/* * daemon/remote.c - remote control for the unbound daemon. * * Copyright (c) 2008, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains the remote control functionality for the daemon. * The remote control can be performed using either the commandline * unbound-control tool, or a TLS capable web browser. * The channel is secured using TLSv1, and certificates. * Both the server and the client(control tool) have their own keys. */ #include "config.h" #ifdef HAVE_OPENSSL_ERR_H #include #endif #ifdef HAVE_OPENSSL_DH_H #include #endif #ifdef HAVE_OPENSSL_BN_H #include #endif #ifdef HAVE_STDATOMIC_H #include #endif #include #include "daemon/remote.h" #include "daemon/worker.h" #include "daemon/daemon.h" #include "daemon/stats.h" #include "daemon/cachedump.h" #include "util/log.h" #include "util/config_file.h" #include "util/net_help.h" #include "util/module.h" #include "util/ub_event.h" #include "services/listen_dnsport.h" #include "services/cache/rrset.h" #include "services/cache/infra.h" #include "services/mesh.h" #include "services/localzone.h" #include "services/authzone.h" #include "services/rpz.h" #include "util/storage/slabhash.h" #include "util/fptr_wlist.h" #include "util/data/dname.h" #include "validator/validator.h" #include "validator/val_kcache.h" #include "validator/val_kentry.h" #include "validator/val_anchor.h" #include "validator/val_neg.h" #include "iterator/iterator.h" #include "iterator/iter_fwd.h" #include "iterator/iter_hints.h" #include "iterator/iter_delegpt.h" #include "iterator/iter_utils.h" #include "iterator/iter_donotq.h" #include "iterator/iter_priv.h" #include "services/outbound_list.h" #include "services/outside_network.h" #include "sldns/str2wire.h" #include "sldns/parseutil.h" #include "sldns/wire2str.h" #include "sldns/sbuffer.h" #include "util/timeval_func.h" #include "util/tcp_conn_limit.h" #include "util/edns.h" #ifdef USE_CACHEDB #include "cachedb/cachedb.h" #endif #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_SYS_STAT_H #include #endif #ifdef HAVE_NETDB_H #include #endif #ifdef HAVE_POLL_H #include #endif /* just for portability */ #ifdef SQ #undef SQ #endif /** what to put on statistics lines between var and value, ": " or "=" */ #define SQ "=" /** Acceptable lengths of str lines */ #define MAX_CMD_STRLINE 1024 #define MAX_STDIN_STRLINE 2048 /** What number of loop iterations is too much for ipc retries */ #define IPC_LOOP_MAX 200 /** Timeout in msec for ipc socket poll. */ #define IPC_NOTIFICATION_WAIT 200 static void fr_printq_delete(struct fast_reload_printq* printq); static void fr_main_perform_printout(struct fast_reload_thread* fr); static int fr_printq_empty(struct fast_reload_printq* printq); static void fr_printq_list_insert(struct fast_reload_printq* printq, struct daemon* daemon); static void fr_printq_remove(struct fast_reload_printq* printq); static void fr_check_cmd_from_thread(struct fast_reload_thread* fr); static int remote_setup_ctx(struct daemon_remote* rc, struct config_file* cfg) { char* s_cert; char* s_key; rc->ctx = SSL_CTX_new(SSLv23_server_method()); if(!rc->ctx) { log_crypto_err("could not SSL_CTX_new"); return 0; } if(!listen_sslctx_setup(rc->ctx)) { return 0; } s_cert = fname_after_chroot(cfg->server_cert_file, cfg, 1); s_key = fname_after_chroot(cfg->server_key_file, cfg, 1); if(!s_cert || !s_key) { log_err("out of memory in remote control fname"); goto setup_error; } verbose(VERB_ALGO, "setup SSL certificates"); if (!SSL_CTX_use_certificate_chain_file(rc->ctx,s_cert)) { log_err("Error for server-cert-file: %s", s_cert); log_crypto_err("Error in SSL_CTX use_certificate_chain_file"); goto setup_error; } if(!SSL_CTX_use_PrivateKey_file(rc->ctx,s_key,SSL_FILETYPE_PEM)) { log_err("Error for server-key-file: %s", s_key); log_crypto_err("Error in SSL_CTX use_PrivateKey_file"); goto setup_error; } if(!SSL_CTX_check_private_key(rc->ctx)) { log_err("Error for server-key-file: %s", s_key); log_crypto_err("Error in SSL_CTX check_private_key"); goto setup_error; } listen_sslctx_setup_2(rc->ctx); if(!SSL_CTX_load_verify_locations(rc->ctx, s_cert, NULL)) { log_crypto_err("Error setting up SSL_CTX verify locations"); setup_error: free(s_cert); free(s_key); return 0; } SSL_CTX_set_client_CA_list(rc->ctx, SSL_load_client_CA_file(s_cert)); SSL_CTX_set_verify(rc->ctx, SSL_VERIFY_PEER, NULL); free(s_cert); free(s_key); return 1; } struct daemon_remote* daemon_remote_create(struct config_file* cfg) { struct daemon_remote* rc = (struct daemon_remote*)calloc(1, sizeof(*rc)); if(!rc) { log_err("out of memory in daemon_remote_create"); return NULL; } rc->max_active = 10; if(!cfg->remote_control_enable) { rc->ctx = NULL; return rc; } if(options_remote_is_address(cfg) && cfg->control_use_cert) { if(!remote_setup_ctx(rc, cfg)) { daemon_remote_delete(rc); return NULL; } rc->use_cert = 1; } else { struct config_strlist* p; rc->ctx = NULL; rc->use_cert = 0; if(!options_remote_is_address(cfg)) for(p = cfg->control_ifs.first; p; p = p->next) { if(p->str && p->str[0] != '/') log_warn("control-interface %s is not using TLS, but plain transfer, because first control-interface in config file is a local socket (starts with a /).", p->str); } } return rc; } void daemon_remote_clear(struct daemon_remote* rc) { struct rc_state* p, *np; if(!rc) return; /* but do not close the ports */ listen_list_delete(rc->accept_list); rc->accept_list = NULL; /* do close these sockets */ p = rc->busy_list; while(p) { np = p->next; if(p->ssl) SSL_free(p->ssl); comm_point_delete(p->c); free(p); p = np; } rc->busy_list = NULL; rc->active = 0; rc->worker = NULL; } void daemon_remote_delete(struct daemon_remote* rc) { if(!rc) return; daemon_remote_clear(rc); if(rc->ctx) { SSL_CTX_free(rc->ctx); } free(rc); } /** * Add and open a new control port * @param ip: ip str * @param nr: port nr * @param list: list head * @param noproto_is_err: if lack of protocol support is an error. * @param cfg: config with username for chown of unix-sockets. * @return false on failure. */ static int add_open(const char* ip, int nr, struct listen_port** list, int noproto_is_err, struct config_file* cfg) { struct addrinfo hints; struct addrinfo* res; struct listen_port* n; int noproto = 0; int fd, r; char port[15]; snprintf(port, sizeof(port), "%d", nr); port[sizeof(port)-1]=0; memset(&hints, 0, sizeof(hints)); log_assert(ip); if(ip[0] == '/') { /* This looks like a local socket */ fd = create_local_accept_sock(ip, &noproto, cfg->use_systemd); /* * Change socket ownership and permissions so users other * than root can access it provided they are in the same * group as the user we run as. */ if(fd != -1) { #ifdef HAVE_CHOWN chmod(ip, (mode_t)(S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP)); if (cfg->username && cfg->username[0] && cfg_uid != (uid_t)-1) { if(chown(ip, cfg_uid, cfg_gid) == -1) verbose(VERB_QUERY, "cannot chown %u.%u %s: %s", (unsigned)cfg_uid, (unsigned)cfg_gid, ip, strerror(errno)); } #else (void)cfg; #endif } } else { hints.ai_socktype = SOCK_STREAM; hints.ai_flags = AI_PASSIVE | AI_NUMERICHOST; if((r = getaddrinfo(ip, port, &hints, &res)) != 0 || !res) { #ifdef USE_WINSOCK if(!noproto_is_err && r == EAI_NONAME) { /* tried to lookup the address as name */ return 1; /* return success, but do nothing */ } #endif /* USE_WINSOCK */ log_err("control interface %s:%s getaddrinfo: %s %s", ip?ip:"default", port, gai_strerror(r), #ifdef EAI_SYSTEM r==EAI_SYSTEM?(char*)strerror(errno):"" #else "" #endif ); return 0; } /* open fd */ fd = create_tcp_accept_sock(res, 1, &noproto, 0, cfg->ip_transparent, 0, 0, cfg->ip_freebind, cfg->use_systemd, cfg->ip_dscp, "unbound-control"); freeaddrinfo(res); } if(fd == -1 && noproto) { if(!noproto_is_err) return 1; /* return success, but do nothing */ log_err("cannot open control interface %s %d : " "protocol not supported", ip, nr); return 0; } if(fd == -1) { log_err("cannot open control interface %s %d", ip, nr); return 0; } /* alloc */ n = (struct listen_port*)calloc(1, sizeof(*n)); if(!n) { sock_close(fd); log_err("out of memory"); return 0; } n->next = *list; *list = n; n->fd = fd; return 1; } struct listen_port* daemon_remote_open_ports(struct config_file* cfg) { struct listen_port* l = NULL; log_assert(cfg->remote_control_enable && cfg->control_port); if(cfg->control_ifs.first) { char** rcif = NULL; int i, num_rcif = 0; if(!resolve_interface_names(NULL, 0, cfg->control_ifs.first, &rcif, &num_rcif)) { return NULL; } for(i=0; icontrol_port, &l, 1, cfg)) { listening_ports_free(l); config_del_strarray(rcif, num_rcif); return NULL; } } config_del_strarray(rcif, num_rcif); } else { /* defaults */ if(cfg->do_ip6 && !add_open("::1", cfg->control_port, &l, 0, cfg)) { listening_ports_free(l); return NULL; } if(cfg->do_ip4 && !add_open("127.0.0.1", cfg->control_port, &l, 1, cfg)) { listening_ports_free(l); return NULL; } } return l; } /** open accept commpoint */ static int accept_open(struct daemon_remote* rc, int fd) { struct listen_list* n = (struct listen_list*)malloc(sizeof(*n)); if(!n) { log_err("out of memory"); return 0; } n->next = rc->accept_list; rc->accept_list = n; /* open commpt */ n->com = comm_point_create_raw(rc->worker->base, fd, 0, &remote_accept_callback, rc); if(!n->com) return 0; /* keep this port open, its fd is kept in the rc portlist */ n->com->do_not_close = 1; return 1; } int daemon_remote_open_accept(struct daemon_remote* rc, struct listen_port* ports, struct worker* worker) { struct listen_port* p; rc->worker = worker; for(p = ports; p; p = p->next) { if(!accept_open(rc, p->fd)) { log_err("could not create accept comm point"); return 0; } } return 1; } void daemon_remote_stop_accept(struct daemon_remote* rc) { struct listen_list* p; for(p=rc->accept_list; p; p=p->next) { comm_point_stop_listening(p->com); } } void daemon_remote_start_accept(struct daemon_remote* rc) { struct listen_list* p; for(p=rc->accept_list; p; p=p->next) { comm_point_start_listening(p->com, -1, -1); } } int remote_accept_callback(struct comm_point* c, void* arg, int err, struct comm_reply* ATTR_UNUSED(rep)) { struct daemon_remote* rc = (struct daemon_remote*)arg; struct sockaddr_storage addr; socklen_t addrlen; int newfd; struct rc_state* n; if(err != NETEVENT_NOERROR) { log_err("error %d on remote_accept_callback", err); return 0; } /* perform the accept */ newfd = comm_point_perform_accept(c, &addr, &addrlen); if(newfd == -1) return 0; /* create new commpoint unless we are servicing already */ if(rc->active >= rc->max_active) { log_warn("drop incoming remote control: too many connections"); close_exit: sock_close(newfd); return 0; } /* setup commpoint to service the remote control command */ n = (struct rc_state*)calloc(1, sizeof(*n)); if(!n) { log_err("out of memory"); goto close_exit; } n->fd = newfd; /* start in reading state */ n->c = comm_point_create_raw(rc->worker->base, newfd, 0, &remote_control_callback, n); if(!n->c) { log_err("out of memory"); free(n); goto close_exit; } log_addr(VERB_QUERY, "new control connection from", &addr, addrlen); n->c->do_not_close = 0; comm_point_stop_listening(n->c); comm_point_start_listening(n->c, -1, REMOTE_CONTROL_TCP_TIMEOUT); memcpy(&n->c->repinfo.remote_addr, &addr, addrlen); n->c->repinfo.remote_addrlen = addrlen; if(rc->use_cert) { n->shake_state = rc_hs_read; n->ssl = SSL_new(rc->ctx); if(!n->ssl) { log_crypto_err("could not SSL_new"); comm_point_delete(n->c); free(n); goto close_exit; } SSL_set_accept_state(n->ssl); (void)SSL_set_mode(n->ssl, (long)SSL_MODE_AUTO_RETRY); if(!SSL_set_fd(n->ssl, newfd)) { log_crypto_err("could