/* * daemon/remote.c - remote control for the unbound daemon. * * Copyright (c) 2008, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains the remote control functionality for the daemon. * The remote control can be performed using either the commandline * unbound-control tool, or a SSLv3/TLS capable web browser. * The channel is secured using SSLv3 or TLSv1, and certificates. * Both the server and the client(control tool) have their own keys. */ #include "config.h" #ifdef HAVE_OPENSSL_ERR_H #include #endif #include #include #include "daemon/remote.h" #include "daemon/worker.h" #include "daemon/daemon.h" #include "daemon/stats.h" #include "daemon/cachedump.h" #include "util/log.h" #include "util/config_file.h" #include "util/net_help.h" #include "util/module.h" #include "services/listen_dnsport.h" #include "services/cache/rrset.h" #include "services/cache/infra.h" #include "services/mesh.h" #include "services/localzone.h" #include "util/storage/slabhash.h" #include "util/fptr_wlist.h" #include "util/data/dname.h" #include "validator/validator.h" #include "validator/val_kcache.h" #include "validator/val_kentry.h" #include "validator/val_anchor.h" #include "iterator/iterator.h" #include "iterator/iter_fwd.h" #include "iterator/iter_hints.h" #include "iterator/iter_delegpt.h" #include "services/outbound_list.h" #include "services/outside_network.h" #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_NETDB_H #include #endif /* just for portability */ #ifdef SQ #undef SQ #endif /** what to put on statistics lines between var and value, ": " or "=" */ #define SQ "=" /** if true, inhibits a lot of =0 lines from the stats output */ static const int inhibit_zero = 1; /** subtract timers and the values do not overflow or become negative */ static void timeval_subtract(struct timeval* d, const struct timeval* end, const struct timeval* start) { #ifndef S_SPLINT_S time_t end_usec = end->tv_usec; d->tv_sec = end->tv_sec - start->tv_sec; if(end_usec < start->tv_usec) { end_usec += 1000000; d->tv_sec--; } d->tv_usec = end_usec - start->tv_usec; #endif } /** divide sum of timers to get average */ static void timeval_divide(struct timeval* avg, const struct timeval* sum, size_t d) { #ifndef S_SPLINT_S size_t leftover; if(d == 0) { avg->tv_sec = 0; avg->tv_usec = 0; return; } avg->tv_sec = sum->tv_sec / d; avg->tv_usec = sum->tv_usec / d; /* handle fraction from seconds divide */ leftover = sum->tv_sec - avg->tv_sec*d; avg->tv_usec += (leftover*1000000)/d; #endif } struct daemon_remote* daemon_remote_create(struct config_file* cfg) { char* s_cert; char* s_key; struct daemon_remote* rc = (struct daemon_remote*)calloc(1, sizeof(*rc)); if(!rc) { log_err("out of memory in daemon_remote_create"); return NULL; } rc->max_active = 10; if(!cfg->remote_control_enable) { rc->ctx = NULL; return rc; } rc->ctx = SSL_CTX_new(SSLv23_server_method()); if(!rc->ctx) { log_crypto_err("could not SSL_CTX_new"); free(rc); return NULL; } /* no SSLv2 because has defects */ if(!(SSL_CTX_set_options(rc->ctx, SSL_OP_NO_SSLv2) & SSL_OP_NO_SSLv2)){ log_crypto_err("could not set SSL_OP_NO_SSLv2"); daemon_remote_delete(rc); return NULL; } s_cert = fname_after_chroot(cfg->server_cert_file, cfg, 1); s_key = fname_after_chroot(cfg->server_key_file, cfg, 1); if(!s_cert || !s_key) { log_err("out of memory in remote control fname"); goto setup_error; } verbose(VERB_ALGO, "setup SSL certificates"); if (!SSL_CTX_use_certificate_file(rc->ctx,s_cert,SSL_FILETYPE_PEM)) { log_err("Error for server-cert-file: %s", s_cert); log_crypto_err("Error in SSL_CTX use_certificate_file"); goto setup_error; } if(!SSL_CTX_use_PrivateKey_file(rc->ctx,s_key,SSL_FILETYPE_PEM)) { log_err("Error for server-key-file: %s", s_key); log_crypto_err("Error in SSL_CTX use_PrivateKey_file"); goto setup_error; } if(!SSL_CTX_check_private_key(rc->ctx)) { log_err("Error for server-key-file: %s", s_key); log_crypto_err("Error in SSL_CTX check_private_key"); goto setup_error; } if(!SSL_CTX_load_verify_locations(rc->ctx, s_cert, NULL)) { log_crypto_err("Error setting up SSL_CTX verify locations"); setup_error: free(s_cert); free(s_key); daemon_remote_delete(rc); return NULL; } SSL_CTX_set_client_CA_list(rc->ctx, SSL_load_client_CA_file(s_cert)); SSL_CTX_set_verify(rc->ctx, SSL_VERIFY_PEER, NULL); free(s_cert); free(s_key); return rc; } void daemon_remote_clear(struct daemon_remote* rc) { struct rc_state* p, *np; if(!rc) return; /* but do not close the ports */ listen_list_delete(rc->accept_list); rc->accept_list = NULL; /* do close these sockets */ p = rc->busy_list; while(p) { np = p->next; if(p->ssl) SSL_free(p->ssl); comm_point_delete(p->c); free(p); p = np; } rc->busy_list = NULL; rc->active = 0; rc->worker = NULL; } void daemon_remote_delete(struct daemon_remote* rc) { if(!rc) return; daemon_remote_clear(rc); if(rc->ctx) { SSL_CTX_free(rc->ctx); } free(rc); } /** * Add and open a new control port * @param ip: ip str * @param nr: port nr * @param list: list head * @param noproto_is_err: if lack of protocol support is an error. * @return false on failure. */ static int add_open(const char* ip, int nr, struct listen_port** list, int noproto_is_err) { struct addrinfo hints; struct addrinfo* res; struct listen_port* n; int noproto; int fd, r; char port[15]; snprintf(port, sizeof(port), "%d", nr); port[sizeof(port)-1]=0; memset(&hints, 0, sizeof(hints)); hints.ai_socktype = SOCK_STREAM; hints.ai_flags = AI_PASSIVE | AI_NUMERICHOST; if((r = getaddrinfo(ip, port, &hints, &res)) != 0 || !res) { #ifdef USE_WINSOCK if(!noproto_is_err && r == EAI_NONAME) { /* tried to lookup the address as name */ return 1; /* return success, but do nothing */ } #endif /* USE_WINSOCK */ log_err("control interface %s:%s getaddrinfo: %s %s", ip?ip:"default", port, gai_strerror(r), #ifdef EAI_SYSTEM r==EAI_SYSTEM?