c->type == comm_udp) { if(repinfo->srctype) comm_point_send_udp_msg_if(repinfo->c, repinfo->c->buffer, (struct sockaddr*)&repinfo->addr, repinfo->addrlen, repinfo); else comm_point_send_udp_msg(repinfo->c, repinfo->c->buffer, (struct sockaddr*)&repinfo->addr, repinfo->addrlen); } else { comm_point_start_listening(repinfo->c, -1, TCP_QUERY_TIMEOUT); } } void comm_point_drop_reply(struct comm_reply* repinfo) { if(!repinfo) return; log_assert(repinfo && repinfo->c); log_assert(repinfo->c->type != comm_tcp_accept); if(repinfo->c->type == comm_udp) return; reclaim_tcp_handler(repinfo->c); } void comm_point_stop_listening(struct comm_point* c) { verbose(VERB_ALGO, "comm point stop listening %d", c->fd); if(event_del(&c->ev->ev) != 0) { log_err("event_del error to stoplisten"); } } void comm_point_start_listening(struct comm_point* c, int newfd, int sec) { verbose(VERB_ALGO, "comm point start listening %d", c->fd==-1?newfd:c->fd); if(c->type == comm_tcp_accept && !c->tcp_free) { /* no use to start listening no free slots. */ return; } if(sec != -1 && sec != 0) { if(!c->timeout) { c->timeout = (struct timeval*)malloc(sizeof( struct timeval)); if(!c->timeout) { log_err("cpsl: malloc failed. No net read."); return; } } c->ev->ev.ev_events |= EV_TIMEOUT; #ifndef S_SPLINT_S /* splint fails on struct timeval. */ c->timeout->tv_sec = sec; c->timeout->tv_usec = 0; #endif /* S_SPLINT_S */ } if(c->type == comm_tcp) { c->ev->ev.ev_events &= ~(EV_READ|EV_WRITE); if(c->tcp_is_reading) c->ev->ev.ev_events |= EV_READ; else c->ev->ev.ev_events |= EV_WRITE; } if(newfd != -1) { if(c->fd != -1) { #ifndef USE_WINSOCK close(c->fd); #else closesocket(c->fd); #endif } c->fd = newfd; c->ev->ev.ev_fd = c->fd; } if(event_add(&c->ev->ev, sec==0?NULL:c->timeout) != 0) { log_err("event_add failed. in cpsl."); } } void comm_point_listen_for_rw(struct comm_point* c, int rd, int wr) { verbose(VERB_ALGO, "comm point listen_for_rw %d %d", c->fd, wr); if(event_del(&c->ev->ev) != 0) { log_err("event_del error to cplf"); } c->ev->ev.ev_events &= ~(EV_READ|EV_WRITE); if(rd) c->ev->ev.ev_events |= EV_READ; if(wr) c->ev->ev.ev_events |= EV_WRITE; if(event_add(&c->ev->ev, c->timeout) != 0) { log_err("event_add failed. in cplf."); } } size_t comm_point_get_mem(struct comm_point* c) { size_t s; if(!c) return 0; s = sizeof(*c) + sizeof(*c->ev); if(c->timeout) s += sizeof(*c->timeout); if(c->type == comm_tcp || c->type == comm_local) s += sizeof(*c->buffer) + ldns_buffer_capacity(c->buffer); if(c->type == comm_tcp_accept) { int i; for(i=0; imax_tcp_count; i++) s += comm_point_get_mem(c->tcp_handlers[i]); } return s; } struct comm_timer* comm_timer_create(struct comm_base* base, void (*cb)(void*), void* cb_arg) { struct comm_timer *tm = (struct comm_timer*)calloc(1, sizeof(struct comm_timer)); if(!tm) return NULL; tm->ev_timer = (struct internal_timer*)calloc(1, sizeof(struct internal_timer)); if(!tm->ev_timer) { log_err("malloc failed"); free(tm); return NULL; } tm->ev_timer->base = base; tm->callback = cb; tm->cb_arg = cb_arg; event_set(&tm->ev_timer->ev, -1, EV_TIMEOUT, comm_timer_callback, tm); if(event_base_set(base->eb->base, &tm->ev_timer->ev) != 0) { log_err("timer_create: event_base_set failed."); free(tm->ev_timer); free(tm); return NULL; } return tm; } void comm_timer_disable(struct comm_timer* timer) { if(!timer) return; evtimer_del(&timer->ev_timer->ev); timer->ev_timer->enabled = 0; } void comm_timer_set(struct comm_timer* timer, struct timeval* tv) { log_assert(tv); if(timer->ev_timer->enabled) comm_timer_disable(timer); event_set(&timer->ev_timer->ev, -1, EV_TIMEOUT, comm_timer_callback, timer); if(event_base_set(timer->ev_timer->base->eb->base, &timer->ev_timer->ev) != 0) log_err("comm_timer_set: set_base failed."); if(evtimer_add(&timer->ev_timer->ev, tv) != 0) log_err("comm_timer_set: evtimer_add failed."); timer->ev_timer->enabled = 1; } void comm_timer_delete(struct comm_timer* timer) { if(!timer) return; comm_timer_disable(timer); free(timer->ev_timer); free(timer); } void comm_timer_callback(int ATTR_UNUSED(fd), short event, void* arg) { struct comm_timer* tm = (struct comm_timer*)arg; if(!(event&EV_TIMEOUT)) return; comm_base_now(tm->ev_timer->base); tm->ev_timer->enabled = 0; fptr_ok(fptr_whitelist_comm_timer(tm->callback)); (*tm->callback)(tm->cb_arg); } int comm_timer_is_set(struct comm_timer* timer) { return (int)timer->ev_timer->enabled; } size_t comm_timer_get_mem(struct comm_timer* timer) { return sizeof(*timer) + sizeof(struct internal_timer); } struct comm_signal* comm_signal_create(struct comm_base* base, void (*callback)(int, void*), void* cb_arg) { struct comm_signal* com = (struct comm_signal*)malloc( sizeof(struct comm_signal)); if(!com) { log_err("malloc failed"); return NULL; } com->base = base; com->callback = callback; com->cb_arg = cb_arg; com->ev_signal = NULL; return com; } void comm_signal_callback(int sig, short event, void* arg) { struct comm_signal* comsig = (struct comm_signal*)arg; if(!(event & EV_SIGNAL)) return; comm_base_now(comsig->base); fptr_ok(fptr_whitelist_comm_signal(comsig->callback)); (*comsig->callback)(sig, comsig->cb_arg); } int comm_signal_bind(struct comm_signal* comsig, int sig) { struct internal_signal* entry = (struct internal_signal*)calloc(1, sizeof(struct internal_signal)); if(!entry) { log_err("malloc failed"); return 0; } log_assert(comsig); /* add signal event */ signal_set(&entry->ev, sig, comm_signal_callback, comsig); if(event_base_set(comsig->base->eb->base, &entry->ev) != 0) { log_err("Could not set signal base"); free(entry); return 0; } if(signal_add(&entry->ev, NULL) != 0) { log_err("Could not add signal handler"); free(entry); return 0; } /* link into list */ entry->next = comsig->ev_signal; comsig->ev_signal = entry; return 1; } void comm_signal_delete(struct comm_signal* comsig) { struct internal_signal* p, *np; if(!comsig) return; p=comsig->ev_signal; while(p) { np = p->next; signal_del(&p->ev); free(p); p = np; } free(comsig); }