not SSL_set_fd"); SSL_free(n->ssl); comm_point_delete(n->c); free(n); goto close_exit; } } else { n->ssl = NULL; } n->rc = rc; n->next = rc->busy_list; rc->busy_list = n; rc->active ++; /* perform the first nonblocking read already, for windows, * so it can return wouldblock. could be faster too. */ (void)remote_control_callback(n->c, n, NETEVENT_NOERROR, NULL); return 0; } /** delete from list */ static void state_list_remove_elem(struct rc_state** list, struct comm_point* c) { while(*list) { if( (*list)->c == c) { *list = (*list)->next; return; } list = &(*list)->next; } } /** decrease active count and remove commpoint from busy list */ static void clean_point(struct daemon_remote* rc, struct rc_state* s) { if(!s->rc) { /* the state has been picked up and moved away */ free(s); return; } state_list_remove_elem(&rc->busy_list, s->c); rc->active --; if(s->ssl) { SSL_shutdown(s->ssl); SSL_free(s->ssl); } comm_point_delete(s->c); free(s); } int ssl_print_text(RES* res, const char* text) { int r; if(!res) return 0; if(res->ssl) { ERR_clear_error(); if((r=SSL_write(res->ssl, text, (int)strlen(text))) <= 0) { int r2; if((r2=SSL_get_error(res->ssl, r)) == SSL_ERROR_ZERO_RETURN) { verbose(VERB_QUERY, "warning, in SSL_write, peer " "closed connection"); return 0; } log_crypto_err_io("could not SSL_write", r2); return 0; } } else { size_t at = 0; while(at < strlen(text)) { ssize_t r = send(res->fd, text+at, strlen(text)-at, 0); if(r == -1) { if(errno == EAGAIN || errno == EINTR) continue; log_err("could not send: %s", sock_strerror(errno)); return 0; } at += r; } } return 1; } /** print text over the ssl connection */ static int ssl_print_vmsg(RES* ssl, const char* format, va_list args) { char msg[65535]; vsnprintf(msg, sizeof(msg), format, args); return ssl_print_text(ssl, msg); } /** printf style printing to the ssl connection */ int ssl_printf(RES* ssl, const char* format, ...) { va_list args; int ret; va_start(args, format); ret = ssl_print_vmsg(ssl, format, args); va_end(args); return ret; } int ssl_read_line(RES* res, char* buf, size_t max) { int r; size_t len = 0; if(!res) return 0; while(len < max) { if(res->ssl) { ERR_clear_error(); if((r=SSL_read(res->ssl, buf+len, 1)) <= 0) { int r2; if((r2=SSL_get_error(res->ssl, r)) == SSL_ERROR_ZERO_RETURN) { buf[len] = 0; return 1; } log_crypto_err_io("could not SSL_read", r2); return 0; } } else { while(1) { ssize_t rr = recv(res->fd, buf+len, 1, 0); if(rr <= 0) { if(rr == 0) { buf[len] = 0; return 1; } if(errno == EINTR || errno == EAGAIN) continue; if(rr < 0) log_err("could not recv: %s", sock_strerror(errno)); return 0; } break; } } if(buf[len] == '\n') { /* return string without \n */ buf[len] = 0; return 1; } len++; } buf[max-1] = 0; log_err("control line too long (%d): %s", (int)max, buf); return 0; } /** skip whitespace, return new pointer into string */ static char* skipwhite(char* str) { /* EOS \0 is not a space */ while( isspace((unsigned char)*str) ) str++; return str; } /** send the OK to the control client */ static void send_ok(RES* ssl) { (void)ssl_printf(ssl, "ok\n"); } /** tell other processes to execute the command */ static void distribute_cmd(struct daemon_remote* rc, RES* ssl, char* cmd) { int i; if(!cmd || !ssl) return; /* skip i=0 which is me */ for(i=1; iworker->daemon->num; i++) { worker_send_cmd(rc->worker->daemon->workers[i], worker_cmd_remote); if(!tube_write_msg(rc->worker->daemon->workers[i]->cmd, (uint8_t*)cmd, strlen(cmd)+1, 0)) { (void)ssl_printf(ssl, "error could not distribute cmd\n"); return; } } } /** do the stop command */ static void do_stop(RES* ssl, struct worker* worker) { worker->need_to_exit = 1; comm_base_exit(worker->base); send_ok(ssl); } /** do the reload command */ static void do_reload(RES* ssl, struct worker* worker, int reuse_cache) { worker->reuse_cache = reuse_cache; worker->need_to_exit = 0; comm_base_exit(worker->base); send_ok(ssl); } #ifndef THREADS_DISABLED /** parse fast reload command options. */ static int fr_parse_options(RES* ssl, char* arg, int* fr_verb, int* fr_nopause, int* fr_drop_mesh) { char* argp = arg; while(*argp=='+') { argp++; while(*argp!=0 && *argp!=' ' && *argp!='\t') { if(*argp == 'v') { (*fr_verb)++; } else if(*argp == 'p') { (*fr_nopause) = 1; } else if(*argp == 'd') { (*fr_drop_mesh) = 1; } else { if(!ssl_printf(ssl, "error: unknown option '+%c'\n", *argp)) return 0; return 0; } argp++; } argp = skipwhite(argp); } if(*argp!=0) { if(!ssl_printf(ssl, "error: unknown option '%s'\n", argp)) return 0; return 0; } return 1; } #endif /* !THREADS_DISABLED */ /** do the fast_reload command */ static void do_fast_reload(RES* ssl, struct worker* worker, struct rc_state* s, char* arg) { #ifdef THREADS_DISABLED if(!ssl_printf(ssl, "error: no threads for fast_reload, compiled without threads.\n")) return; (void)worker; (void)s; (void)arg; #else int fr_verb = 0, fr_nopause = 0, fr_drop_mesh = 0; if(!fr_parse_options(ssl, arg, &fr_verb, &fr_nopause, &fr_drop_mesh)) return; if(fr_verb >= 1) { if(!ssl_printf(ssl, "start fast_reload\n")) return; } fast_reload_thread_start(ssl, worker, s, fr_verb, fr_nopause, fr_drop_mesh); #endif } /** do the verbosity command */ static void do_verbosity(RES* ssl, char* str) { int val = atoi(str); if(val == 0 && strcmp(str, "0") != 0) { ssl_printf(ssl, "error in verbosity number syntax: %s\n", str); return; } verbosity = val; send_ok(ssl); } /** print stats from statinfo */ static int print_stats(RES* ssl, const char* nm, struct ub_stats_info* s) { struct timeval sumwait, avg; if(!ssl_printf(ssl, "%s.num.queries"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries)) return 0; if(!ssl_printf(ssl, "%s.num.queries_ip_ratelimited"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries_ip_ratelimited)) return 0; if(!ssl_printf(ssl, "%s.num.queries_cookie_valid"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries_cookie_valid)) return 0; if(!ssl_printf(ssl, "%s.num.queries_cookie_client"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries_cookie_client)) return 0; if(!ssl_printf(ssl, "%s.num.queries_cookie_invalid"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries_cookie_invalid)) return 0; if(!ssl_printf(ssl, "%s.num.queries_discard_timeout"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries_discard_timeout)) return 0; if(!ssl_printf(ssl, "%s.num.queries_wait_limit"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries_wait_limit)) return 0; if(!ssl_printf(ssl, "%s.num.cachehits"SQ"%lu\n", nm, (unsigned long)(s->svr.num_queries - s->svr.num_queries_missed_cache))) return 0; if(!ssl_printf(ssl, "%s.num.cachemiss"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries_missed_cache)) return 0; if(!ssl_printf(ssl, "%s.num.prefetch"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries_prefetch)) return 0; if(!ssl_printf(ssl, "%s.num.queries_timed_out"SQ"%lu\n", nm, (unsigned long)s->svr.num_queries_timed_out)) return 0; if(!ssl_printf(ssl, "%s.query.queue_time_us.max"SQ"%lu\n", nm, (unsigned long)s->svr.max_query_time_us)) return 0; if(!ssl_printf(ssl, "%s.num.expired"SQ"%lu\n", nm, (unsigned long)s->svr.ans_expired)) return 0; if(!ssl_printf(ssl, "%s.num.recursivereplies"SQ"%lu\n", nm, (unsigned long)s->mesh_replies_sent)) return 0; #ifdef USE_DNSCRYPT if(!ssl_printf(ssl, "%s.num.dnscrypt.crypted"SQ"%lu\n", nm, (unsigned long)s->svr.num_query_dnscrypt_crypted)) return 0; if(!ssl_printf(ssl, "%s.num.dnscrypt.cert"SQ"%lu\n", nm, (unsigned long)s->svr.num_query_dnscrypt_cert)) return 0; if(!ssl_printf(ssl, "%s.num.dnscrypt.cleartext"SQ"%lu\n", nm, (unsigned long)s->svr.num_query_dnscrypt_cleartext)) return 0; if(!ssl_printf(ssl, "%s.num.dnscrypt.malformed"SQ"%lu\n", nm, (unsigned long)s->svr.num_query_dnscrypt_crypted_malformed)) return 0; #endif if(!ssl_printf(ssl, "%s.num.dns_error_reports"SQ"%lu\n", nm, (unsigned long)s->svr.num_dns_error_reports)) return 0; if(!ssl_printf(ssl, "%s.requestlist.avg"SQ"%g\n", nm, (s->svr.num_queries_missed_cache+s->svr.num_queries_prefetch)? (double)s->svr.sum_query_list_size/ (double)(s->svr.num_queries_missed_cache+ s->svr.num_queries_prefetch) : 0.0)) return 0; if(!ssl_printf(ssl, "%s.requestlist.max"SQ"%lu\n", nm, (unsigned long)s->svr.max_query_list_size)) return 0; if(!ssl_printf(ssl, "%s.requestlist.overwritten"SQ"%lu\n", nm, (unsigned long)s->mesh_jostled)) return 0; if(!ssl_printf(ssl, "%s.requestlist.exceeded"SQ"%lu\n", nm, (unsigned long)s->mesh_dropped)) return 0; if(!ssl_printf(ssl, "%s.requestlist.current.all"SQ"%lu\n", nm, (unsigned long)s->mesh_num_states)) return 0; if(!ssl_printf(ssl, "%s.requestlist.current.user"SQ"%lu\n", nm, (unsigned long)s->mesh_num_reply_states)) return 0; #ifndef S_SPLINT_S sumwait.tv_sec = s->mesh_replies_sum_wait_sec; sumwait.tv_usec = s->mesh_replies_sum_wait_usec; #endif timeval_divide(&avg, &sumwait, s->mesh_replies_sent); if(!ssl_printf(ssl, "%s.recursion.time.avg"SQ ARG_LL "d.%6.6d\n", nm, (long long)avg.tv_sec, (int)avg.tv_usec)) return 0; if(!ssl_printf(ssl, "%s.recursion.time.median"SQ"%g\n", nm, s->mesh_time_median)) return 0; if(!ssl_printf(ssl, "%s.tcpusage"SQ"%lu\n", nm, (unsigned long)s->svr.tcp_accept_usage)) return 0; return 1; } /** print stats for one thread */ static int print_thread_stats(RES* ssl, int i, struct ub_stats_info* s) { char nm[32]; snprintf(nm, sizeof(nm), "thread%d", i); nm[sizeof(nm)-1]=0; return print_stats(ssl, nm, s); } /** print long number */ static int print_longnum(RES* ssl, const char* desc, size_t x) { if(x > 1024*1024*1024) { /* more than a Gb */ size_t front = x / (size_t)1000000; size_t back = x % (size_t)1000000; return ssl_printf(ssl, "%s%u%6.6u\n", desc, (unsigned)front, (unsigned)back); } else { return ssl_printf(ssl, "%s%lu\n", desc, (unsigned long)x); } } /** print mem stats */ static int print_mem(RES* ssl, struct worker* worker, struct daemon* daemon, struct ub_stats_info* s) { size_t msg, rrset, val, iter, respip; #ifdef CLIENT_SUBNET size_t subnet = 0; #endif /* CLIENT_SUBNET */ #ifdef USE_IPSECMOD size_t ipsecmod = 0; #endif /* USE_IPSECMOD */ #ifdef USE_DNSCRYPT size_t dnscrypt_shared_secret = 0; size_t dnscrypt_nonce = 0; #endif /* USE_DNSCRYPT */ #ifdef WITH_DYNLIBMODULE size_t dynlib = 0; #endif /* WITH_DYNLIBMODULE */ msg = slabhash_get_mem(daemon->env->msg_cache); rrset = slabhash_get_mem(&daemon->env->rrset_cache->table); val = mod_get_mem(&worker->env, "validator"); iter = mod_get_mem(&worker->env, "iterator"); respip = mod_get_mem(&worker->env, "respip"); #ifdef CLIENT_SUBNET subnet = mod_get_mem(&worker->env, "subnetcache"); #endif /* CLIENT_SUBNET */ #ifdef USE_IPSECMOD ipsecmod = mod_get_mem(&worker->env, "ipsecmod"); #endif /* USE_IPSECMOD */ #ifdef USE_DNSCRYPT if(daemon->dnscenv) { dnscrypt_shared_secret = slabhash_get_mem( daemon->dnscenv->shared_secrets_cache); dnscrypt_nonce = slabhash_get_mem(daemon->dnscenv->nonces_cache); } #endif /* USE_DNSCRYPT */ #ifdef WITH_DYNLIBMODULE dynlib = mod_get_mem(&worker->env, "dynlib"); #endif /* WITH_DYNLIBMODULE */ if(!print_longnum(ssl, "mem.cache.rrset"SQ, rrset)) return 0; if(!print_longnum(ssl, "mem.cache.message"SQ, msg)) return 0; if(!print_longnum(ssl, "mem.mod.iterator"SQ, iter)) return 0; if(!print_longnum(ssl, "mem.mod.validator"SQ, val)) return 0; if(!print_longnum(ssl, "mem.mod.respip"SQ, respip)) return 0; #ifdef CLIENT_SUBNET if(!print_longnum(ssl, "mem.mod.subnet"SQ, subnet)) return 0; #endif /* CLIENT_SUBNET */ #ifdef USE_IPSECMOD if(!print_longnum(ssl, "mem.mod.ipsecmod"SQ, ipsecmod)) return 0; #endif /* USE_IPSECMOD */ #ifdef USE_DNSCRYPT if(!print_longnum(ssl, "mem.cache.dnscrypt_shared_secret"SQ, dnscrypt_shared_secret)) return 0; if(!print_longnum(ssl, "mem.cache.dnscrypt_nonce"SQ, dnscrypt_nonce)) return 0; #endif /* USE_DNSCRYPT */ #ifdef WITH_DYNLIBMODULE if(!print_longnum(ssl, "mem.mod.dynlibmod"SQ, dynlib)) return 0; #endif /* WITH_DYNLIBMODULE */ if(!print_longnum(ssl, "mem.streamwait"SQ, (size_t)s->svr.mem_stream_wait)) return 0; if(!print_longnum(ssl, "mem.http.query_buffer"SQ, (size_t)s->svr.mem_http2_query_buffer)) return 0; if(!print_longnum(ssl, "mem.http.response_buffer"SQ, (size_t)s->svr.mem_http2_response_buffer)) return 0; #ifdef HAVE_NGTCP2 if(!print_longnum(ssl, "mem.quic"SQ, (size_t)s->svr.mem_quic)) return 0; #endif /* HAVE_NGTCP2 */ return 1; } /** print uptime stats */ static int print_uptime(RES* ssl, struct worker* worker, int reset) { struct timeval now = *worker->env.now_tv; struct timeval up, dt; timeval_subtract(&up, &now, &worker->daemon->time_boot); timeval_subtract(&dt, &now, &worker->daemon->time_last_stat); if(reset) worker->daemon->time_last_stat = now; if(!ssl_printf(ssl, "time.now"SQ ARG_LL "d.