(char*)strerror(errno):"" #else "" #endif ); return 0; } /* open fd */ fd = create_tcp_accept_sock(res, 1, &noproto); freeaddrinfo(res); if(fd == -1 && noproto) { if(!noproto_is_err) return 1; /* return success, but do nothing */ log_err("cannot open control interface %s %d : " "protocol not supported", ip, nr); return 0; } if(fd == -1) { log_err("cannot open control interface %s %d", ip, nr); return 0; } /* alloc */ n = (struct listen_port*)calloc(1, sizeof(*n)); if(!n) { #ifndef USE_WINSOCK close(fd); #else closesocket(fd); #endif log_err("out of memory"); return 0; } n->next = *list; *list = n; n->fd = fd; return 1; } struct listen_port* daemon_remote_open_ports(struct config_file* cfg) { struct listen_port* l = NULL; log_assert(cfg->remote_control_enable && cfg->control_port); if(cfg->control_ifs) { struct config_strlist* p; for(p = cfg->control_ifs; p; p = p->next) { if(!add_open(p->str, cfg->control_port, &l, 1)) { listening_ports_free(l); return NULL; } } } else { /* defaults */ if(cfg->do_ip6 && !add_open("::1", cfg->control_port, &l, 0)) { listening_ports_free(l); return NULL; } if(cfg->do_ip4 && !add_open("127.0.0.1", cfg->control_port, &l, 1)) { listening_ports_free(l); return NULL; } } return l; } /** open accept commpoint */ static int accept_open(struct daemon_remote* rc, int fd) { struct listen_list* n = (struct listen_list*)malloc(sizeof(*n)); if(!n) { log_err("out of memory"); return 0; } n->next = rc->accept_list; rc->accept_list = n; /* open commpt */ n->com = comm_point_create_raw(rc->worker->base, fd, 0, &remote_accept_callback, rc); if(!n->com) return 0; /* keep this port open, its fd is kept in the rc portlist */ n->com->do_not_close = 1; return 1; } int daemon_remote_open_accept(struct daemon_remote* rc, struct listen_port* ports, struct worker* worker) { struct listen_port* p; rc->worker = worker; for(p = ports; p; p = p->next) { if(!accept_open(rc, p->fd)) { log_err("could not create accept comm point"); return 0; } } return 1; } void daemon_remote_stop_accept(struct daemon_remote* rc) { struct listen_list* p; for(p=rc->accept_list; p; p=p->next) { comm_point_stop_listening(p->com); } } void daemon_remote_start_accept(struct daemon_remote* rc) { struct listen_list* p; for(p=rc->accept_list; p; p=p->next) { comm_point_start_listening(p->com, -1, -1); } } int remote_accept_callback(struct comm_point* c, void* arg, int err, struct comm_reply* ATTR_UNUSED(rep)) { struct daemon_remote* rc = (struct daemon_remote*)arg; struct sockaddr_storage addr; socklen_t addrlen; int newfd; struct rc_state* n; if(err != NETEVENT_NOERROR) { log_err("error %d on remote_accept_callback", err); return 0; } /* perform the accept */ newfd = comm_point_perform_accept(c, &addr, &addrlen); if(newfd == -1) return 0; /* create new commpoint unless we are servicing already */ if(rc->active >= rc->max_active) { log_warn("drop incoming remote control: too many connections"); close_exit: #ifndef USE_WINSOCK close(newfd); #else closesocket(newfd); #endif return 0; } /* setup commpoint to service the remote control command */ n = (struct rc_state*)calloc(1, sizeof(*n)); if(!n) { log_err("out of memory"); goto close_exit; } /* start in reading state */ n->c = comm_point_create_raw(rc->worker->base, newfd, 0, &remote_control_callback, n); if(!n->c) { log_err("out of memory"); free(n); goto close_exit; } log_addr(VERB_QUERY, "new control connection from", &addr, addrlen); n->c->do_not_close = 0; comm_point_stop_listening(n->c); comm_point_start_listening(n->c, -1, REMOTE_CONTROL_TCP_TIMEOUT); memcpy(&n->c->repinfo.addr, &addr, addrlen); n->c->repinfo.addrlen = addrlen; n->shake_state = rc_hs_read; n->ssl = SSL_new(rc->ctx); if(!n->ssl) { log_crypto_err("could not SSL_new"); comm_point_delete(n->c); free(n); goto close_exit; } SSL_set_accept_state(n->ssl); (void)SSL_set_mode(n->ssl, SSL_MODE_AUTO_RETRY); if(!SSL_set_fd(n->ssl, newfd)) { log_crypto_err("could not SSL_set_fd"); SSL_free(n->ssl); comm_point_delete(n->c); free(n); goto close_exit; } n->rc = rc; n->next = rc->busy_list; rc->busy_list = n; rc->active ++; /* perform the first nonblocking read already, for windows, * so it can return wouldblock. could be faster too. */ (void)remote_control_callback(n->c, n, NETEVENT_NOERROR, NULL); return 0; } /** delete from list */ static void state_list_remove_elem(struct rc_state** list, struct comm_point* c) { while(*list) { if( (*list)->c == c) { *list = (*list)->next; return; } list = &(*list)->next; } } /** decrease active count and remove commpoint from busy list */ static void clean_point(struct daemon_remote* rc, struct rc_state* s) { state_list_remove_elem(&rc->busy_list, s->c); rc->active --; if(s->ssl) { SSL_shutdown(s->ssl); SSL_free(s->ssl); } comm_point_delete(s->c); free(s); } int ssl_print_text(SSL* ssl, const char* text) { int r; if(!ssl) return 0; ERR_clear_error(); if((r=SSL_write(ssl, text, (int)strlen(text))) <= 0) { if(SSL_get_error(ssl, r) == SSL_ERROR_ZERO_RETURN) { verbose(VERB_QUERY, "warning, in SSL_write, peer " "closed connection"); return 0; } log_crypto_err("could not SSL_write"); return 0; } return 1; } /** print text over the ssl connection */ static int ssl_print_vmsg(SSL* ssl, const char* format, va_list args) { char msg[1024]; vsnprintf(msg, sizeof(msg), format, args); return ssl_print_text(ssl, msg); } /** printf style printing to the ssl connection */ int ssl_printf(SSL* ssl, const char* format, ...) { va_list args; int ret; va_start(args, format); ret = ssl_print_vmsg(ssl, format, args); va_end(args); return ret; } int ssl_read_line(SSL* ssl, char* buf, size_t max) { int r; size_t len = 0; if(!ssl) return 0; while(len < max) { ERR_clear_error(); if((r=SSL_read(ssl, buf+len, 1)) <= 0) { if(SSL_get_error(ssl, r) == SSL_ERROR_ZERO_RETURN) { buf[len] = 0; return 1; } log_crypto_err("could not SSL_read"); return 0; } if(buf[len] == '\n') { /* return string without \n */ buf[len] = 0; return 1; } len++; } buf[max-1] = 0; log_err("control line too long (%d): %s", (int)max, buf); return 0; } /** skip whitespace, return new pointer into string */ static char* skipwhite(char* str) { /* EOS \0 is not a space */ while( isspace(*str) ) str++; return str; } /** send the OK to the control client */ static void send_ok(SSL* ssl) { (void)ssl_printf(ssl, "ok\n"); } /** do the stop command */ static void do_stop(SSL* ssl, struct daemon_remote* rc) { rc->worker->need_to_exit = 1; comm_base_exit(rc->worker->base); send_ok(ssl); } /** do the reload command */ static void do_reload(SSL* ssl, struct daemon_remote* rc) { rc->worker->need_to_exit = 0; comm_base_exit(rc->worker->base); send_ok(ssl); } /** do the verbosity command */ static void do_verbosity(SSL* ssl, char* str) { int val = atoi(str); if(val == 0 && strcmp(str, "0") != 0) { ssl_printf(ssl, "error in verbosity number syntax: %s\n", str); return; } verbosity = val; send_ok(ssl); } /** print stats from statinfo */ static int print_stats(SSL* ssl, const char* nm, struct stats_info* s) { struct timeval avg; if(!ssl_printf(ssl, "%s.num.queries"SQ"%u\n", nm, (unsigned)s->svr.num_queries)) return 0; if(!ssl_printf(ssl, "%s.num.cachehits"SQ"%u\n", nm, (unsigned)(s->svr.num_queries - s->svr.num_queries_missed_cache))) return 0; if(!ssl_printf(ssl, "%s.num.cachemiss"SQ"%u\n", nm, (unsigned)s->svr.num_queries_missed_cache)) return 0; if(!ssl_printf(ssl, "%s.num.prefetch"SQ"%u\n", nm, (unsigned)s->svr.num_queries_prefetch)) return 0; if(!ssl_printf(ssl, "%s.num.recursivereplies"SQ"%u\n", nm, (unsigned)s->mesh_replies_sent)) return 0; if(!ssl_printf(ssl, "%s.requestlist.avg"SQ"%g\n", nm, (s->svr.num_queries_missed_cache+s->svr.num_queries_prefetch)? (double)s->svr.sum_query_list_size/ (s->svr.num_queries_missed_cache+ s->svr.num_queries_prefetch) : 0.0)) return 0; if(!ssl_printf(ssl, "%s.requestlist.max"SQ"%u\n", nm, (unsigned)s->svr.max_query_list_size)) return 0; if(!ssl_printf(ssl, "%s.requestlist.overwritten"SQ"%u\n", nm, (unsigned)s->mesh_jostled)) return 0; if(!ssl_printf(ssl, "%s.requestlist.exceeded"SQ"%u\n", nm, (unsigned)s->mesh_dropped)) return 0; if(!ssl_printf(ssl, "%s.requestlist.current.all"SQ"%u\n", nm, (unsigned)s->mesh_num_states)) return 0; if(!ssl_printf(ssl, "%s.requestlist.current.user"SQ"%u\n", nm, (unsigned)s->mesh_num_reply_states)) return 0; timeval_divide(&avg, &s->mesh_replies_sum_wait, s->mesh_replies_sent); if(!ssl_printf(ssl, "%s.recursion.time.avg"SQ"%d.