%6.6d\n", (long long)now.tv_sec, (unsigned)now.tv_usec)) return 0; if(!ssl_printf(ssl, "time.up"SQ ARG_LL "d.%6.6d\n", (long long)up.tv_sec, (unsigned)up.tv_usec)) return 0; if(!ssl_printf(ssl, "time.elapsed"SQ ARG_LL "d.%6.6d\n", (long long)dt.tv_sec, (unsigned)dt.tv_usec)) return 0; return 1; } /** print extended histogram */ static int print_hist(RES* ssl, struct ub_stats_info* s) { struct timehist* hist; size_t i; hist = timehist_setup(); if(!hist) { log_err("out of memory"); return 0; } timehist_import(hist, s->svr.hist, NUM_BUCKETS_HIST); for(i=0; inum; i++) { if(!ssl_printf(ssl, "histogram.%6.6d.%6.6d.to.%6.6d.%6.6d=%lu\n", (int)hist->buckets[i].lower.tv_sec, (int)hist->buckets[i].lower.tv_usec, (int)hist->buckets[i].upper.tv_sec, (int)hist->buckets[i].upper.tv_usec, (unsigned long)hist->buckets[i].count)) { timehist_delete(hist); return 0; } } timehist_delete(hist); return 1; } /** print extended stats */ static int print_ext(RES* ssl, struct ub_stats_info* s, int inhibit_zero) { int i; char nm[32]; const sldns_rr_descriptor* desc; const sldns_lookup_table* lt; /* TYPE */ for(i=0; isvr.qtype[i] == 0) continue; desc = sldns_rr_descript((uint16_t)i); if(desc && desc->_name) { snprintf(nm, sizeof(nm), "%s", desc->_name); } else if (i == LDNS_RR_TYPE_IXFR) { snprintf(nm, sizeof(nm), "IXFR"); } else if (i == LDNS_RR_TYPE_AXFR) { snprintf(nm, sizeof(nm), "AXFR"); } else if (i == LDNS_RR_TYPE_MAILA) { snprintf(nm, sizeof(nm), "MAILA"); } else if (i == LDNS_RR_TYPE_MAILB) { snprintf(nm, sizeof(nm), "MAILB"); } else if (i == LDNS_RR_TYPE_ANY) { snprintf(nm, sizeof(nm), "ANY"); } else { snprintf(nm, sizeof(nm), "TYPE%d", i); } if(!ssl_printf(ssl, "num.query.type.%s"SQ"%lu\n", nm, (unsigned long)s->svr.qtype[i])) return 0; } if(!inhibit_zero || s->svr.qtype_big) { if(!ssl_printf(ssl, "num.query.type.other"SQ"%lu\n", (unsigned long)s->svr.qtype_big)) return 0; } /* CLASS */ for(i=0; isvr.qclass[i] == 0) continue; lt = sldns_lookup_by_id(sldns_rr_classes, i); if(lt && lt->name) { snprintf(nm, sizeof(nm), "%s", lt->name); } else { snprintf(nm, sizeof(nm), "CLASS%d", i); } if(!ssl_printf(ssl, "num.query.class.%s"SQ"%lu\n", nm, (unsigned long)s->svr.qclass[i])) return 0; } if(!inhibit_zero || s->svr.qclass_big) { if(!ssl_printf(ssl, "num.query.class.other"SQ"%lu\n", (unsigned long)s->svr.qclass_big)) return 0; } /* OPCODE */ for(i=0; isvr.qopcode[i] == 0) continue; lt = sldns_lookup_by_id(sldns_opcodes, i); if(lt && lt->name) { snprintf(nm, sizeof(nm), "%s", lt->name); } else { snprintf(nm, sizeof(nm), "OPCODE%d", i); } if(!ssl_printf(ssl, "num.query.opcode.%s"SQ"%lu\n", nm, (unsigned long)s->svr.qopcode[i])) return 0; } /* transport */ if(!ssl_printf(ssl, "num.query.tcp"SQ"%lu\n", (unsigned long)s->svr.qtcp)) return 0; if(!ssl_printf(ssl, "num.query.tcpout"SQ"%lu\n", (unsigned long)s->svr.qtcp_outgoing)) return 0; if(!ssl_printf(ssl, "num.query.udpout"SQ"%lu\n", (unsigned long)s->svr.qudp_outgoing)) return 0; if(!ssl_printf(ssl, "num.query.tls"SQ"%lu\n", (unsigned long)s->svr.qtls)) return 0; if(!ssl_printf(ssl, "num.query.tls.resume"SQ"%lu\n", (unsigned long)s->svr.qtls_resume)) return 0; if(!ssl_printf(ssl, "num.query.ipv6"SQ"%lu\n", (unsigned long)s->svr.qipv6)) return 0; if(!ssl_printf(ssl, "num.query.https"SQ"%lu\n", (unsigned long)s->svr.qhttps)) return 0; #ifdef HAVE_NGTCP2 if(!ssl_printf(ssl, "num.query.quic"SQ"%lu\n", (unsigned long)s->svr.qquic)) return 0; #endif /* HAVE_NGTCP2 */ /* flags */ if(!ssl_printf(ssl, "num.query.flags.QR"SQ"%lu\n", (unsigned long)s->svr.qbit_QR)) return 0; if(!ssl_printf(ssl, "num.query.flags.AA"SQ"%lu\n", (unsigned long)s->svr.qbit_AA)) return 0; if(!ssl_printf(ssl, "num.query.flags.TC"SQ"%lu\n", (unsigned long)s->svr.qbit_TC)) return 0; if(!ssl_printf(ssl, "num.query.flags.RD"SQ"%lu\n", (unsigned long)s->svr.qbit_RD)) return 0; if(!ssl_printf(ssl, "num.query.flags.RA"SQ"%lu\n", (unsigned long)s->svr.qbit_RA)) return 0; if(!ssl_printf(ssl, "num.query.flags.Z"SQ"%lu\n", (unsigned long)s->svr.qbit_Z)) return 0; if(!ssl_printf(ssl, "num.query.flags.AD"SQ"%lu\n", (unsigned long)s->svr.qbit_AD)) return 0; if(!ssl_printf(ssl, "num.query.flags.CD"SQ"%lu\n", (unsigned long)s->svr.qbit_CD)) return 0; if(!ssl_printf(ssl, "num.query.edns.present"SQ"%lu\n", (unsigned long)s->svr.qEDNS)) return 0; if(!ssl_printf(ssl, "num.query.edns.DO"SQ"%lu\n", (unsigned long)s->svr.qEDNS_DO)) return 0; /* RCODE */ for(i=0; i LDNS_RCODE_REFUSED && s->svr.ans_rcode[i] == 0) continue; lt = sldns_lookup_by_id(sldns_rcodes, i); if(lt && lt->name) { snprintf(nm, sizeof(nm), "%s", lt->name); } else { snprintf(nm, sizeof(nm), "RCODE%d", i); } if(!ssl_printf(ssl, "num.answer.rcode.%s"SQ"%lu\n", nm, (unsigned long)s->svr.ans_rcode[i])) return 0; } if(!inhibit_zero || s->svr.ans_rcode_nodata) { if(!ssl_printf(ssl, "num.answer.rcode.nodata"SQ"%lu\n", (unsigned long)s->svr.ans_rcode_nodata)) return 0; } /* iteration */ if(!ssl_printf(ssl, "num.query.ratelimited"SQ"%lu\n", (unsigned long)s->svr.queries_ratelimited)) return 0; /* validation */ if(!ssl_printf(ssl, "num.answer.secure"SQ"%lu\n", (unsigned long)s->svr.ans_secure)) return 0; if(!ssl_printf(ssl, "num.answer.bogus"SQ"%lu\n", (unsigned long)s->svr.ans_bogus)) return 0; if(!ssl_printf(ssl, "num.rrset.bogus"SQ"%lu\n", (unsigned long)s->svr.rrset_bogus)) return 0; if(!ssl_printf(ssl, "num.query.aggressive.NOERROR"SQ"%lu\n", (unsigned long)s->svr.num_neg_cache_noerror)) return 0; if(!ssl_printf(ssl, "num.query.aggressive.NXDOMAIN"SQ"%lu\n", (unsigned long)s->svr.num_neg_cache_nxdomain)) return 0; /* threat detection */ if(!ssl_printf(ssl, "unwanted.queries"SQ"%lu\n", (unsigned long)s->svr.unwanted_queries)) return 0; if(!ssl_printf(ssl, "unwanted.replies"SQ"%lu\n", (unsigned long)s->svr.unwanted_replies)) return 0; /* cache counts */ if(!ssl_printf(ssl, "msg.cache.count"SQ"%u\n", (unsigned)s->svr.msg_cache_count)) return 0; if(!ssl_printf(ssl, "rrset.cache.count"SQ"%u\n", (unsigned)s->svr.rrset_cache_count)) return 0; if(!ssl_printf(ssl, "infra.cache.count"SQ"%u\n", (unsigned)s->svr.infra_cache_count)) return 0; if(!ssl_printf(ssl, "key.cache.count"SQ"%u\n", (unsigned)s->svr.key_cache_count)) return 0; /* max collisions */ if(!ssl_printf(ssl, "msg.cache.max_collisions"SQ"%u\n", (unsigned)s->svr.msg_cache_max_collisions)) return 0; if(!ssl_printf(ssl, "rrset.cache.max_collisions"SQ"%u\n", (unsigned)s->svr.rrset_cache_max_collisions)) return 0; /* applied RPZ actions */ for(i=0; isvr.rpz_action[i] == 0) continue; if(!ssl_printf(ssl, "num.rpz.action.%s"SQ"%lu\n", rpz_action_to_string(i), (unsigned long)s->svr.rpz_action[i])) return 0; } #ifdef USE_DNSCRYPT if(!ssl_printf(ssl, "dnscrypt_shared_secret.cache.count"SQ"%u\n", (unsigned)s->svr.shared_secret_cache_count)) return 0; if(!ssl_printf(ssl, "dnscrypt_nonce.cache.count"SQ"%u\n", (unsigned)s->svr.nonce_cache_count)) return 0; if(!ssl_printf(ssl, "num.query.dnscrypt.shared_secret.cachemiss"SQ"%lu\n", (unsigned long)s->svr.num_query_dnscrypt_secret_missed_cache)) return 0; if(!ssl_printf(ssl, "num.query.dnscrypt.replay"SQ"%lu\n", (unsigned long)s->svr.num_query_dnscrypt_replay)) return 0; #endif /* USE_DNSCRYPT */ if(!ssl_printf(ssl, "num.query.authzone.up"SQ"%lu\n", (unsigned long)s->svr.num_query_authzone_up)) return 0; if(!ssl_printf(ssl, "num.query.authzone.down"SQ"%lu\n", (unsigned long)s->svr.num_query_authzone_down)) return 0; #ifdef CLIENT_SUBNET if(!ssl_printf(ssl, "num.query.subnet"SQ"%lu\n", (unsigned long)s->svr.num_query_subnet)) return 0; if(!ssl_printf(ssl, "num.query.subnet_cache"SQ"%lu\n", (unsigned long)s->svr.num_query_subnet_cache)) return 0; #endif /* CLIENT_SUBNET */ #ifdef USE_CACHEDB if(!ssl_printf(ssl, "num.query.cachedb"SQ"%lu\n", (unsigned long)s->svr.num_query_cachedb)) return 0; #endif /* USE_CACHEDB */ return 1; } /** do the stats command */ static void do_stats(RES* ssl, struct worker* worker, int reset) { struct daemon* daemon = worker->daemon; struct ub_stats_info total; struct ub_stats_info s; int i; memset(&total, 0, sizeof(total)); log_assert(daemon->num > 0); /* gather all thread statistics in one place */ for(i=0; inum; i++) { server_stats_obtain(worker, daemon->workers[i], &s, reset); if(!print_thread_stats(ssl, i, &s)) return; if(i == 0) total = s; else server_stats_add(&total, &s); } /* print the thread statistics */ total.mesh_time_median /= (double)daemon->num; if(!print_stats(ssl, "total", &total)) return; if(!print_uptime(ssl, worker, reset)) return; if(daemon->cfg->stat_extended) { if(!print_mem(ssl, worker, daemon, &total)) return; if(!print_hist(ssl, &total)) return; if(!print_ext(ssl, &total, daemon->cfg->stat_inhibit_zero)) return; } } /** parse commandline argument domain name */ static int parse_arg_name(RES* ssl, char* str, uint8_t** res, size_t* len, int* labs) { uint8_t nm[LDNS_MAX_DOMAINLEN+1]; size_t nmlen = sizeof(nm); int status; *res = NULL; *len = 0; *labs = 0; if(str[0] == '\0') { ssl_printf(ssl, "error: this option requires a domain name\n"); return 0; } status = sldns_str2wire_dname_buf(str, nm, &nmlen); if(status != 0) { ssl_printf(ssl, "error cannot parse name %s at %d: %s\n", str, LDNS_WIREPARSE_OFFSET(status), sldns_get_errorstr_parse(status)); return 0; } *res = memdup(nm, nmlen); if(!