%6.6d\n", nm, (int)avg.tv_sec, (int)avg.tv_usec)) return 0; if(!ssl_printf(ssl, "%s.recursion.time.median"SQ"%g\n", nm, s->mesh_time_median)) return 0; return 1; } /** print stats for one thread */ static int print_thread_stats(SSL* ssl, int i, struct stats_info* s) { char nm[16]; snprintf(nm, sizeof(nm), "thread%d", i); nm[sizeof(nm)-1]=0; return print_stats(ssl, nm, s); } /** print long number */ static int print_longnum(SSL* ssl, const char* desc, size_t x) { if(x > 1024*1024*1024) { /* more than a Gb */ size_t front = x / (size_t)1000000; size_t back = x % (size_t)1000000; return ssl_printf(ssl, "%s%u%6.6u\n", desc, (unsigned)front, (unsigned)back); } else { return ssl_printf(ssl, "%s%u\n", desc, (unsigned)x); } } /** print mem stats */ static int print_mem(SSL* ssl, struct worker* worker, struct daemon* daemon) { int m; size_t msg, rrset, val, iter; #ifdef HAVE_SBRK extern void* unbound_start_brk; void* cur = sbrk(0); if(!print_longnum(ssl, "mem.total.sbrk"SQ, (size_t)((char*)cur - (char*)unbound_start_brk))) return 0; #endif /* HAVE_SBRK */ msg = slabhash_get_mem(daemon->env->msg_cache); rrset = slabhash_get_mem(&daemon->env->rrset_cache->table); val=0; iter=0; m = modstack_find(&worker->env.mesh->mods, "validator"); if(m != -1) { fptr_ok(fptr_whitelist_mod_get_mem(worker->env.mesh-> mods.mod[m]->get_mem)); val = (*worker->env.mesh->mods.mod[m]->get_mem) (&worker->env, m); } m = modstack_find(&worker->env.mesh->mods, "iterator"); if(m != -1) { fptr_ok(fptr_whitelist_mod_get_mem(worker->env.mesh-> mods.mod[m]->get_mem)); iter = (*worker->env.mesh->mods.mod[m]->get_mem) (&worker->env, m); } if(!print_longnum(ssl, "mem.cache.rrset"SQ, rrset)) return 0; if(!print_longnum(ssl, "mem.cache.message"SQ, msg)) return 0; if(!print_longnum(ssl, "mem.mod.iterator"SQ, iter)) return 0; if(!print_longnum(ssl, "mem.mod.validator"SQ, val)) return 0; return 1; } /** print uptime stats */ static int print_uptime(SSL* ssl, struct worker* worker, int reset) { struct timeval now = *worker->env.now_tv; struct timeval up, dt; timeval_subtract(&up, &now, &worker->daemon->time_boot); timeval_subtract(&dt, &now, &worker->daemon->time_last_stat); if(reset) worker->daemon->time_last_stat = now; if(!ssl_printf(ssl, "time.now"SQ"%d.%6.6d\n", (unsigned)now.tv_sec, (unsigned)now.tv_usec)) return 0; if(!ssl_printf(ssl, "time.up"SQ"%d.%6.6d\n", (unsigned)up.tv_sec, (unsigned)up.tv_usec)) return 0; if(!ssl_printf(ssl, "time.elapsed"SQ"%d.%6.6d\n", (unsigned)dt.tv_sec, (unsigned)dt.tv_usec)) return 0; return 1; } /** print extended histogram */ static int print_hist(SSL* ssl, struct stats_info* s) { struct timehist* hist; size_t i; hist = timehist_setup(); if(!hist) { log_err("out of memory"); return 0; } timehist_import(hist, s->svr.hist, NUM_BUCKETS_HIST); for(i=0; inum; i++) { if(!ssl_printf(ssl, "histogram.%6.6d.%6.6d.to.%6.6d.%6.6d=%u\n", (int)hist->buckets[i].lower.tv_sec, (int)hist->buckets[i].lower.tv_usec, (int)hist->buckets[i].upper.tv_sec, (int)hist->buckets[i].upper.tv_usec, (unsigned)hist->buckets[i].count)) { timehist_delete(hist); return 0; } } timehist_delete(hist); return 1; } /** print extended stats */ static int print_ext(SSL* ssl, struct stats_info* s) { int i; char nm[16]; const ldns_rr_descriptor* desc; const ldns_lookup_table* lt; /* TYPE */ for(i=0; isvr.qtype[i] == 0) continue; desc = ldns_rr_descript((uint16_t)i); if(desc && desc->_name) { snprintf(nm, sizeof(nm), "%s", desc->_name); } else if (i == LDNS_RR_TYPE_IXFR) { snprintf(nm, sizeof(nm), "IXFR"); } else if (i == LDNS_RR_TYPE_AXFR) { snprintf(nm, sizeof(nm), "AXFR"); } else if (i == LDNS_RR_TYPE_MAILA) { snprintf(nm, sizeof(nm), "MAILA"); } else if (i == LDNS_RR_TYPE_MAILB) { snprintf(nm, sizeof(nm), "MAILB"); } else if (i == LDNS_RR_TYPE_ANY) { snprintf(nm, sizeof(nm), "ANY"); } else { snprintf(nm, sizeof(nm), "TYPE%d", i); } if(!ssl_printf(ssl, "num.query.type.%s"SQ"%u\n", nm, (unsigned)s->svr.qtype[i])) return 0; } if(!inhibit_zero || s->svr.qtype_big) { if(!ssl_printf(ssl, "num.query.type.other"SQ"%u\n", (unsigned)s->svr.qtype_big)) return 0; } /* CLASS */ for(i=0; isvr.qclass[i] == 0) continue; lt = ldns_lookup_by_id(ldns_rr_classes, i); if(lt && lt->name) { snprintf(nm, sizeof(nm), "%s", lt->name); } else { snprintf(nm, sizeof(nm), "CLASS%d", i); } if(!ssl_printf(ssl, "num.query.class.%s"SQ"%u\n", nm, (unsigned)s->svr.qclass[i])) return 0; } if(!inhibit_zero || s->svr.qclass_big) { if(!ssl_printf(ssl, "num.query.class.other"SQ"%u\n", (unsigned)s->svr.qclass_big)) return 0; } /* OPCODE */ for(i=0; isvr.qopcode[i] == 0) continue; lt = ldns_lookup_by_id(ldns_opcodes, i); if(lt && lt->name) { snprintf(nm, sizeof(nm), "%s", lt->name); } else { snprintf(nm, sizeof(nm), "OPCODE%d", i); } if(!ssl_printf(ssl, "num.query.opcode.%s"SQ"%u\n", nm, (unsigned)s->svr.qopcode[i])) return 0; } /* transport */ if(!ssl_printf(ssl, "num.query.tcp"SQ"%u\n", (unsigned)s->svr.qtcp)) return 0; if(!ssl_printf(ssl, "num.query.ipv6"SQ"%u\n", (unsigned)s->svr.qipv6)) return 0; /* flags */ if(!ssl_printf(ssl, "num.query.flags.QR"SQ"%u\n", (unsigned)s->svr.qbit_QR)) return 0; if(!ssl_printf(ssl, "num.query.flags.AA"SQ"%u\n", (unsigned)s->svr.qbit_AA)) return 0; if(!ssl_printf(ssl, "num.query.flags.TC"SQ"%u\n", (unsigned)s->svr.qbit_TC)) return 0; if(!ssl_printf(ssl, "num.query.flags.RD"SQ"%u\n", (unsigned)s->svr.qbit_RD)) return 0; if(!ssl_printf(ssl, "num.query.flags.RA"SQ"%u\n", (unsigned)s->svr.qbit_RA)) return 0; if(!ssl_printf(ssl, "num.query.flags.Z"SQ"%u\n", (unsigned)s->svr.qbit_Z)) return 0; if(!ssl_printf(ssl, "num.query.flags.AD"SQ"%u\n", (unsigned)s->svr.qbit_AD)) return 0; if(!ssl_printf(ssl, "num.query.flags.CD"SQ"%u\n", (unsigned)s->svr.qbit_CD)) return 0; if(!ssl_printf(ssl, "num.query.edns.present"SQ"%u\n", (unsigned)s->svr.qEDNS)) return 0; if(!ssl_printf(ssl, "num.query.edns.DO"SQ"%u\n", (unsigned)s->svr.qEDNS_DO)) return 0; /* RCODE */ for(i=0; isvr.ans_rcode[i] == 0) continue; lt = ldns_lookup_by_id(ldns_rcodes, i); if(lt && lt->name) { snprintf(nm, sizeof(nm), "%s", lt->name); } else { snprintf(nm, sizeof(nm), "RCODE%d", i); } if(!ssl_printf(ssl, "num.answer.rcode.%s"SQ"%u\n", nm, (unsigned)s->svr.ans_rcode[i])) return 0; } if(!inhibit_zero || s->svr.ans_rcode_nodata) { if(!ssl_printf(ssl, "num.answer.rcode.nodata"SQ"%u\n", (unsigned)s->svr.ans_rcode_nodata)) return 0; } /* validation */ if(!ssl_printf(ssl, "num.answer.secure"SQ"%u\n", (unsigned)s->svr.ans_secure)) return 0; if(!ssl_printf(ssl, "num.answer.bogus"SQ"%u\n", (unsigned)s->svr.ans_bogus)) return 0; if(!ssl_printf(ssl, "num.rrset.bogus"SQ"%u\n", (unsigned)s->svr.rrset_bogus)) return 0; /* threat detection */ if(!ssl_printf(ssl, "unwanted.queries"SQ"%u\n", (unsigned)s->svr.unwanted_queries)) return 0; if(!ssl_printf(ssl, "unwanted.replies"SQ"%u\n", (unsigned)s->svr.unwanted_replies)) return 0; return 1; } /** do the stats command */ static void do_stats(SSL* ssl, struct daemon_remote* rc, int reset) { struct daemon* daemon = rc->worker->daemon; struct stats_info total; struct stats_info s; int i; log_assert(daemon->num > 0); /* gather all thread statistics in one place */ for(i=0; inum; i++) { server_stats_obtain(rc->worker, daemon->workers[i], &s, reset); if(!print_thread_stats(ssl, i, &s)) return; if(i == 0) total = s; else server_stats_add(&total, &s); } /* print the thread statistics */ total.mesh_time_median /= (double)daemon->num; if(!print_stats(ssl, "total", &total)) return; if(!print_uptime(ssl, rc->worker, reset)) return; if(daemon->cfg->stat_extended) { if(!print_mem(ssl, rc->worker, daemon)) return; if(!print_hist(ssl, &total)) return; if(!print_ext(ssl, &total)) return; } } /** parse commandline argument domain name */ static int parse_arg_name(SSL* ssl, char* str, uint8_t** res, size_t* len, int* labs) { ldns_rdf* rdf; *res = NULL; *len = 0; *labs = 0; rdf = ldns_dname_new_frm_str(str); if(!rdf) { ssl_printf(ssl, "error cannot parse name %s\n", str); return 0; } *res = memdup(ldns_rdf_data(rdf), ldns_rdf_size(rdf)); ldns_rdf_deep_free(rdf); if(!*res) { ssl_printf(ssl, "error out of memory\n"); return 0; } *labs = dname_count_size_labels(*res, len); return 1; } /** find second argument, modifies string */ static int find_arg2(SSL* ssl, char* arg, char** arg2) { char* as = strchr(arg, ' '); char* at = strchr(arg, '\t'); if(as && at) { if(at < as) as = at; as[0]=0; *arg2 = skipwhite(as+1); } else if(as) { as[0]=0; *arg2 = skipwhite(as+1); } else if(at) { at[0]=0; *arg2 = skipwhite(at+1); } else { ssl_printf(ssl, "error could not find next argument " "after %s\n", arg); return 0; } return 1; } /** Add a new zone */ static void do_zone_add(SSL* ssl, struct worker* worker, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; char* arg2; enum localzone_type t; struct local_zone* z; if(!find_arg2(ssl, arg, &arg2)) return; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; if(!local_zone_str2type(arg2, &t)) { ssl_printf(ssl, "error not a zone type. %s\n", arg2); free(nm); return; } lock_quick_lock(&worker->daemon->local_zones->lock); if((z=local_zones_find(worker->daemon->local_zones, nm, nmlen, nmlabs, LDNS_RR_CLASS_IN))) { /* already present in tree */ lock_rw_wrlock(&z->lock); z->type = t; /* update type anyway */ lock_rw_unlock(&z->lock); free(nm); lock_quick_unlock(&worker->daemon->local_zones->lock); send_ok(ssl); return; } if(!local_zones_add_zone(worker->daemon->local_zones, nm, nmlen, nmlabs, LDNS_RR_CLASS_IN, t)) { lock_quick_unlock(&worker->daemon->local_zones->lock); ssl_printf(ssl, "error out of memory\n"); return; } lock_quick_unlock(&worker->daemon->local_zones->lock); send_ok(ssl); } /** Remove a zone */ static void do_zone_remove(SSL* ssl, struct worker* worker, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; struct local_zone* z; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; lock_quick_lock(&worker->daemon->local_zones->lock); if((z=local_zones_find(worker->daemon->local_zones, nm, nmlen, nmlabs, LDNS_RR_CLASS_IN))) { /* present in tree */ local_zones_del_zone(worker->daemon->local_zones, z); } lock_quick_unlock(&worker->daemon->local_zones->lock); free(nm); send_ok(ssl); } /** Add new RR data */ static void do_data_add(SSL* ssl, struct worker* worker, char* arg) { if(!local_zones_add_RR(worker->daemon->local_zones, arg, worker->env.scratch_buffer)) { ssl_printf(ssl,"error in syntax or out of memory, %s\n", arg); return; } send_ok(ssl); } /** Remove RR data */ static void do_data_remove(SSL* ssl, struct worker* worker, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; local_zones_del_data(worker->daemon->local_zones, nm, nmlen, nmlabs, LDNS_RR_CLASS_IN); free(nm); send_ok(ssl); } /** cache lookup of nameservers */ static void do_lookup(SSL* ssl, struct worker* worker, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; (void)print_deleg_lookup(ssl, worker, nm, nmlen, nmlabs); free(nm); } /** flush something from rrset and msg caches */ static void do_cache_remove(struct worker* worker, uint8_t* nm, size_t nmlen, uint16_t t, uint16_t c) { hashvalue_t h; struct query_info k; rrset_cache_remove(worker->env.rrset_cache, nm, nmlen, t, c, 0); if(t == LDNS_RR_TYPE_SOA) rrset_cache_remove(worker->env.rrset_cache, nm, nmlen, t, c, PACKED_RRSET_SOA_NEG); k.qname = nm; k.qname_len = nmlen; k.qtype = t; k.qclass = c; h = query_info_hash(&k); slabhash_remove(worker->env.msg_cache, h, &k); } /** flush a type */ static void do_flush_type(SSL* ssl, struct worker* worker, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; char* arg2; uint16_t t; if(!find_arg2(ssl, arg, &arg2)) return; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; t = ldns_get_rr_type_by_name(arg2); do_cache_remove(worker, nm, nmlen, t, LDNS_RR_CLASS_IN); free(nm); send_ok(ssl); } /** flush statistics */ static void do_flush_stats(SSL* ssl, struct worker* worker) { worker_stats_clear(worker); send_ok(ssl); } /** * Local info for deletion functions */ struct del_info { /** worker */ struct worker* worker; /** name to delete */ uint8_t* name; /** length */ size_t len; /** labels */ int labs; /** now */ uint32_t now; /** time to invalidate to */ uint32_t expired; /** number of rrsets removed */ size_t num_rrsets; /** number of msgs removed */ size_t num_msgs; /** number of key entries removed */ size_t num_keys; /** length of addr */ socklen_t addrlen; /** socket address for host deletion */ struct sockaddr_storage addr; }; /** callback to delete hosts in infra cache */ static void infra_del_host(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct infra_key* k = (struct infra_key*)e->key; if(sockaddr_cmp(&inf->addr, inf->addrlen, &k->addr, k->addrlen) == 0) { struct infra_data* d = (struct infra_data*)e->data; d->probedelay = 0; d->timeout_A = 0; d->timeout_AAAA = 0; d->timeout_other = 0; rtt_init(&d->rtt); if(d->ttl >= inf->now) { d->ttl = inf->expired; inf->num_keys++; } } } /** flush infra cache */ static void do_flush_infra(SSL* ssl, struct worker* worker, char* arg) { struct sockaddr_storage addr; socklen_t len; struct del_info