*res) { ssl_printf(ssl, "error out of memory\n"); return 0; } *labs = dname_count_size_labels(*res, len); return 1; } /** find second argument, modifies string */ static int find_arg2(RES* ssl, char* arg, char** arg2) { char* as = strchr(arg, ' '); char* at = strchr(arg, '\t'); if(as && at) { if(at < as) as = at; as[0]=0; *arg2 = skipwhite(as+1); } else if(as) { as[0]=0; *arg2 = skipwhite(as+1); } else if(at) { at[0]=0; *arg2 = skipwhite(at+1); } else { ssl_printf(ssl, "error could not find next argument " "after %s\n", arg); return 0; } return 1; } /** Add a new zone */ static int perform_zone_add(RES* ssl, struct local_zones* zones, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; char* arg2; enum localzone_type t; struct local_zone* z; if(!find_arg2(ssl, arg, &arg2)) return 0; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return 0; if(!local_zone_str2type(arg2, &t)) { ssl_printf(ssl, "error not a zone type. %s\n", arg2); free(nm); return 0; } lock_rw_wrlock(&zones->lock); if((z=local_zones_find(zones, nm, nmlen, nmlabs, LDNS_RR_CLASS_IN))) { /* already present in tree */ lock_rw_wrlock(&z->lock); z->type = t; /* update type anyway */ lock_rw_unlock(&z->lock); free(nm); lock_rw_unlock(&zones->lock); return 1; } if(!local_zones_add_zone(zones, nm, nmlen, nmlabs, LDNS_RR_CLASS_IN, t)) { lock_rw_unlock(&zones->lock); ssl_printf(ssl, "error out of memory\n"); return 0; } lock_rw_unlock(&zones->lock); return 1; } /** Do the local_zone command */ static void do_zone_add(RES* ssl, struct local_zones* zones, char* arg) { if(!perform_zone_add(ssl, zones, arg)) return; send_ok(ssl); } /** Do the local_zones command */ static void do_zones_add(struct daemon_remote* rc, RES* ssl, struct worker* worker) { char buf[MAX_CMD_STRLINE + MAX_STDIN_STRLINE] = "local_zone "; int num = 0; size_t cmd_len = strlen(buf); while(ssl_read_line(ssl, buf+cmd_len, MAX_STDIN_STRLINE)) { if(buf[0+cmd_len] == 0 || (buf[0+cmd_len] == 0x04 && buf[1+cmd_len] == 0)) break; /* zero byte line or end of transmission */ #ifdef THREADS_DISABLED /* distribute single item command */ if(rc) distribute_cmd(rc, ssl, buf); #else (void)rc; /* unused */ #endif if(!perform_zone_add(ssl, worker->daemon->local_zones, buf+cmd_len)) { if(!ssl_printf(ssl, "error for input line: %s\n", buf+cmd_len)) return; } else num++; } (void)ssl_printf(ssl, "added %d zones\n", num); } /** Remove a zone */ static int perform_zone_remove(RES* ssl, struct local_zones* zones, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; struct local_zone* z; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return 0; lock_rw_wrlock(&zones->lock); if((z=local_zones_find(zones, nm, nmlen, nmlabs, LDNS_RR_CLASS_IN))) { /* present in tree */ local_zones_del_zone(zones, z); } lock_rw_unlock(&zones->lock); free(nm); return 1; } /** Do the local_zone_remove command */ static void do_zone_remove(RES* ssl, struct local_zones* zones, char* arg) { if(!perform_zone_remove(ssl, zones, arg)) return; send_ok(ssl); } /** Do the local_zones_remove command */ static void do_zones_remove(struct daemon_remote* rc, RES* ssl, struct worker* worker) { char buf[MAX_CMD_STRLINE + MAX_STDIN_STRLINE] = "local_zone_remove "; int num = 0; size_t cmd_len = strlen(buf); while(ssl_read_line(ssl, buf+cmd_len, MAX_STDIN_STRLINE)) { if(buf[0+cmd_len] == 0 || (buf[0+cmd_len] == 0x04 && buf[1+cmd_len] == 0)) break; /* zero byte line or end of transmission */ #ifdef THREADS_DISABLED /* distribute single item command */ if(rc) distribute_cmd(rc, ssl, buf); #else (void)rc; /* unused */ #endif if(!perform_zone_remove(ssl, worker->daemon->local_zones, buf+cmd_len)) { if(!ssl_printf(ssl, "error for input line: %s\n", buf+cmd_len)) return; } else num++; } (void)ssl_printf(ssl, "removed %d zones\n", num); } /** check syntax of newly added RR */ static int check_RR_syntax(RES* ssl, char* str, int line) { uint8_t rr[LDNS_RR_BUF_SIZE]; size_t len = sizeof(rr), dname_len = 0; int s = sldns_str2wire_rr_buf(str, rr, &len, &dname_len, 3600, NULL, 0, NULL, 0); if(s != 0) { char linestr[32]; if(line == 0) linestr[0]=0; else snprintf(linestr, sizeof(linestr), "line %d ", line); if(!ssl_printf(ssl, "error parsing local-data at %sposition %d '%s': %s\n", linestr, LDNS_WIREPARSE_OFFSET(s), str, sldns_get_errorstr_parse(s))) return 0; return 0; } return 1; } /** Add new RR data */ static int perform_data_add(RES* ssl, struct local_zones* zones, char* arg, int line) { if(!check_RR_syntax(ssl, arg, line)) { return 0; } if(!local_zones_add_RR(zones, arg)) { ssl_printf(ssl,"error in syntax or out of memory, %s\n", arg); return 0; } return 1; } /** Do the local_data command */ static void do_data_add(RES* ssl, struct local_zones* zones, char* arg) { if(!perform_data_add(ssl, zones, arg, 0)) return; send_ok(ssl); } /** Do the local_datas command */ static void do_datas_add(struct daemon_remote* rc, RES* ssl, struct worker* worker) { char buf[MAX_CMD_STRLINE + MAX_STDIN_STRLINE] = "local_data "; int num = 0, line = 0; size_t cmd_len = strlen(buf); while(ssl_read_line(ssl, buf+cmd_len, MAX_STDIN_STRLINE)) { if(buf[0+cmd_len] == 0 || (buf[0+cmd_len] == 0x04 && buf[1+cmd_len] == 0)) break; /* zero byte line or end of transmission */ #ifdef THREADS_DISABLED /* distribute single item command */ if(rc) distribute_cmd(rc, ssl, buf); #else (void)rc; /* unused */ #endif line++; if(perform_data_add(ssl, worker->daemon->local_zones, buf+cmd_len, line)) num++; } (void)ssl_printf(ssl, "added %d datas\n", num); } /** Remove RR data */ static int perform_data_remove(RES* ssl, struct local_zones* zones, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return 0; local_zones_del_data(zones, nm, nmlen, nmlabs, LDNS_RR_CLASS_IN); free(nm); return 1; } /** Do the local_data_remove command */ static void do_data_remove(RES* ssl, struct local_zones* zones, char* arg) { if(!perform_data_remove(ssl, zones, arg)) return; send_ok(ssl); } /** Do the local_datas_remove command */ static void do_datas_remove(struct daemon_remote* rc, RES* ssl, struct worker* worker) { char buf[MAX_CMD_STRLINE + MAX_STDIN_STRLINE] = "local_data_remove "; int num = 0; size_t cmd_len = strlen(buf); while(ssl_read_line(ssl, buf+cmd_len, MAX_STDIN_STRLINE)) { if(buf[0+cmd_len] == 0 || (buf[0+cmd_len] == 0x04 && buf[1+cmd_len] == 0)) break; /* zero byte line or end of transmission */ #ifdef THREADS_DISABLED /* distribute single item command */ if(rc) distribute_cmd(rc, ssl, buf); #else (void)rc; /* unused */ #endif if(!perform_data_remove(ssl, worker->daemon->local_zones, buf+cmd_len)) { if(!ssl_printf(ssl, "error for input line: %s\n", buf+cmd_len)) return; } else num++; } (void)ssl_printf(ssl, "removed %d datas\n", num); } /** Add a new zone to view */ static void do_view_zone_add(RES* ssl, struct worker* worker, char* arg) { char* arg2; struct view* v; if(!find_arg2(ssl, arg, &arg2)) return; v = views_find_view(worker->env.views, arg, 1 /* get write lock*/); if(!v) { ssl_printf(ssl,"no view with name: %s\n", arg); return; } if(!v->local_zones) { if(!(v->local_zones = local_zones_create())){ lock_rw_unlock(&v->lock); ssl_printf(ssl,"error out of memory\n"); return; } if(!v->isfirst) { /* Global local-zone is not used for this view, * therefore add defaults to this view-specic * local-zone. */ struct config_file lz_cfg; memset(&lz_cfg, 0, sizeof(lz_cfg)); local_zone_enter_defaults(v->local_zones, &lz_cfg); } } do_zone_add(ssl, v->local_zones, arg2); lock_rw_unlock(&v->lock); } /** Remove a zone from view */ static void do_view_zone_remove(RES* ssl, struct worker* worker, char* arg) { char* arg2; struct view* v; if(!find_arg2(ssl, arg, &arg2)) return; v = views_find_view(worker->env.views, arg, 1 /* get write lock*/); if(!v) { ssl_printf(ssl,"no view with name: %s\n", arg); return; } if(!v->local_zones) { lock_rw_unlock(&v->lock); send_ok(ssl); return; } do_zone_remove(ssl, v->local_zones, arg2); lock_rw_unlock(&v->lock); } /** Add new RR data to view */ static void do_view_data_add(RES* ssl, struct worker* worker, char* arg) { char* arg2; struct view* v; if(!find_arg2(ssl, arg, &arg2)) return; v = views_find_view(worker->env.views, arg, 1 /* get write lock*/); if(!v) { ssl_printf(ssl,"no view with name: %s\n", arg); return; } if(!v->local_zones) { if(!(v->local_zones = local_zones_create())){ lock_rw_unlock(&v->lock); ssl_printf(ssl,"error out of memory\n"); return; } } do_data_add(ssl, v->local_zones, arg2); lock_rw_unlock(&v->lock); } /** Add new RR data from stdin to view */ static void do_view_datas_add(struct daemon_remote* rc, RES* ssl, struct worker* worker, char* arg) { struct view* v; char buf[MAX_CMD_STRLINE + MAX_STDIN_STRLINE] = "view_local_data "; size_t cmd_len; int num = 0, line = 0; v = views_find_view(worker->env.views, arg, 1 /* get write lock*/); if(!v) { ssl_printf(ssl,"no view with name: %s\n", arg); return; } if(!v->local_zones) { if(!(v->local_zones = local_zones_create())){ lock_rw_unlock(&v->lock); ssl_printf(ssl,"error out of memory\n"); return; } } /* put the view name in the command buf */ (void)snprintf(buf+strlen(buf), sizeof(buf)-strlen(buf), "%s ", arg); cmd_len = strlen(buf); while(ssl_read_line(ssl, buf+cmd_len, MAX_STDIN_STRLINE)) { if(buf[0+cmd_len] == 0 || (buf[0+cmd_len] == 0x04 && buf[1+cmd_len] == 0)) break; /* zero byte line or end of transmission */ #ifdef THREADS_DISABLED /* distribute single item command */ if(rc) distribute_cmd(rc, ssl, buf); #else (void)rc; /* unused */ #endif line++; if(perform_data_add(ssl, v->local_zones, buf+cmd_len, line)) num++; } lock_rw_unlock(&v->lock); (void)ssl_printf(ssl, "added %d datas\n", num); } /** Remove RR data from view */ static void do_view_data_remove(RES* ssl, struct worker* worker, char* arg) { char* arg2; struct view* v; if(!find_arg2(ssl, arg, &arg2)) return; v = views_find_view(worker->env.views, arg, 1 /* get write lock*/); if(!v) { ssl_printf(ssl,"no view with name: %s\n", arg); return; } if(!v->local_zones) { lock_rw_unlock(&v->lock); send_ok(ssl); return; } do_data_remove(ssl, v->local_zones, arg2); lock_rw_unlock(&v->lock); } /** Remove RR data from stdin from view */ static void do_view_datas_remove(struct daemon_remote* rc, RES* ssl, struct worker* worker, char* arg) { struct view* v; char buf[MAX_CMD_STRLINE + MAX_STDIN_STRLINE] = "view_local_data_remove "; int num = 0; size_t cmd_len; v = views_find_view(worker->env.views, arg, 1 /* get write lock*/); if(!v) { ssl_printf(ssl,"no view with name: %s\n", arg); return; } if(!v->local_zones){ lock_rw_unlock(&v->lock); ssl_printf(ssl, "removed 0 datas\n"); return; } /* put the view name in the command buf */ (void)snprintf(buf+strlen(buf), sizeof(buf)-strlen(buf), "%s ", arg); cmd_len = strlen(buf); while(ssl_read_line(ssl, buf+cmd_len, MAX_STDIN_STRLINE)) { if(buf[0+cmd_len] == 0 || (buf[0+cmd_len] == 0x04 && buf[1+cmd_len] == 0)) break; /* zero byte line or end of transmission */ #ifdef THREADS_DISABLED /* distribute single item command */ if(rc) distribute_cmd(rc, ssl, buf); #else (void)rc; /* unused */ #endif if(!perform_data_remove(ssl, v->local_zones, buf+cmd_len)) { if(!ssl_printf(ssl, "error for input line: %s\n", buf+cmd_len)) return; } else num++; } lock_rw_unlock(&v->lock); (void)ssl_printf(ssl, "removed %d datas\n", num); } /** cache lookup of nameservers */ static void do_lookup(RES* ssl, struct worker* worker, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; (void)print_deleg_lookup(ssl, worker, nm, nmlen, nmlabs); free(nm); } /** flush something from rrset and msg caches */ static void do_cache_remove(struct worker* worker, uint8_t* nm, size_t nmlen, uint16_t t, uint16_t c, int remcachedb) { hashvalue_type h; struct query_info k; rrset_cache_remove(worker->env.rrset_cache, nm, nmlen, t, c, 0); if(t == LDNS_RR_TYPE_SOA) rrset_cache_remove(worker->env.rrset_cache, nm, nmlen, t, c, PACKED_RRSET_SOA_NEG); k.qname = nm; k.qname_len = nmlen; k.qtype = t; k.qclass = c; k.local_alias = NULL; h = query_info_hash(&k, 0); slabhash_remove(worker->env.msg_cache, h, &k); if(t == LDNS_RR_TYPE_AAAA) { /* for AAAA also flush dns64 bit_cd packet */ h = query_info_hash(&k, BIT_CD); slabhash_remove(worker->env.msg_cache, h, &k); } #ifdef USE_CACHEDB if(remcachedb && worker->env.cachedb_enabled) cachedb_msg_remove_qinfo(&worker->env, &k); #else (void)remcachedb; #endif } /** parse '+c' option, modifies string to return remainder. */ static int parse_remcachedb(RES* ssl, char** arg, int* pc) { *arg = skipwhite(*arg); if((*arg)[0] == '+' && (*arg)[1] == 'c') { char* arg2; *pc = 1; if(!find_arg2(ssl, *arg, &arg2)) return 0; *arg = arg2; return 1; } /* The option was not found, no problem */ return 1; } /** flush a type */ static void do_flush_type(RES* ssl, struct worker* worker, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; char* arg2; uint16_t t; int pc = 0; /* '+c' option */ if(!parse_remcachedb(ssl, &arg, &pc)) return; if(!find_arg2(ssl, arg, &arg2)) return; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; t = sldns_get_rr_type_by_name(arg2); if(t == 0 && strcmp(arg2, "TYPE0") != 0) { (void)ssl_printf(ssl, "error parsing RRset type: '%s'\n", arg2); free(nm); return; } do_cache_remove(worker, nm, nmlen, t, LDNS_RR_CLASS_IN, pc); free(nm); send_ok(ssl); } /** flush statistics */ static void do_flush_stats(RES* ssl, struct worker* worker) { worker_stats_clear(worker); send_ok(ssl); } /** * Local info for deletion functions */ struct del_info { /** worker */ struct worker* worker; /** name to delete */ uint8_t* name; /** length */ size_t len; /** labels */ int labs; /** time to invalidate to */ time_t expired; /** number of rrsets removed */ size_t num_rrsets; /** number of msgs removed */ size_t num_msgs; /** number of key entries removed */ size_t num_keys; /** length of addr */ socklen_t addrlen; /** socket address for host deletion */ struct sockaddr_storage addr; /** if cachedb information should be flushed too */ int remcachedb; }; /** callback to delete hosts in infra cache */ static void infra_del_host(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct infra_key* k = (struct infra_key*)e->key; if(sockaddr_cmp(&inf->addr, inf->addrlen, &k->addr, k->addrlen) == 0) { struct infra_data* d = (struct infra_data*)e->data; d->probedelay = 0; d->timeout_A = 0; d->timeout_AAAA = 0; d->timeout_other = 0; rtt_init(&d->rtt); if(d->ttl > inf->expired) { d->ttl = inf->expired; inf->num_keys++; } } } /** flush infra cache */ static void do_flush_infra(RES* ssl, struct worker* worker, char* arg) { struct sockaddr_storage addr; socklen_t len; struct del_info inf; if(strcmp(arg, "all") == 0) { slabhash_clear(worker->env.infra_cache->hosts); send_ok(ssl); return; } if(!ipstrtoaddr(arg, UNBOUND_DNS_PORT, &addr, &len)) { (void)ssl_printf(ssl, "error parsing ip addr: '%s'\n", arg); return; } /* delete all entries from cache */ /* what we do is to set them all expired */ inf.worker = worker; inf.name = 0; inf.len = 0; inf.labs = 0; inf.expired = *worker->env.now; inf.expired -= 3; /* handle 3 seconds skew between threads */ inf.num_rrsets = 0; inf.num_msgs = 0; inf.num_keys = 0; inf.addrlen = len; inf.remcachedb = 0; memmove(&inf.addr, &addr, len); slabhash_traverse(worker->env.infra_cache->hosts, 1, &infra_del_host, &inf); send_ok(ssl); } /** flush requestlist */ static void do_flush_requestlist(RES* ssl, struct worker* worker) { mesh_delete_all(worker->env.mesh); send_ok(ssl); } /** callback to delete rrsets in a zone */ static void zone_del_rrset(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct ub_packed_rrset_key* k = (struct ub_packed_rrset_key*)e->key; if(dname_subdomain_c(k->rk.dname, inf->name)) { struct packed_rrset_data* d = (struct packed_rrset_data*)e->data; if(d->ttl > inf->expired) { d->ttl = inf->expired; inf->num_rrsets++; } } } /** callback to delete messages in a zone */ static void zone_del_msg(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct msgreply_entry* k = (struct msgreply_entry*)e->key; if(dname_subdomain_c(k->key.qname, inf->name)) { struct reply_info* d = (struct reply_info*)e->data; if(d->ttl > inf->expired) { d->ttl = inf->expired; d->prefetch_ttl = inf->expired; d->serve_expired_ttl = inf->expired; inf->num_msgs++; } #ifdef USE_CACHEDB if(inf->remcachedb && inf->worker->env.cachedb_enabled) cachedb_msg_remove_qinfo(&inf->worker->env, &k->key); #endif } } /** callback to delete keys in zone */ static void zone_del_kcache(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct key_entry_key* k = (struct key_entry_key*)e->key; if(dname_subdomain_c(k->name, inf->name)) { struct key_entry_data* d = (struct key_entry_data*)e->data; if(d->ttl > inf->expired) { d->ttl = inf->expired; inf->num_keys++; } } } /** remove all rrsets and keys from zone from cache */ static void do_flush_zone(RES* ssl, struct worker* worker, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; struct del_info inf; int pc = 0; /* '+c' option */ if(!parse_remcachedb(ssl, &arg, &pc)) return; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; /* delete all RRs and key entries from zone */ /* what we do is to set them all expired */ inf.worker = worker; inf.name = nm; inf.len = nmlen; inf.labs = nmlabs; inf.expired = *worker->env.now; inf.expired -= 3; /* handle 3 seconds skew between threads */ inf.num_rrsets = 0; inf.num_msgs = 0; inf.num_keys = 0; inf.remcachedb = pc; slabhash_traverse(&worker->env.rrset_cache->table, 1, &zone_del_rrset, &inf); slabhash_traverse(worker->env.msg_cache, 1, &zone_del_msg, &inf); /* and validator cache */ if(worker->env.key_cache) { slabhash_traverse(worker->env.key_cache->slab, 1, &zone_del_kcache, &inf); } free(nm); (void)ssl_printf(ssl, "ok removed %lu rrsets, %lu messages " "and %lu key entries\n", (unsigned long)inf.num_rrsets, (unsigned long)inf.num_msgs, (unsigned long)inf.num_keys); } /** callback to delete bogus rrsets */ static void bogus_del_rrset(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct packed_rrset_data* d = (struct packed_rrset_data*)e->data; if(d->security == sec_status_bogus && d->ttl > inf->expired) { d->ttl = inf->expired; inf->num_rrsets++; } } /** callback to delete bogus messages */ static void bogus_del_msg(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct reply_info* d = (struct reply_info*)e->data; if(d->security == sec_status_bogus && d->ttl > inf->expired) { d->ttl = inf->expired; d->prefetch_ttl = inf->expired; d->serve_expired_ttl = inf->expired; inf->num_msgs++; #ifdef USE_CACHEDB if(inf->remcachedb && inf->worker->env.cachedb_enabled) cachedb_msg_remove_qinfo(&inf->worker->env, &((struct msgreply_entry*)e->key)->key); #endif } } /** callback to delete bogus keys */ static void bogus_del_kcache(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct key_entry_data* d = (struct key_entry_data*)e->data; if(d->isbad && d->ttl > inf->expired) { d->ttl = inf->expired; inf->num_keys++; } } /** remove all bogus rrsets, msgs and keys from cache */ static void do_flush_bogus(RES* ssl, struct worker* worker, char* arg) { struct del_info inf; int pc = 0; /* '+c' option */ if(!parse_remcachedb(ssl, &arg, &pc)) return; /* what we do is to set them all expired */ inf.worker = worker; inf.expired = *worker->env.now; inf.expired -= 3; /* handle 3 seconds skew between threads */ inf.num_rrsets = 0; inf.num_msgs = 0; inf.num_keys = 0; inf.remcachedb = pc; slabhash_traverse(&worker->env.rrset_cache->table, 1, &bogus_del_rrset, &inf); slabhash_traverse(worker->env.msg_cache, 1, &bogus_del_msg, &inf); /* and validator cache */ if(worker->env.key_cache) { slabhash_traverse(worker->env.key_cache->slab, 1, &bogus_del_kcache, &inf); } (void)ssl_printf(ssl, "ok removed %lu rrsets, %lu messages " "and %lu key entries\n", (unsigned long)inf.num_rrsets, (unsigned long)inf.num_msgs, (unsigned long)inf.num_keys); } /** callback to delete negative and servfail rrsets */ static void negative_del_rrset(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct ub_packed_rrset_key* k = (struct ub_packed_rrset_key*)e->key; struct packed_rrset_data* d = (struct packed_rrset_data*)e->data; /* delete the parentside negative cache rrsets, * these are nameserver rrsets that failed lookup, rdata empty */ if((k->rk.flags & PACKED_RRSET_PARENT_SIDE) && d->count == 1 && d->rrsig_count == 0 && d->rr_len[0] == 0 && d->ttl > inf->expired) { d->ttl = inf->expired; inf->num_rrsets++; } } /** callback to delete negative and servfail messages */ static void negative_del_msg(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct reply_info* d = (struct reply_info*)e->data; /* rcode not NOERROR: NXDOMAIN, SERVFAIL, ..: an nxdomain or error * or NOERROR rcode with ANCOUNT==0: a NODATA answer */ if((FLAGS_GET_RCODE(d->flags) != 0 || d->an_numrrsets == 0) && d->ttl > inf->expired) { d->ttl = inf->expired; d->prefetch_ttl = inf->expired; d->serve_expired_ttl = inf->expired; inf->num_msgs++; #ifdef USE_CACHEDB if(inf->remcachedb && inf->worker->env.cachedb_enabled) cachedb_msg_remove_qinfo(&inf->worker->env, &((struct msgreply_entry*)e->key)->key); #endif } } /** callback to delete negative key entries */ static void negative_del_kcache(struct lruhash_entry* e, void* arg) { /* entry is locked */ struct del_info* inf = (struct del_info*)arg; struct key_entry_data* d = (struct key_entry_data*)e->data; /* could be bad because of lookup failure on the DS, DNSKEY, which * was nxdomain or servfail, and thus a result of negative lookups */ if(d->isbad && d->ttl > inf->expired) { d->ttl = inf->expired; inf->num_keys++; } } /** remove all negative(NODATA,NXDOMAIN), and servfail messages from cache */ static void do_flush_negative(RES* ssl, struct worker* worker, char* arg) { struct del_info inf; int pc = 0; /* '+c' option */ if(!parse_remcachedb(ssl, &arg, &pc)) return; /* what we do is to set them all expired */ inf.worker = worker; inf.expired = *worker->env.now; inf.expired -= 3; /* handle 3 seconds skew between threads */ inf.num_rrsets = 0; inf.num_msgs = 0; inf.num_keys = 0; inf.remcachedb = pc; slabhash_traverse(&worker->env.rrset_cache->table, 1, &negative_del_rrset, &inf); slabhash_traverse(worker->env.msg_cache, 1, &negative_del_msg, &inf); /* and validator cache */ if(worker->env.key_cache) { slabhash_traverse(worker->env.key_cache->slab, 1, &negative_del_kcache, &inf); } (void)ssl_printf(ssl, "ok removed %lu rrsets, %lu messages " "and %lu key entries\n", (unsigned long)inf.num_rrsets, (unsigned long)inf.num_msgs, (unsigned long)inf.num_keys); } /** remove name rrset from cache */ static void do_flush_name(RES* ssl, struct worker* w, char* arg) { uint8_t* nm; int nmlabs; size_t nmlen; int pc = 0; /* '+c' option */ if(!parse_remcachedb(ssl, &arg, &pc)) return; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_A, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_AAAA, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_NS, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_SOA, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_CNAME, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_DNAME, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_MX, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_PTR, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_SRV, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_NAPTR, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_SVCB, LDNS_RR_CLASS_IN, pc); do_cache_remove(w, nm, nmlen, LDNS_RR_TYPE_HTTPS, LDNS_RR_CLASS_IN, pc); free(nm); send_ok(ssl); } /** printout a delegation point info */ static int ssl_print_name_dp(RES* ssl, const char* str, uint8_t* nm, uint16_t dclass, struct delegpt* dp) { char buf[LDNS_MAX_DOMAINLEN]; struct delegpt_ns* ns; struct delegpt_addr* a; int f = 0; if(str) { /* print header for forward, stub */ char* c = sldns_wire2str_class(dclass); dname_str(nm, buf); if(!ssl_printf(ssl, "%s %s %s ", buf, (c?c:"CLASS??"), str)) { free(c); return 0; } free(c); } for(ns = dp->nslist; ns; ns = ns->next) { dname_str(ns->name, buf); if(!ssl_printf(ssl, "%s%s", (f?" ":""), buf)) return 0; f = 1; } for(a = dp->target_list; a; a = a->next_target) { addr_to_str(&a->addr, a->addrlen, buf, sizeof(buf)); if(!ssl_printf(ssl, "%s%s", (f?" ":""), buf)) return 