inf; if(strcmp(arg, "all") == 0) { slabhash_clear(worker->env.infra_cache->hosts); send_ok(ssl); return; } if(!ipstrtoaddr(arg, UNBOUND_DNS_PORT, &addr, &len)) { (void)ssl_printf(ssl, "error parsing ip addr: '%s'\n", arg); return; } /* delete all entries from cache */ /* what we do is to set them all expired */ inf.worker = worker; inf.name = 0; inf.len = 0; inf.labs = 0; inf.now = *worker->env.now; inf.expired = *worker->env.now; inf.expired -= 3; /* handle 3 seconds skew between threads */ inf.num_rrsets = 0; inf.num_msgs = 0; inf.num_keys = 0; inf.addrlen = len; memmove(&inf.addr, &addr, len); slabhash_traverse(worker->env.infra_cache->hosts, 1, &infra_del_host, &inf); send_ok(ssl); } /** flush requestlist */ static void do_flush_requestlist(SSL* ssl, struct worker* worker) { mesh_delete_all(worker->env.mesh); send_ok(ssl); } /** callback to delete rrsets in a zone */ static void zone_del_rrset(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct ub_packed_rrset_key* k = (struct ub_packed_rrset_key*)e->key; if(dname_subdomain_c(k->rk.dname, inf->name)) { struct packed_rrset_data* d = (struct packed_rrset_data*)e->data; if(d->ttl >= inf->now) { d->ttl = inf->expired; inf->num_rrsets++; } } } /** callback to delete messages in a zone */ static void zone_del_msg(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct msgreply_entry* k = (struct msgreply_entry*)e->key; if(dname_subdomain_c(k->key.qname, inf->name)) { struct reply_info* d = (struct reply_info*)e->data; if(d->ttl >= inf->now) { d->ttl = inf->expired; inf->num_msgs++; } } } /** callback to delete keys in zone */ static void zone_del_kcache(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct key_entry_key* k = (struct key_entry_key*)e->key; if(dname_subdomain_c(k->name, inf->name)) { struct key_entry_data* d = (struct key_entry_data*)e->data; if(d->ttl >= inf->now) { d->ttl = inf->expired; inf->num_keys++; } } } /** remove all rrsets and keys from zone from cache */ static void do_flush_zone(SSL* ssl, struct worker* worker, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; struct del_info inf; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; /* delete all RRs and key entries from zone */ /* what we do is to set them all expired */ inf.worker = worker; inf.name = nm; inf.len = nmlen; inf.labs = nmlabs; inf.now = *worker->env.now; inf.expired = *worker->env.now; inf.expired -= 3; /* handle 3 seconds skew between threads */ inf.num_rrsets = 0; inf.num_msgs = 0; inf.num_keys = 0; slabhash_traverse(&worker->env.rrset_cache->table, 1, &zone_del_rrset, &inf); slabhash_traverse(worker->env.msg_cache, 1, &zone_del_msg, &inf); /* and validator cache */ if(worker->env.key_cache) { slabhash_traverse(worker->env.key_cache->slab, 1, &zone_del_kcache, &inf); } free(nm); (void)ssl_printf(ssl, "ok removed %u rrsets, %u messages " "and %u key entries\n", (unsigned)inf.num_rrsets, (unsigned)inf.num_msgs, (unsigned)inf.num_keys); } /** callback to delete bogus rrsets */ static void bogus_del_rrset(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct packed_rrset_data* d = (struct packed_rrset_data*)e->data; if(d->security == sec_status_bogus) { d->ttl = inf->expired; inf->num_rrsets++; } } /** callback to delete bogus messages */ static void bogus_del_msg(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct reply_info* d = (struct reply_info*)e->data; if(d->security == sec_status_bogus) { d->ttl = inf->expired; inf->num_msgs++; } } /** callback to delete bogus keys */ static void bogus_del_kcache(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct key_entry_data* d = (struct key_entry_data*)e->data; if(d->isbad) { d->ttl = inf->expired; inf->num_keys++; } } /** remove all rrsets and keys from zone from cache */ static void do_flush_bogus(SSL* ssl, struct worker* worker) { struct del_info inf; /* what we do is to set them all expired */ inf.worker = worker; inf.now = *worker->env.now; inf.expired = *worker->env.now; inf.expired -= 3; /* handle 3 seconds skew between threads */ inf.num_rrsets = 0; inf.num_msgs = 0; inf.num_keys = 0; slabhash_traverse(&worker->env.rrset_cache->table, 1, &bogus_del_rrset, &inf); slabhash_traverse(worker->env.msg_cache, 1, &bogus_del_msg, &inf); /* and validator cache */ if(worker->env.key_cache) { slabhash_traverse(worker->env.key_cache->slab, 1, &bogus_del_kcache, &inf); } (void)ssl_printf(ssl, "ok removed %u rrsets, %u messages " "and %u key entries\n", (unsigned)inf.num_rrsets, (unsigned)inf.num_msgs, (unsigned)inf.num_keys); } /** remove name rrset from cache */ static void do_flush_name(SSL* ssl, struct worker* w, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_A, LDNS_RR_CLASS_IN); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_AAAA, LDNS_RR_CLASS_IN); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_NS, LDNS_RR_CLASS_IN); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_SOA, LDNS_RR_CLASS_IN); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_CNAME, LDNS_RR_CLASS_IN); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_DNAME, LDNS_RR_CLASS_IN); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_MX, LDNS_RR_CLASS_IN); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_PTR, LDNS_RR_CLASS_IN); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_SRV, LDNS_RR_CLASS_IN); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_NAPTR, LDNS_RR_CLASS_IN); free(nm); send_ok(ssl); } /** printout a delegation point info */ static int ssl_print_name_dp(SSL* ssl, const char* str, uint8_t* nm, uint16_t dclass, struct delegpt* dp) { char buf[257]; struct delegpt_ns* ns; struct delegpt_addr* a; int f = 0; if(str) { /* print header for forward, stub */ char* c = ldns_rr_class2str(dclass); dname_str(nm, buf); if(!ssl_printf(ssl, "%s %s %s: ", buf, c, str)) { free(c); return 0; } free(c); } for(ns = dp->nslist; ns; ns = ns->next) { dname_str(ns->name, buf); if(!ssl_printf(ssl, "%s%s", (f?" ":""), buf)) return 0; f = 1; } for(a = dp->target_list; a; a = a->next_target) { addr_to_str(&a->addr, a->addrlen, buf, sizeof(buf)); if(!ssl_printf(ssl, "%s%s", (f?" ":""), buf)) return 0; f = 1; } return ssl_printf(ssl, "\n"); } /** print root forwards */ static int print_root_fwds(SSL* ssl, struct iter_forwards* fwds, uint8_t* root) { struct delegpt* dp; dp = forwards_lookup(fwds, root, LDNS_RR_CLASS_IN); if(!dp) return ssl_printf(ssl, "off (using root hints)\n"); /* if dp is returned it must be the root */ log_assert(query_dname_compare(dp->name, root)==0); return ssl_print_name_dp(ssl, NULL, root, LDNS_RR_CLASS_IN, dp); } /** parse args into delegpt */ static struct delegpt* parse_delegpt(SSL* ssl, char* args, uint8_t* nm, int allow_names) { /* parse args and add in */ char* p = args; char* todo; struct delegpt* dp = delegpt_create_mlc(nm); struct sockaddr_storage addr; socklen_t