0; f = 1; } return ssl_printf(ssl, "\n"); } /** print root forwards */ static int print_root_fwds(RES* ssl, struct iter_forwards* fwds, uint8_t* root) { struct delegpt* dp; int nolock = 0; dp = forwards_lookup(fwds, root, LDNS_RR_CLASS_IN, nolock); if(!dp) { return ssl_printf(ssl, "off (using root hints)\n"); } /* if dp is returned it must be the root */ log_assert(query_dname_compare(dp->name, root)==0); if(!ssl_print_name_dp(ssl, NULL, root, LDNS_RR_CLASS_IN, dp)) { lock_rw_unlock(&fwds->lock); return 0; } lock_rw_unlock(&fwds->lock); return 1; } /** parse args into delegpt */ static struct delegpt* parse_delegpt(RES* ssl, char* args, uint8_t* nm) { /* parse args and add in */ char* p = args; char* todo; struct delegpt* dp = delegpt_create_mlc(nm); struct sockaddr_storage addr; socklen_t addrlen; char* auth_name; if(!dp) { (void)ssl_printf(ssl, "error out of memory\n"); return NULL; } while(p) { todo = p; p = strchr(p, ' '); /* find next spot, if any */ if(p) { *p++ = 0; /* end this spot */ p = skipwhite(p); /* position at next spot */ } /* parse address */ if(!authextstrtoaddr(todo, &addr, &addrlen, &auth_name)) { uint8_t* dname= NULL; int port; dname = authextstrtodname(todo, &port, &auth_name); if(!dname) { (void)ssl_printf(ssl, "error cannot parse" " '%s'\n", todo); delegpt_free_mlc(dp); return NULL; } #if ! defined(HAVE_SSL_SET1_HOST) && ! defined(HAVE_X509_VERIFY_PARAM_SET1_HOST) if(auth_name) log_err("no name verification functionality in " "ssl library, ignored name for %s", todo); #endif if(!delegpt_add_ns_mlc(dp, dname, 0, auth_name, port)) { (void)ssl_printf(ssl, "error out of memory\n"); free(dname); delegpt_free_mlc(dp); return NULL; } } else { #if ! defined(HAVE_SSL_SET1_HOST) && ! defined(HAVE_X509_VERIFY_PARAM_SET1_HOST) if(auth_name) log_err("no name verification functionality in " "ssl library, ignored name for %s", todo); #endif /* add address */ if(!delegpt_add_addr_mlc(dp, &addr, addrlen, 0, 0, auth_name, -1)) { (void)ssl_printf(ssl, "error out of memory\n"); delegpt_free_mlc(dp); return NULL; } } } dp->has_parent_side_NS = 1; return dp; } /** do the forward command */ static void do_forward(RES* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; uint8_t* root = (uint8_t*)"\000"; int nolock = 0; if(!fwd) { (void)ssl_printf(ssl, "error: structure not allocated\n"); return; } if(args == NULL || args[0] == 0) { (void)print_root_fwds(ssl, fwd, root); return; } /* set root forwards for this thread. since we are in remote control * the actual mesh is not running, so we can freely edit it. */ /* delete all the existing queries first */ mesh_delete_all(worker->env.mesh); if(strcmp(args, "off") == 0) { forwards_delete_zone(fwd, LDNS_RR_CLASS_IN, root, nolock); } else { struct delegpt* dp; if(!(dp = parse_delegpt(ssl, args, root))) return; if(!forwards_add_zone(fwd, LDNS_RR_CLASS_IN, dp, nolock)) { (void)ssl_printf(ssl, "error out of memory\n"); return; } } send_ok(ssl); } static int parse_fs_args(RES* ssl, char* args, uint8_t** nm, struct delegpt** dp, int* insecure, int* prime, int* tls) { char* zonename; char* rest; size_t nmlen; int nmlabs; /* parse all -x args */ while(args[0] == '+') { if(!find_arg2(ssl, args, &rest)) return 0; while(*(++args) != 0) { if(*args == 'i' && insecure) *insecure = 1; else if(*args == 'p' && prime) *prime = 1; else if(*args == 't' && tls) *tls = 1; else { (void)ssl_printf(ssl, "error: unknown option %s\n", args); return 0; } } args = rest; } /* parse name */ if(dp) { if(!find_arg2(ssl, args, &rest)) return 0; zonename = args; args = rest; } else zonename = args; if(!parse_arg_name(ssl, zonename, nm, &nmlen, &nmlabs)) return 0; /* parse dp */ if(dp) { if(!(*dp = parse_delegpt(ssl, args, *nm))) { free(*nm); return 0; } } return 1; } /** do the forward_add command */ static void do_forward_add(RES* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; int insecure = 0, tls = 0; uint8_t* nm = NULL; struct delegpt* dp = NULL; int nolock = 1; if(!parse_fs_args(ssl, args, &nm, &dp, &insecure, NULL, &tls)) return; if(tls) dp->ssl_upstream = 1; /* prelock forwarders for atomic operation with anchors */ lock_rw_wrlock(&fwd->lock); if(insecure && worker->env.anchors) { if(!anchors_add_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm)) { lock_rw_unlock(&fwd->lock); (void)ssl_printf(ssl, "error out of memory\n"); delegpt_free_mlc(dp); free(nm); return; } } if(!forwards_add_zone(fwd, LDNS_RR_CLASS_IN, dp, nolock)) { lock_rw_unlock(&fwd->lock); (void)ssl_printf(ssl, "error out of memory\n"); free(nm); return; } lock_rw_unlock(&fwd->lock); free(nm); send_ok(ssl); } /** do the forward_remove command */ static void do_forward_remove(RES* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; int insecure = 0; uint8_t* nm = NULL; int nolock = 1; if(!parse_fs_args(ssl, args, &nm, NULL, &insecure, NULL, NULL)) return; /* prelock forwarders for atomic operation with anchors */ lock_rw_wrlock(&fwd->lock); if(insecure && worker->env.anchors) anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm); forwards_delete_zone(fwd, LDNS_RR_CLASS_IN, nm, nolock); lock_rw_unlock(&fwd->lock); free(nm); send_ok(ssl); } /** do the stub_add command */ static void do_stub_add(RES* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; int insecure = 0, prime = 0, tls = 0; uint8_t* nm = NULL; struct delegpt* dp = NULL; int nolock = 1; if(!parse_fs_args(ssl, args, &nm, &dp, &insecure, &prime, &tls)) return; if(tls) dp->ssl_upstream = 1; /* prelock forwarders and hints for atomic operation with anchors */ lock_rw_wrlock(&fwd->lock); lock_rw_wrlock(&worker->env.hints->lock); if(insecure && worker->env.anchors) { if(!anchors_add_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm)) { lock_rw_unlock(&fwd->lock); lock_rw_unlock(&worker->env.hints->lock); (void)ssl_printf(ssl, "error out of memory\n"); delegpt_free_mlc(dp); free(nm); return; } } if(!forwards_add_stub_hole(fwd, LDNS_RR_CLASS_IN, nm, nolock)) { if(insecure && worker->env.anchors) anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm); lock_rw_unlock(&fwd->lock); lock_rw_unlock(&worker->env.hints->lock); (void)ssl_printf(ssl, "error out of memory\n"); delegpt_free_mlc(dp); free(nm); return; } if(!hints_add_stub(worker->env.hints, LDNS_RR_CLASS_IN, dp, !prime, nolock)) { (void)ssl_printf(ssl, "error out of memory\n"); forwards_delete_stub_hole(fwd, LDNS_RR_CLASS_IN, nm, nolock); if(insecure && worker->env.anchors) anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm); lock_rw_unlock(&fwd->lock); lock_rw_unlock(&worker->env.hints->lock); free(nm); return; } lock_rw_unlock(&fwd->lock); lock_rw_unlock(&worker->env.hints->lock); free(nm); send_ok(ssl); } /** do the stub_remove command */ static void do_stub_remove(RES* ssl, struct worker* worker, char* args) { struct iter_forwards* fwd = worker->env.fwds; int insecure = 0; uint8_t* nm = NULL; int nolock = 1; if(!parse_fs_args(ssl, args, &nm, NULL, &insecure, NULL, NULL)) return; /* prelock forwarders and hints for atomic operation with anchors */ lock_rw_wrlock(&fwd->lock); lock_rw_wrlock(&worker->env.hints->lock); if(insecure && worker->env.anchors) anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm); forwards_delete_stub_hole(fwd, LDNS_RR_CLASS_IN, nm, nolock); hints_delete_stub(worker->env.hints, LDNS_RR_CLASS_IN, nm, nolock); lock_rw_unlock(&fwd->lock); lock_rw_unlock(&worker->env.hints->lock); free(nm); send_ok(ssl); } /** do the insecure_add command */ static void do_insecure_add(RES* ssl, struct worker* worker, char* arg) { size_t nmlen; int nmlabs; uint8_t* nm = NULL; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; if(worker->env.anchors) { if(!anchors_add_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm)) { (void)ssl_printf(ssl, "error out of memory\n"); free(nm); return; } } free(nm); send_ok(ssl); } /** do the insecure_remove command */ static void do_insecure_remove(RES* ssl, struct worker* worker, char* arg) { size_t nmlen; int nmlabs; uint8_t* nm = NULL; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; if(worker->env.anchors) anchors_delete_insecure(worker->env.anchors, LDNS_RR_CLASS_IN, nm); free(nm); send_ok(ssl); } static void do_insecure_list(RES* ssl, struct worker* worker) { char buf[LDNS_MAX_DOMAINLEN]; struct trust_anchor* a; if(worker->env.anchors) { RBTREE_FOR(a, struct trust_anchor*, worker->env.anchors->tree) { if(a->numDS == 0 && a->numDNSKEY == 0) { dname_str(a->name, buf); ssl_printf(ssl, "%s\n", buf); } } } } /** do the status command */ static void do_status(RES* ssl, struct worker* worker) { int i; time_t uptime; if(!ssl_printf(ssl, "version: %s\n", PACKAGE_VERSION)) return; if(!ssl_printf(ssl, "verbosity: %d\n", verbosity)) return; if(!ssl_printf(ssl, "threads: %d\n", worker->daemon->num)) return; if(!ssl_printf(ssl, "modules: %d [", worker->daemon->mods.num)) return; for(i=0; idaemon->mods.num; i++) { if(!ssl_printf(ssl, " %s", worker->daemon->mods.mod[i]->name)) return; } if(!ssl_printf(ssl, " ]\n")) return; uptime = (time_t)time(NULL) - (time_t)worker->daemon->time_boot.tv_sec; if(!ssl_printf(ssl, "uptime: " ARG_LL "d seconds\n", (long long)uptime)) return; if(!ssl_printf(ssl, "options:%s%s%s%s\n" , (worker->daemon->reuseport?" reuseport":""), (worker->daemon->rc->accept_list?" control":""), (worker->daemon->rc->accept_list && worker->daemon->rc->use_cert?"(ssl)":""), (worker->daemon->rc->accept_list && worker->daemon->cfg->control_ifs.first && worker->daemon->cfg->control_ifs.first->str && worker->daemon->cfg->control_ifs.first->str[0] == '/'?"(namedpipe)":"") )) return; if(!ssl_printf(ssl, "unbound (pid %d) is running...\n", (int)getpid())) return; } /** get age for the mesh state */ static void get_mesh_age(struct mesh_state* m, char* buf, size_t len, struct module_env* env) { if(m->reply_list) { struct timeval d; struct mesh_reply* r = m->reply_list; /* last reply is the oldest */ while(r && r->next) r = r->next; timeval_subtract(&d, env->now_tv, &r->start_time); snprintf(buf, len, ARG_LL "d.%6.6d", (long long)d.tv_sec, (int)d.tv_usec); } else { snprintf(buf, len, "-"); } } /** get status of a mesh state */ static void get_mesh_status(struct mesh_area* mesh, struct mesh_state* m, char* buf, size_t len) { enum module_ext_state s = m->s.ext_state[m->s.curmod]; const char *modname = mesh->mods.mod[m->s.curmod]->name; size_t l; if(strcmp(modname, "iterator") == 0 && s == module_wait_reply && m->s.minfo[m->s.curmod]) { /* break into iterator to find out who its waiting for */ struct iter_qstate* qstate = (struct iter_qstate*) m->s.minfo[m->s.curmod]; struct outbound_list* ol = &qstate->outlist; struct outbound_entry* e; snprintf(buf, len, "%s wait for", modname); l = strlen(buf); buf += l; len -= l; if(ol->first == NULL) snprintf(buf, len, " (empty_list)"); for(e = ol->first; e; e = e->next) { snprintf(buf, len, " "); l = strlen(buf); buf += l; len -= l; addr_to_str(&e->qsent->addr, e->qsent->addrlen, buf, len); l = strlen(buf); buf += l; len -= l; } } else if(s == module_wait_subquery) { /* look in subs from mesh state to see what */ char nm[LDNS_MAX_DOMAINLEN]; struct mesh_state_ref* sub; snprintf(buf, len, "%s wants", modname); l = strlen(buf); buf += l; len -= l; if(m->sub_set.count == 0) snprintf(buf, len, " (empty_list)"); RBTREE_FOR(sub, struct mesh_state_ref*, &m->sub_set) { char* t = sldns_wire2str_type(sub->s->s.qinfo.qtype); char* c = sldns_wire2str_class(sub->s->s.qinfo.qclass); dname_str(sub->s->s.qinfo.qname, nm); snprintf(buf, len, " %s %s %s", (t?t:"TYPE??"), (c?c:"CLASS??"), nm); l = strlen(buf); buf += l; len -= l; free(t); free(c); } } else { snprintf(buf, len, "%s is %s", modname, strextstate(s)); } } /** do the dump_requestlist command */ static void do_dump_requestlist(RES* ssl, struct worker* worker) { struct mesh_area* mesh; struct mesh_state* m; int num = 0; char buf[LDNS_MAX_DOMAINLEN]; char timebuf[32]; char statbuf[10240]; if(!ssl_printf(ssl, "thread #%d\n", worker->thread_num)) return; if(!ssl_printf(ssl, "# type cl name seconds module status\n")) return; /* show worker mesh contents */ mesh = worker->env.mesh; if(!mesh) return; RBTREE_FOR(m, struct mesh_state*, &mesh->all) { char* t = sldns_wire2str_type(m->s.qinfo.qtype); char* c = sldns_wire2str_class(m->s.qinfo.qclass); dname_str(m->s.qinfo.qname, buf); get_mesh_age(m, timebuf, sizeof(timebuf), &worker->env); get_mesh_status(mesh, m, statbuf, sizeof(statbuf)); if(!ssl_printf(ssl, "%3d %4s %2s %s %s %s\n", num, (t?t:"TYPE??"), (c?c:"CLASS??"), buf, timebuf, statbuf)) { free(t); free(c); return; } num++; free(t); free(c); } } /** structure for argument data for dump infra host */ struct infra_arg { /** the infra cache */ struct infra_cache* infra; /** the SSL connection */ RES* ssl; /** the time now */ time_t now; /** ssl failure? stop writing and skip the rest. If the tcp * connection is broken, and writes fail, we then stop writing. */ int ssl_failed; }; /** callback for every host element in the infra cache */ static void dump_infra_host(struct lruhash_entry* e, void* arg) { struct infra_arg* a = (struct infra_arg*)arg; struct infra_key* k = (struct infra_key*)e->key; struct infra_data* d = (struct infra_data*)e->data; char ip_str[1024]; char name[LDNS_MAX_DOMAINLEN]; int port; if(a->ssl_failed) return; addr_to_str(&k->addr, k->addrlen, ip_str, sizeof(ip_str)); dname_str(k->zonename, name); port = (int)ntohs(((struct sockaddr_in*)&k->addr)->sin_port); if(port != UNBOUND_DNS_PORT) { snprintf(ip_str+strlen(ip_str), sizeof(ip_str)-strlen(ip_str), "@%d", port); } /* skip expired stuff (only backed off) */ if(d->ttl < a->now) { if(d->rtt.rto >= USEFUL_SERVER_TOP_TIMEOUT) { if(!ssl_printf(a->ssl, "%s %s expired rto %d\n", ip_str, name, d->rtt.rto)) { a->ssl_failed = 1; return; } } return; } if(!ssl_printf(a->ssl, "%s %s ttl %lu ping %d var %d rtt %d rto %d " "tA %d tAAAA %d tother %d " "ednsknown %d edns %d delay %d lame dnssec %d rec %d A %d " "other %d\n", ip_str, name, (unsigned long)(d->ttl - a->now), d->rtt.srtt, d->rtt.rttvar, rtt_notimeout(&d->rtt), d->rtt.rto, d->timeout_A, d->timeout_AAAA, d->timeout_other, (int)d->edns_lame_known, (int)d->edns_version, (int)(a->nowprobedelay?(d->probedelay - a->now):0), (int)d->isdnsseclame, (int)d->rec_lame, (int)d->lame_type_A, (int)d->lame_other)) { a->ssl_failed = 1; return; } } /** do the dump_infra command */ static void do_dump_infra(RES* ssl, struct worker* worker) { struct infra_arg arg; arg.infra = worker->env.infra_cache; arg.ssl = ssl; arg.now = *worker->env.now; arg.ssl_failed = 0; slabhash_traverse(arg.infra->hosts, 0, &dump_infra_host, (void*)&arg); } /** do the log_reopen command */ static void do_log_reopen(RES* ssl, struct worker* worker) { struct config_file* cfg = worker->env.cfg; send_ok(ssl); log_init(cfg->logfile, cfg->use_syslog, cfg->chrootdir); } /** do the auth_zone_reload command */ static void do_auth_zone_reload(RES* ssl, struct worker* worker, char* arg) { size_t nmlen; int nmlabs; uint8_t* nm = NULL; struct auth_zones* az = worker->env.auth_zones; struct auth_zone* z = NULL; struct auth_xfer* xfr = NULL; char* reason = NULL; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; if(az) { lock_rw_rdlock(&az->lock); z = auth_zone_find(az, nm, nmlen, LDNS_RR_CLASS_IN); if(z) { lock_rw_wrlock(&z->lock); } xfr = auth_xfer_find(az, nm, nmlen, LDNS_RR_CLASS_IN); if(xfr) { lock_basic_lock(&xfr->lock); } lock_rw_unlock(&az->lock); } free(nm); if(!z) { if(xfr) { lock_basic_unlock(&xfr->lock); } (void)ssl_printf(ssl, "error no auth-zone %s\n", arg); return; } if(!auth_zone_read_zonefile(z, worker->env.cfg)) { lock_rw_unlock(&z->lock); if(xfr) { lock_basic_unlock(&xfr->lock); } (void)ssl_printf(ssl, "error failed to read %s\n", arg); return; } z->zone_expired = 0; if(xfr) { xfr->zone_expired = 0; if(!xfr_find_soa(z, xfr)) { if(z->data.count == 0) { lock_rw_unlock(&z->lock); lock_basic_unlock(&xfr->lock); (void)ssl_printf(ssl, "zone %s has no contents\n", arg); return; } lock_rw_unlock(&z->lock); lock_basic_unlock(&xfr->lock); (void)ssl_printf(ssl, "error: no SOA in zone after read %s\n", arg); return; } if(xfr->have_zone) xfr->lease_time = *worker->env.now; lock_basic_unlock(&xfr->lock); } auth_zone_verify_zonemd(z, &worker->env, &worker->env.mesh->mods, &reason, 0, 0); if(reason && z->zone_expired) { lock_rw_unlock(&z->lock); (void)ssl_printf(ssl, "error zonemd for %s failed: %s\n", arg, reason); free(reason); return; } else if(reason && strcmp(reason, "ZONEMD verification successful") ==0) { (void)ssl_printf(ssl, "%s: %s\n", arg, reason); } lock_rw_unlock(&z->lock); free(reason); send_ok(ssl); } /** do the auth_zone_transfer command */ static void do_auth_zone_transfer(RES* ssl, struct worker* worker, char* arg) { size_t nmlen; int nmlabs; uint8_t* nm = NULL; struct auth_zones* az = worker->env.auth_zones; if(!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; if(!az || !auth_zones_startprobesequence(az, &worker->env, nm, nmlen, LDNS_RR_CLASS_IN)) { (void)ssl_printf(ssl, "error zone xfr task not found %s\n", arg); free(nm); return; } free(nm); send_ok(ssl); } /** do the set_option command */ static void do_set_option(RES* ssl, struct worker* worker, char* arg) { char* arg2; if(!find_arg2(ssl, arg, &arg2)) return; if(!config_set_option(worker->env.cfg, arg, arg2)) { (void)ssl_printf(ssl, "error setting option\n"); return; } /* effectuate some arguments */ if(strcmp(arg, "val-override-date:") == 0) { int m = modstack_find(&worker->env.mesh->mods, "validator"); struct val_env* val_env = NULL; if(m != -1) val_env = (struct val_env*)worker->env.modinfo[m]; if(val_env) val_env->date_override = worker->env.cfg->val_date_override; } send_ok(ssl); } /* routine to printout option values over SSL */ void remote_get_opt_ssl(char* line, void* arg) { RES* ssl = (RES*)arg; (void)ssl_printf(ssl, "%s\n", line); } /** do the get_option command */ static void do_get_option(RES* ssl, struct worker* worker, char* arg) { int r; r = config_get_option(worker->env.cfg, arg, remote_get_opt_ssl, ssl); if(!r) { (void)ssl_printf(ssl, "error unknown option\n"); return; } } /** do the list_forwards command */ static void do_list_forwards(RES* ssl, struct worker* worker) { /* since its a per-worker structure no locks needed */ struct iter_forwards* fwds = worker->env.fwds; struct iter_forward_zone* z; struct trust_anchor* a; int insecure; lock_rw_rdlock(&fwds->lock); RBTREE_FOR(z, struct iter_forward_zone*, fwds->tree) { if(!z->dp) continue; /* skip empty marker for stub */ /* see if it is insecure */ insecure = 0; if(worker->env.anchors && (a=anchor_find(worker->env.anchors, z->name, z->namelabs, z->namelen, z->dclass))) { if(!a->keylist && !a->numDS && !a->numDNSKEY) insecure = 1; lock_basic_unlock(&a->lock); } if(!ssl_print_name_dp(ssl, (insecure?"forward +i":"forward"), z->name, z->dclass, z->dp)) { lock_rw_unlock(&fwds->lock); return; } } lock_rw_unlock(&fwds->lock); } /** do the list_stubs command */ static void do_list_stubs(RES* ssl, struct worker* worker) { struct iter_hints_stub* z; struct trust_anchor* a; int insecure; char str[32]; lock_rw_rdlock(&worker->env.hints->lock); RBTREE_FOR(z, struct iter_hints_stub*, &worker->env.hints->tree) { /* see if it is insecure */ insecure = 0; if(worker->env.anchors && (a=anchor_find(worker->env.anchors, z->node.name, z->node.labs, z->node.len, z->node.dclass))) { if(!a->keylist && !a->numDS && !a->numDNSKEY) insecure = 1; lock_basic_unlock(&a->lock); } snprintf(str, sizeof(str), "stub %sprime%s", (z->noprime?"no":""), (insecure?" +i":"")); if(!ssl_print_name_dp(ssl, str, z->node.name, z->node.dclass, z->dp)) { lock_rw_unlock(&worker->env.hints->lock); return; } } lock_rw_unlock(&worker->env.hints->lock); } /** do the list_auth_zones command */ static void do_list_auth_zones(RES* ssl, struct auth_zones* az) { struct auth_zone* z; char buf[LDNS_MAX_DOMAINLEN], buf2[256]; lock_rw_rdlock(&az->lock); RBTREE_FOR(z, struct auth_zone*, &az->ztree) { lock_rw_rdlock(&z->lock); dname_str(z->name, buf); if(z->zone_expired) snprintf(buf2, sizeof(buf2), "expired"); else { uint32_t serial = 0; if(auth_zone_get_serial(z, &serial)) snprintf(buf2, sizeof(buf2), "serial %u", (unsigned)serial); else snprintf(buf2, sizeof(buf2), "no serial"); } if(!ssl_printf(ssl, "%s\t%s\n", buf, buf2)) { /* failure to print */ lock_rw_unlock(&z->lock); lock_rw_unlock(&az->lock); return; } lock_rw_unlock(&z->lock); } lock_rw_unlock(&az->lock); } /** do the list_local_zones command */ static void do_list_local_zones(RES* ssl, struct local_zones* zones) { struct local_zone* z; char buf[LDNS_MAX_DOMAINLEN]; lock_rw_rdlock(&zones->lock); RBTREE_FOR(z, struct local_zone*, &zones->ztree) { lock_rw_rdlock(&z->lock); dname_str(z->name, buf); if(!ssl_printf(ssl, "%s %s\n", buf, local_zone_type2str(z->type))) { /* failure to print */ lock_rw_unlock(&z->lock); lock_rw_unlock(&zones->lock); return; } lock_rw_unlock(&z->lock); } lock_rw_unlock(&zones->lock); } /** do the list_local_data command */ static void do_list_local_data(RES* ssl, struct worker* worker, struct local_zones* zones) { struct local_zone* z; struct local_data* d; struct local_rrset* p; char* s = (char*)sldns_buffer_begin(worker->env.scratch_buffer); size_t slen = sldns_buffer_capacity(worker->env.scratch_buffer); lock_rw_rdlock(&zones->lock); RBTREE_FOR(z, struct local_zone*, &zones->ztree) { lock_rw_rdlock(&z->lock); RBTREE_FOR(d, struct local_data*, &z->data) { for(p = d->rrsets; p; p = p->next) { struct packed_rrset_data* d = (struct packed_rrset_data*)p->rrset->entry.data; size_t i; for(i=0; icount + d->rrsig_count; i++) { if(!packed_rr_to_string(p->rrset, i, 0, s, slen)) { if(!ssl_printf(ssl, "BADRR\n")) { lock_rw_unlock(&z->lock); lock_rw_unlock(&zones->lock); return; } } if(!ssl_printf(ssl, "%s\n", s)) { lock_rw_unlock(&z->lock); lock_rw_unlock(&zones->lock); return; } } } } lock_rw_unlock(&z->lock); } lock_rw_unlock(&zones->lock); } /** do the view_list_local_zones command */ static void do_view_list_local_zones(RES* ssl, struct worker* worker, char* arg) { struct view* v = views_find_view(worker->env.views, arg, 0 /* get read lock*/); if(!v) { ssl_printf(ssl,"no view with name: %s\n", arg); return; } if(v->local_zones) { do_list_local_zones(ssl, v->local_zones); } lock_rw_unlock(&v->lock); } /** do the view_list_local_data command */ static void do_view_list_local_data(RES* ssl, struct worker* worker, char* arg) { struct view* v = views_find_view(worker->env.views, arg, 0 /* get read lock*/); if(!v) { ssl_printf(ssl,"no view with name: %s\n", arg); return; } if(v->local_zones) { do_list_local_data(ssl, worker, v->local_zones); } lock_rw_unlock(&v->lock); } /** struct for user arg ratelimit list */ struct ratelimit_list_arg { /** the infra cache */ struct infra_cache* infra; /** the SSL to print to */ RES* ssl; /** all or only ratelimited */ int all; /** current time */ time_t now; /** if backoff is enabled */ int backoff; }; #define ip_ratelimit_list_arg ratelimit_list_arg /** list items in