addrlen; if(!dp) { (void)ssl_printf(ssl, "error out of memory\n"); return NULL; } while(p) { todo = p; p = strchr(p, ' '); /* find next spot, if any */ if(p) { *p++ = 0; /* end this spot */ p = skipwhite(p); /* position at next spot */ } /* parse address */ if(!extstrtoaddr(todo, &addr, &addrlen)) { if(allow_names) { uint8_t* n = NULL; size_t ln; int lb; if(!parse_arg_name(ssl, todo, &n, &ln, &lb)) { (void)ssl_printf(ssl, "error cannot " "parse IP address or name " "'%s'\n", todo); delegpt_free_mlc(dp); return NULL; } if(!delegpt_add_ns_mlc(dp, n, 0)) { (void)ssl_printf(ssl, "error out of memory\n"); free(n); delegpt_free_mlc(dp); return NULL; } free(n); } else { (void)ssl_printf(ssl, "error cannot parse" " IP address '%s'\n", todo); delegpt_free_mlc(dp); return NULL; } } else { /* add address */ if(!delegpt_add_addr_mlc(dp, &addr, addrlen, 0, 0)) { (void)ssl_printf(ssl, "error out of memory\n"); delegpt_free_mlc(dp); return NULL; } } } return dp; } /** do the status command */ static void do_forward(SSL* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; uint8_t* root = (uint8_t*)"\000"; if(!fwd) { (void)ssl_printf(ssl, "error: structure not allocated\n"); return; } if(args == NULL || args[0] == 0) { (void)print_root_fwds(ssl, fwd, root); return; } /* set root forwards for this thread. since we are in remote control * the actual mesh is not running, so we can freely edit it. */ /* delete all the existing queries first */ mesh_delete_all(worker->env.mesh); if(strcmp(args, "off") == 0) { forwards_delete_zone(fwd, LDNS_RR_CLASS_IN, root); } else { struct delegpt* dp; if(!(dp = parse_delegpt(ssl, args, root, 0))) return; if(!forwards_add_zone(fwd, LDNS_RR_CLASS_IN, dp)) { (void)ssl_printf(ssl, "error out of memory\n"); return; } } send_ok(ssl); } static int parse_fs_args(SSL* ssl, char* args, uint8_t** nm, struct delegpt** dp, int* insecure, int* prime) { char* zonename; char* rest; size_t nmlen; int nmlabs; /* parse all -x args */ while(args[0] == '+') { if(!find_arg2(ssl, args, &rest)) return 0; while(*(++args) != 0) { if(*args == 'i' && insecure) *insecure = 1; else if(*args == 'p' && prime) *prime = 1; else { (void)ssl_printf(ssl, "error: unknown option %s\n", args); return 0; } } args = rest; } /* parse name */ if(dp) { if(!find_arg2(ssl, args, &rest)) return 0; zonename = args; args = rest; } else zonename = args; if(!parse_arg_name(ssl, zonename, nm, &nmlen, &nmlabs)) return 0; /* parse dp */ if(dp) { if(!(*dp = parse_delegpt(ssl, args, *nm, 1))) { free(*nm); return 0; } } return 1; } /** do the forward_add command */ static void do_forward_add(SSL* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; int insecure = 0; uint8_t* nm = NULL; struct delegpt* dp = NULL; if(!parse_fs_args(ssl, args, &nm, &dp, &insecure, NULL)) return; if(insecure) { if(!anchors_add_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm)) { (void)ssl_printf(ssl, "error out of memory\n"); delegpt_free_mlc(dp); free(nm); return; } } if(!forwards_add_zone(fwd, LDNS_RR_CLASS_IN, dp)) { (void)ssl_printf(ssl, "error out of memory\n"); free(nm); return; } free(nm); send_ok(ssl); } /** do the forward_remove command */ static void do_forward_remove(SSL* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; int insecure = 0; uint8_t* nm = NULL; if(!parse_fs_args(ssl, args, &nm, NULL, &insecure, NULL)) return; if(insecure) anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm); forwards_delete_zone(fwd, LDNS_RR_CLASS_IN, nm); free(nm); send_ok(ssl); } /** do the stub_add command */ static void do_stub_add(SSL* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; int insecure = 0, prime = 0; uint8_t* nm = NULL; struct delegpt* dp = NULL; if(!parse_fs_args(ssl, args, &nm, &dp, &insecure, &prime)) return; if(insecure) { if(!anchors_add_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm)) { (void)ssl_printf(ssl, "error out of memory\n"); delegpt_free_mlc(dp); free(nm); return; } } if(!forwards_add_stub_hole(fwd, LDNS_RR_CLASS_IN, nm)) { if(insecure) anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm); (void)ssl_printf(ssl, "error out of memory\n"); delegpt_free_mlc(dp); free(nm); return; } if(!hints_add_stub(worker->env.hints, LDNS_RR_CLASS_IN, dp, !prime)) { (void)ssl_printf(ssl, "error out of memory\n"); forwards_delete_stub_hole(fwd, LDNS_RR_CLASS_IN, nm); if(insecure) anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm); free(nm); return; } free(nm); send_ok(ssl); } /** do the stub_remove command */ static void do_stub_remove(SSL* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; int insecure = 0; uint8_t* nm = NULL; if(!parse_fs_args(ssl, args, &nm, NULL, &insecure, NULL)) return; if(insecure) anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm); forwards_delete_stub_hole(fwd, LDNS_RR_CLASS_IN, nm); hints_delete_stub(worker->env.hints, LDNS_RR_CLASS_IN, nm); free(nm); send_ok(ssl); } /** do the status command */ static void do_status(SSL* ssl, struct worker* worker) { int i; time_t uptime; if(!ssl_printf(ssl, "version: %s\n", PACKAGE_VERSION)) return; if(!ssl_printf(ssl, "verbosity: %d\n", verbosity)) return; if(!ssl_printf(ssl, "threads: %d\n", worker->daemon->num)) return; if(!ssl_printf(ssl, "modules: %d [", worker->daemon->mods.num)) return; for(i=0; idaemon->mods.num; i++) { if(!ssl_printf(ssl, " %s", worker->daemon->mods.mod[i]->name)) return; } if(!ssl_printf(ssl, " ]\n")) return; uptime = (time_t)time(NULL) - (time_t)worker->daemon->time_boot.tv_sec; if(!ssl_printf(ssl, "uptime: %u seconds\n", (unsigned)uptime)) return; if(!ssl_printf(ssl, "unbound (pid %d) is running...\n", (int)getpid())) return; } /** get age for the mesh state */ static void get_mesh_age(struct mesh_state* m, char* buf, size_t len, struct module_env* env) { if(m->reply_list) { struct timeval d; struct mesh_reply* r = m->reply_list; /* last reply is the oldest */ while(r && r->next) r = r->next; timeval_subtract(&d, env->now_tv, &r->start_time); snprintf(buf, len, "%d.%6.6d", (int)d.tv_sec, (int)d.tv_usec); } else { snprintf(buf, len, "-"); } } /** get status of a mesh state */ static void get_mesh_status(struct mesh_area* mesh, struct mesh_state* m, char* buf, size_t len) { enum module_ext_state s = m->s.ext_state[m->s.curmod]; const char *modname = mesh->mods.mod[m->s.curmod]->name; size_t l; if(strcmp(modname, "iterator") == 0 && s == module_wait_reply && m->s.minfo[m->s.curmod]) { /* break into iterator to find out who its waiting for */ struct iter_qstate* qstate = (struct iter_qstate*) m->s.minfo[m->s.curmod]; struct outbound_list* ol = &qstate->outlist; struct outbound_entry* e; snprintf(buf, len, "%s wait for", modname); l = strlen(buf); buf += l; len -= l; if(ol->first == NULL) snprintf(buf, len, " (empty_list)"); for(e = ol->first; e; e = e->next) { snprintf(buf, len, " "); l = strlen(buf); buf += l; len -= l; addr_to_str(&e->qsent->addr, e->qsent->addrlen, buf, len); l = strlen(buf); buf += l; len -= l; } } else if(s == module_wait_subquery) { /* look in subs from mesh state to see what */ char nm[257]; struct mesh_state_ref* sub; snprintf(buf, len, "%s wants", modname); l = strlen(buf); buf += l; len -= l; if(m->sub_set.count == 0) snprintf(buf, len, " (empty_list)"); RBTREE_FOR(sub, struct mesh_state_ref*, &m->sub_set) { char* t = ldns_rr_type2str(sub->s->s.qinfo.qtype); char* c = ldns_rr_class2str(sub->s->s.qinfo.qclass); dname_str(sub->s->s.qinfo.qname, nm); snprintf(buf, len, " %s %s %s", t, c, nm); l = strlen(buf); buf += l; len -= l; free(t); free(c); } } else { snprintf(buf, len, "%s is %s", modname, strextstate(s)); } } /** do the dump_requestlist command */ static void do_dump_requestlist(SSL* ssl, struct worker* worker) { struct mesh_area* mesh; struct mesh_state* m; int num = 0; char buf[257]; char timebuf[32]; char statbuf[10240]; if(!ssl_printf(ssl, "thread #%d\n", worker->thread_num)) return; if(!ssl_printf(ssl, "# type cl name seconds module status\n")) return; /* show worker mesh contents */ mesh = worker->env.mesh; if(!mesh) return; RBTREE_FOR(m, struct mesh_state*, &mesh->all) { char* t = ldns_rr_type2str(m->s.qinfo.qtype); char* c = ldns_rr_class2str(m->s.qinfo.qclass); dname_str(m->s.qinfo.qname, buf); get_mesh_age(m, timebuf, sizeof(timebuf), &worker->env); get_mesh_status(mesh, m, statbuf, sizeof(statbuf)); if(!ssl_printf(ssl, "%3d %4s %2s %s %s %s\n", num, t, c, buf, timebuf, statbuf)) { free(t); free(c); return; } num++; free(t); free(c); } } /** structure for argument data for dump infra host */ struct infra_arg { /** the infra cache */ struct infra_cache* infra; /** the SSL connection */ SSL* ssl; /** the time now */ uint32_t now; }; /** callback for every host element in the infra cache */ static void dump_infra_host(struct lruhash_entry* e, void* arg) { struct infra_arg* a = (struct infra_arg*)arg; struct infra_key* k = (struct infra_key*)e->key; struct infra_data* d = (struct infra_data*)e->data; char ip_str[1024]; char name[257]; addr_to_str(&k->addr, k->addrlen, ip_str, sizeof(ip_str)); dname_str(k->zonename, name); /* skip expired stuff (only backed off) */ if(d->ttl < a->now) { if(d->rtt.rto >= USEFUL_SERVER_TOP_TIMEOUT) { if(!ssl_printf(a->ssl, "%s %s expired rto %d\n", ip_str, name, d->rtt.rto)) return; } return; } if(!ssl_printf(a->ssl, "%s %s ttl %d ping %d var %d rtt %d rto %d " "tA %d tAAAA %d tother %d " "ednsknown %d edns %d delay %d lame dnssec %d rec %d A %d " "other %d\n", ip_str, name, (int)(d->ttl - a->now), d->rtt.srtt, d->rtt.rttvar, rtt_notimeout(&d->rtt), d->rtt.rto, d->timeout_A, d->timeout_AAAA, d->timeout_other, (int)d->edns_lame_known, (int)d->edns_version, (int)(a->nowprobedelay?d->probedelay-a->now:0), (int)d->isdnsseclame, (int)d->rec_lame, (int)d->lame_type_A, (int)d->lame_other)) return; } /** do the dump_infra command */ static void do_dump_infra(SSL* ssl, struct worker* worker) { struct infra_arg arg; arg.infra = worker->env.infra_cache; arg.ssl = ssl; arg.now = *worker->env.now; slabhash_traverse(arg.infra->hosts, 0, &dump_infra_host, (void*)&arg); } /** do the log_reopen command */ static void do_log_reopen(SSL* ssl, struct worker* worker) { struct config_file* cfg = worker->env.cfg; send_ok(ssl); log_init(cfg->logfile, cfg->use_syslog, cfg->chrootdir); } /** do the set_option command */ static void do_set_option(SSL* ssl, struct worker* worker, char* arg) { char* arg2; if(!find_arg2(ssl, arg, &arg2)) return; if(!config_set_option(worker->env.cfg, arg, arg2)) { (void)ssl_printf(ssl, "error setting option\n"); return; } send_ok(ssl); } /* routine to printout option values over SSL */ void remote_get_opt_ssl(char* line, void* arg) { SSL* ssl = (SSL*)arg; (void)ssl_printf(ssl, "%s\n", line); } /** do the get_option command */ static void do_get_option(SSL* ssl, struct worker* worker, char* arg) { int r; r = config_get_option(worker->env.cfg, arg, remote_get_opt_ssl, ssl); if(!r) { (void)ssl_printf(ssl, "error unknown option\n"); return; } } /** do the list_forwards command */ static void do_list_forwards(SSL* ssl, struct worker* worker) { /* since its a per-worker structure no locks needed */ struct iter_forwards* fwds = worker->env.fwds; struct iter_forward_zone* z; RBTREE_FOR(z, struct iter_forward_zone*, fwds->tree) { if(!z->dp) continue; /* skip empty marker for stub */ if(!ssl_print_name_dp(ssl, "forward", z->name, z->dclass, z->dp)) return; } } /** do the list_stubs command */ static void do_list_stubs(SSL* ssl, struct worker* worker) { struct iter_hints_stub* z; RBTREE_FOR(z, struct iter_hints_stub*, &worker->env.hints->tree) { if(!ssl_print_name_dp(ssl, z->noprime?"stub noprime":"stub prime", z->node.name, z->node.dclass, z->dp)) return; } } /** do the list_local_zones command */ static void do_list_local_zones(SSL* ssl, struct worker* worker) { struct local_zones* zones = worker->daemon->local_zones; struct local_zone* z; char buf[257]; lock_quick_lock(&zones->lock); RBTREE_FOR(z, struct local_zone*, &zones->ztree) { lock_rw_rdlock(&z->lock); dname_str(z->name, buf); (void)ssl_printf(ssl, "%s %s\n", buf, local_zone_type2str(z->type)); lock_rw_unlock(&z->lock); } lock_quick_unlock(&zones->lock); } /** do the list_local_data command */ static void do_list_local_data(SSL* ssl, struct worker* worker) { struct local_zones* zones = worker->daemon->local_zones; struct local_zone* z; struct local_data* d; struct local_rrset* p; lock_quick_lock(&zones->lock); RBTREE_FOR(z, struct local_zone*, &zones->ztree) { lock_rw_rdlock(&z->lock); RBTREE_FOR(d, struct local_data*, &z->data) { for(p = d->rrsets; p; p = p->next) { ldns_rr_list* rr = packed_rrset_to_rr_list( p->rrset, worker->env.scratch_buffer); char* str = ldns_rr_list2str(rr); (void)ssl_printf(ssl, "%s", str); free(str); ldns_rr_list_free(rr); } } lock_rw_unlock(&z->lock); } lock_quick_unlock(&zones->lock); } /** tell other processes to execute the command */ static void distribute_cmd(struct daemon_remote* rc, SSL* ssl, char* cmd) { int i; if(!cmd || !ssl) return; /* skip i=0 which is me */ for(i=1; iworker->daemon->num; i++) { worker_send_cmd(rc->worker->daemon->workers[i], worker_cmd_remote); if(!tube_write_msg(rc->worker->daemon->workers[i]->cmd, (uint8_t*)cmd, strlen(cmd)+1, 0)) { ssl_printf(ssl, "error could not distribute cmd\n"); return; } } } /** check for name with end-of-string, space or tab after it */ static int cmdcmp(char* p, const char* cmd, size_t len) { return strncmp(p,cmd,len)==0 && (p[len]==0||p[len]==' '||p[len]=='\t'); } /** execute a remote control command */ static void execute_cmd(struct daemon_remote* rc, SSL* ssl, char* cmd, struct worker* worker) { char* p = skipwhite(cmd); /* compare command */ if(cmdcmp(p, "stop", 4)) { do_stop(ssl, rc); return; } else if(cmdcmp(p, "reload", 6)) { do_reload(ssl, rc); return; } else if(cmdcmp(p, "stats_noreset", 13)) { do_stats(ssl, rc, 0); return; } else if(cmdcmp(p, "stats", 5)) { do_stats(ssl, rc, 1); return; } else if(cmdcmp(p, "status", 6)) { do_status(ssl, worker); return; } else if(cmdcmp(p, "dump_cache", 10)) { (void)dump_cache(ssl, worker); return; } else if(cmdcmp(p, "load_cache", 10)) { if(load_cache(ssl, worker)) send_ok(ssl); return; } else if(cmdcmp(p, "list_forwards", 13)) { do_list_forwards(ssl, worker); return; } else if(cmdcmp(p, "list_stubs", 10)) { do_list_stubs(ssl, worker); return; } else if(cmdcmp(p, "list_local_zones", 16)) { do_list_local_zones(ssl, worker); return; } else if(cmdcmp(p, "list_local_data", 15)) { do_list_local_data(ssl, worker); return; } else if(cmdcmp(p, "stub_add", 8)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_stub_add(ssl, worker, skipwhite(p+8)); return; } else if(cmdcmp(p, "stub_remove", 11)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_stub_remove(ssl, worker, skipwhite(p+11)); return; } else if(cmdcmp(p, "forward_add", 11)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_forward_add(ssl, worker, skipwhite(p+11)); return; } else if(cmdcmp(p, "forward_remove", 14)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_forward_remove(ssl, worker, skipwhite(p+14)); return; } else if(cmdcmp(p, "forward", 7)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_forward(ssl, worker, skipwhite(p+7)); return; } else if(cmdcmp(p, "flush_stats", 11)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_flush_stats(ssl, worker); return; } else if(cmdcmp(p, "flush_requestlist", 17)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_flush_requestlist(ssl, worker); return; } else if(cmdcmp(p, "lookup", 6)) { do_lookup(ssl, worker, skipwhite(p+6)); return; } #ifdef THREADS_DISABLED /* other processes must execute the command as well */ /* commands that should not be distributed, returned above. */ if(rc) { /* only if this thread is the master (rc) thread */ /* done before the code below, which may split the string */ distribute_cmd(rc, ssl, cmd); } #endif if(cmdcmp(p, "verbosity", 9)) { do_verbosity(ssl, skipwhite(p+9)); } else if(cmdcmp(p, "local_zone_remove", 17)) { do_zone_remove(ssl, worker, skipwhite(p+17)); } else if(cmdcmp(p, "local_zone", 10)) { do_zone_add(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "local_data_remove", 17)) { do_data_remove(ssl, worker, skipwhite(p+17)); } else if(cmdcmp(p, "local_data", 10)) { do_data_add(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "flush_zone", 10)) { do_flush_zone(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "flush_type", 10)) { do_flush_type(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "flush_infra", 11)) { do_flush_infra(ssl, worker, skipwhite(p+11)); } else if(cmdcmp(p, "flush", 5)) { do_flush_name(ssl, worker, skipwhite(p+5)); } else if(cmdcmp(p, "dump_requestlist", 16)) { do_dump_requestlist(ssl, worker); } else if(cmdcmp(p, "dump_infra", 10)) { do_dump_infra(ssl, worker); } else if(cmdcmp(p, "log_reopen", 10)) { do_log_reopen(ssl, worker); } else if(cmdcmp(p, "set_option", 10)) { do_set_option(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "get_option", 10)) { do_get_option(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "flush_bogus", 11)) { do_flush_bogus(ssl, worker); } else { (void)ssl_printf(ssl, "error unknown command '%s'\n", p); } } void daemon_remote_exec(struct worker* worker) { /* read the cmd string */ uint8_t* msg = NULL; uint32_t len = 0; if(!tube_read_msg(worker->cmd, &msg, &len, 0)) { log_err("daemon_remote_exec: tube_read_msg failed"); return; } verbose(VERB_ALGO, "remote exec distributed: %s", (char*)msg); execute_cmd(NULL, NULL, (char*)msg, worker); free(msg); } /** handle remote control request */ static void handle_req(struct daemon_remote* rc, struct rc_state* s, SSL* ssl) { int r; char pre[10]; char magic[7]; char buf[1024]; #ifdef USE_WINSOCK /* makes it possible to set the socket blocking again. */ /* basically removes it from winsock_event ... */ WSAEventSelect(s->c->fd, NULL, 0); #endif fd_set_block(s->c->fd); /* try to read magic UBCT[version]_space_ string */ ERR_clear_error(); if((r=SSL_read(ssl, magic, (int)sizeof(magic)-1)) <= 0) { if(SSL_get_error(ssl, r) == SSL_ERROR_ZERO_RETURN) return; log_crypto_err("could not SSL_read"); return; } magic[6] = 0; if( r != 6 || strncmp(magic, "UBCT", 4) != 0) { verbose(VERB_QUERY, "control connection has bad magic string"); /* probably wrong tool connected, ignore it completely */ return; } /* read the command line */ if(!ssl_read_line(ssl, buf, sizeof(buf))) { return; } snprintf(pre, sizeof(pre), "UBCT%d ", UNBOUND_CONTROL_VERSION); if(strcmp(magic, pre) != 0) { verbose(VERB_QUERY, "control connection had bad " "version %s, cmd: %s", magic, buf); ssl_printf(ssl, "error version mismatch\n"); return; } verbose(VERB_DETAIL, "control cmd: %s", buf); /* figure out what to do */ execute_cmd(rc, ssl, buf, rc->worker); } int remote_control_callback(struct comm_point* c, void* arg, int err, struct comm_reply* ATTR_UNUSED(rep)) { struct rc_state* s = (struct rc_state*)arg; struct daemon_remote* rc = s->rc; int r; if(err != NETEVENT_NOERROR) { if(err==NETEVENT_TIMEOUT) log_err("remote control timed out"); clean_point(rc, s); return 0; } /* (continue to) setup the SSL connection */ ERR_clear_error(); r = SSL_do_handshake(s->ssl); if(r != 1) { int r2 = SSL_get_error(s->ssl, r); if(r2 == SSL_ERROR_WANT_READ) { if(s->shake_state == rc_hs_read) { /* try again later */ return 0; } s->shake_state = rc_hs_read; comm_point_listen_for_rw(c, 1, 0); return 0; } else if(r2 == SSL_ERROR_WANT_WRITE) { if(s->shake_state == rc_hs_write) { /* try again later */ return 0; } s->shake_state = rc_hs_write; comm_point_listen_for_rw(c, 0, 1); return 0; } else { if(r == 0) log_err("remote control connection closed prematurely"); log_addr(1, "failed connection from", &s->c->repinfo.addr, s->c->repinfo.addrlen); log_crypto_err("remote control failed ssl"); clean_point(rc, s); return 0; } } s->shake_state = rc_none; /* once handshake has completed, check authentication */ if(SSL_get_verify_result(s->ssl) == X509_V_OK) { X509* x = SSL_get_peer_certificate(s->ssl); if(!x) { verbose(VERB_DETAIL, "remote control connection " "provided no client certificate"); clean_point(rc, s); return 0; } verbose(VERB_ALGO, "remote control connection authenticated"); X509_free(x); } else { verbose(VERB_DETAIL, "remote control connection failed to " "authenticate with client certificate"); clean_point(rc, s); return 0; } /* if OK start to actually handle the request */ handle_req(rc, s, s->ssl); verbose(VERB_ALGO, "remote control operation completed"); clean_point(rc, s); return 0; }