the ratelimit table */ static void rate_list(struct lruhash_entry* e, void* arg) { struct ratelimit_list_arg* a = (struct ratelimit_list_arg*)arg; struct rate_key* k = (struct rate_key*)e->key; struct rate_data* d = (struct rate_data*)e->data; char buf[LDNS_MAX_DOMAINLEN]; int lim = infra_find_ratelimit(a->infra, k->name, k->namelen); int max = infra_rate_max(d, a->now, a->backoff); if(a->all == 0) { if(max < lim) return; } dname_str(k->name, buf); ssl_printf(a->ssl, "%s %d limit %d\n", buf, max, lim); } /** list items in the ip_ratelimit table */ static void ip_rate_list(struct lruhash_entry* e, void* arg) { char ip[128]; struct ip_ratelimit_list_arg* a = (struct ip_ratelimit_list_arg*)arg; struct ip_rate_key* k = (struct ip_rate_key*)e->key; struct ip_rate_data* d = (struct ip_rate_data*)e->data; int lim = infra_ip_ratelimit; int max = infra_rate_max(d, a->now, a->backoff); if(a->all == 0) { if(max < lim) return; } addr_to_str(&k->addr, k->addrlen, ip, sizeof(ip)); ssl_printf(a->ssl, "%s %d limit %d\n", ip, max, lim); } /** do the ratelimit_list command */ static void do_ratelimit_list(RES* ssl, struct worker* worker, char* arg) { struct ratelimit_list_arg a; a.all = 0; a.infra = worker->env.infra_cache; a.now = *worker->env.now; a.ssl = ssl; a.backoff = worker->env.cfg->ratelimit_backoff; arg = skipwhite(arg); if(strcmp(arg, "+a") == 0) a.all = 1; if(a.infra->domain_rates==NULL || (a.all == 0 && infra_dp_ratelimit == 0)) return; slabhash_traverse(a.infra->domain_rates, 0, rate_list, &a); } /** do the ip_ratelimit_list command */ static void do_ip_ratelimit_list(RES* ssl, struct worker* worker, char* arg) { struct ip_ratelimit_list_arg a; a.all = 0; a.infra = worker->env.infra_cache; a.now = *worker->env.now; a.ssl = ssl; a.backoff = worker->env.cfg->ip_ratelimit_backoff; arg = skipwhite(arg); if(strcmp(arg, "+a") == 0) a.all = 1; if(a.infra->client_ip_rates==NULL || (a.all == 0 && infra_ip_ratelimit == 0)) return; slabhash_traverse(a.infra->client_ip_rates, 0, ip_rate_list, &a); } /** do the rpz_enable/disable command */ static void do_rpz_enable_disable(RES* ssl, struct worker* worker, char* arg, int enable) { size_t nmlen; int nmlabs; uint8_t *nm = NULL; struct auth_zones *az = worker->env.auth_zones; struct auth_zone *z = NULL; if (!parse_arg_name(ssl, arg, &nm, &nmlen, &nmlabs)) return; if (az) { lock_rw_rdlock(&az->lock); z = auth_zone_find(az, nm, nmlen, LDNS_RR_CLASS_IN); if (z) { lock_rw_wrlock(&z->lock); } lock_rw_unlock(&az->lock); } free(nm); if (!z) { (void) ssl_printf(ssl, "error no auth-zone %s\n", arg); return; } if (!z->rpz) { (void) ssl_printf(ssl, "error auth-zone %s not RPZ\n", arg); lock_rw_unlock(&z->lock); return; } if (enable) { rpz_enable(z->rpz); } else { rpz_disable(z->rpz); } lock_rw_unlock(&z->lock); send_ok(ssl); } /** do the rpz_enable command */ static void do_rpz_enable(RES* ssl, struct worker* worker, char* arg) { do_rpz_enable_disable(ssl, worker, arg, 1); } /** do the rpz_disable command */ static void do_rpz_disable(RES* ssl, struct worker* worker, char* arg) { do_rpz_enable_disable(ssl, worker, arg, 0); } /** Write the cookie secrets to file, returns `0` on failure. * Caller has to hold the lock. */ static int cookie_secret_file_dump(RES* ssl, struct worker* worker) { char const* secret_file = worker->env.cfg->cookie_secret_file; struct cookie_secrets* cookie_secrets = worker->daemon->cookie_secrets; char secret_hex[UNBOUND_COOKIE_SECRET_SIZE * 2 + 1]; FILE* f; size_t i; if(secret_file == NULL || secret_file[0]==0) { (void)ssl_printf(ssl, "error: no cookie secret file configured\n"); return 0; } log_assert( secret_file != NULL ); /* open write only and truncate */ if((f = fopen(secret_file, "w")) == NULL ) { (void)ssl_printf(ssl, "unable to open cookie secret file %s: %s", secret_file, strerror(errno)); return 0; } if(cookie_secrets == NULL) { /* nothing to write */ fclose(f); return 1; } for(i = 0; i < cookie_secrets->cookie_count; i++) { struct cookie_secret const* cs = &cookie_secrets-> cookie_secrets[i]; ssize_t const len = hex_ntop(cs->cookie_secret, UNBOUND_COOKIE_SECRET_SIZE, secret_hex, sizeof(secret_hex)); (void)len; /* silence unused variable warning with -DNDEBUG */ log_assert( len == UNBOUND_COOKIE_SECRET_SIZE * 2 ); secret_hex[UNBOUND_COOKIE_SECRET_SIZE * 2] = '\0'; fprintf(f, "%s\n", secret_hex); } explicit_bzero(secret_hex, sizeof(secret_hex)); fclose(f); return 1; } /** Activate cookie secret */ static void do_activate_cookie_secret(RES* ssl, struct worker* worker) { char const* secret_file = worker->env.cfg->cookie_secret_file; struct cookie_secrets* cookie_secrets = worker->daemon->cookie_secrets; if(secret_file == NULL || secret_file[0] == 0) { (void)ssl_printf(ssl, "error: no cookie secret file configured\n"); return; } if(cookie_secrets == NULL) { (void)ssl_printf(ssl, "error: there are no cookie_secrets."); return; } lock_basic_lock(&cookie_secrets->lock); if(cookie_secrets->cookie_count <= 1 ) { lock_basic_unlock(&cookie_secrets->lock); (void)ssl_printf(ssl, "error: no staging cookie secret to activate\n"); return; } /* Only the worker 0 writes to file, the others update state. */ if(worker->thread_num == 0 && !cookie_secret_file_dump(ssl, worker)) { lock_basic_unlock(&cookie_secrets->lock); (void)ssl_printf(ssl, "error: writing to cookie secret file: \"%s\"\n", secret_file); return; } activate_cookie_secret(cookie_secrets); if(worker->thread_num == 0) (void)cookie_secret_file_dump(ssl, worker); lock_basic_unlock(&cookie_secrets->lock); send_ok(ssl); } /** Drop cookie secret */ static void do_drop_cookie_secret(RES* ssl, struct worker* worker) { char const* secret_file = worker->env.cfg->cookie_secret_file; struct cookie_secrets* cookie_secrets = worker->daemon->cookie_secrets; if(secret_file == NULL || secret_file[0] == 0) { (void)ssl_printf(ssl, "error: no cookie secret file configured\n"); return; } if(cookie_secrets == NULL) { (void)ssl_printf(ssl, "error: there are no cookie_secrets."); return; } lock_basic_lock(&cookie_secrets->lock); if(cookie_secrets->cookie_count <= 1 ) { lock_basic_unlock(&cookie_secrets->lock); (void)ssl_printf(ssl, "error: can not drop the currently active cookie secret\n"); return; } /* Only the worker 0 writes to file, the others update state. */ if(worker->thread_num == 0 && !cookie_secret_file_dump(ssl, worker)) { lock_basic_unlock(&cookie_secrets->lock); (void)ssl_printf(ssl, "error: writing to cookie secret file: \"%s\"\n", secret_file); return; } drop_cookie_secret(cookie_secrets); if(worker->thread_num == 0) (void)cookie_secret_file_dump(ssl, worker); lock_basic_unlock(&cookie_secrets->lock); send_ok(ssl); } /** Add cookie secret */ static void do_add_cookie_secret(RES* ssl, struct worker* worker, char* arg) { uint8_t secret[UNBOUND_COOKIE_SECRET_SIZE]; char const* secret_file = worker->env.cfg->cookie_secret_file; struct cookie_secrets* cookie_secrets = worker->daemon->cookie_secrets; if(secret_file == NULL || secret_file[0] == 0) { (void)ssl_printf(ssl, "error: no cookie secret file configured\n"); return; } if(cookie_secrets == NULL) { worker->daemon->cookie_secrets = cookie_secrets_create(); if(!worker->daemon->cookie_secrets) { (void)ssl_printf(ssl, "error: out of memory"); return; } cookie_secrets = worker->daemon->cookie_secrets; } lock_basic_lock(&cookie_secrets->lock); if(*arg == '\0') { lock_basic_unlock(&cookie_secrets->lock); (void)ssl_printf(ssl, "error: missing argument (cookie_secret)\n"); return; } if(strlen(arg) != 32) { lock_basic_unlock(&cookie_secrets->lock); explicit_bzero(arg, strlen(arg)); (void)ssl_printf(ssl, "invalid cookie secret: invalid argument length\n"); (void)ssl_printf(ssl, "please provide a 128bit hex encoded secret\n"); return; } if(hex_pton(arg, secret, UNBOUND_COOKIE_SECRET_SIZE) != UNBOUND_COOKIE_SECRET_SIZE ) { lock_basic_unlock(&cookie_secrets->lock); explicit_bzero(secret, UNBOUND_COOKIE_SECRET_SIZE); explicit_bzero(arg, strlen(arg)); (void)ssl_printf(ssl, "invalid cookie secret: parse error\n"); (void)ssl_printf(ssl, "please provide a 128bit hex encoded secret\n"); return; } /* Only the worker 0 writes to file, the others update state. */ if(worker->thread_num == 0 && !cookie_secret_file_dump(ssl, worker)) { lock_basic_unlock(&cookie_secrets->lock); explicit_bzero(secret, UNBOUND_COOKIE_SECRET_SIZE); explicit_bzero(arg, strlen(arg)); (void)ssl_printf(ssl, "error: writing to cookie secret file: \"%s\"\n", secret_file); return; } add_cookie_secret(cookie_secrets, secret, UNBOUND_COOKIE_SECRET_SIZE); explicit_bzero(secret, UNBOUND_COOKIE_SECRET_SIZE); if(worker->thread_num == 0) (void)cookie_secret_file_dump(ssl, worker); lock_basic_unlock(&cookie_secrets->lock); explicit_bzero(arg, strlen(arg)); send_ok(ssl); } /** Print cookie secrets */ static void do_print_cookie_secrets(RES* ssl, struct worker* worker) { struct cookie_secrets* cookie_secrets = worker->daemon->cookie_secrets; char secret_hex[UNBOUND_COOKIE_SECRET_SIZE * 2 + 1]; int i; if(!cookie_secrets) return; /* Output is empty. */ lock_basic_lock(&cookie_secrets->lock); for(i = 0; (size_t)i < cookie_secrets->cookie_count; i++) { struct cookie_secret const* cs = &cookie_secrets-> cookie_secrets[i]; ssize_t const len = hex_ntop(cs->cookie_secret, UNBOUND_COOKIE_SECRET_SIZE, secret_hex, sizeof(secret_hex)); (void)len; /* silence unused variable warning with -DNDEBUG */ log_assert( len == UNBOUND_COOKIE_SECRET_SIZE * 2 ); secret_hex[UNBOUND_COOKIE_SECRET_SIZE * 2] = '\0'; if (i == 0) (void)ssl_printf(ssl, "active : %s\n", secret_hex); else if (cookie_secrets->cookie_count == 2) (void)ssl_printf(ssl, "staging: %s\n", secret_hex); else (void)ssl_printf(ssl, "staging[%d]: %s\n", i, secret_hex); } lock_basic_unlock(&cookie_secrets->lock); explicit_bzero(secret_hex, sizeof(secret_hex)); } /** check for name with end-of-string, space or tab after it */ static int cmdcmp(char* p, const char* cmd, size_t len) { return strncmp(p,cmd,len)==0 && (p[len]==0||p[len]==' '||p[len]=='\t'); } /** execute a remote control command */ static void execute_cmd(struct daemon_remote* rc, struct rc_state* s, RES* ssl, char* cmd, struct worker* worker) { char* p = skipwhite(cmd); /* compare command */ if(cmdcmp(p, "stop", 4)) { do_stop(ssl, worker); return; } else if(cmdcmp(p, "reload_keep_cache", 17)) { do_reload(ssl, worker, 1); return; } else if(cmdcmp(p, "reload", 6)) { do_reload(ssl, worker, 0); return; } else if(cmdcmp(p, "fast_reload", 11)) { do_fast_reload(ssl, worker, s, skipwhite(p+11)); return; } else if(cmdcmp(p, "stats_noreset", 13)) { do_stats(ssl, worker, 0); return; } else if(cmdcmp(p, "stats", 5)) { do_stats(ssl, worker, 1); return; } else if(cmdcmp(p, "status", 6)) { do_status(ssl, worker); return; } else if(cmdcmp(p, "dump_cache", 10)) { #ifdef THREADS_DISABLED if(worker->daemon->num > 1) { (void)ssl_printf(ssl, "dump_cache/load_cache is not " "supported in multi-process operation\n"); return; } #endif (void)dump_cache(ssl, worker); return; } else if(cmdcmp(p, "load_cache", 10)) { #ifdef THREADS_DISABLED if(worker->daemon->num > 1) { /* The warning can't be printed when stdin is sending * data; just return */ return; } #endif if(load_cache(ssl, worker)) send_ok(ssl); return; } else if(cmdcmp(p, "list_forwards", 13)) { do_list_forwards(ssl, worker); return; } else if(cmdcmp(p, "list_stubs", 10)) { do_list_stubs(ssl, worker); return; } else if(cmdcmp(p, "list_insecure", 13)) { do_insecure_list(ssl, worker); return; } else if(cmdcmp(p, "list_local_zones", 16)) { do_list_local_zones(ssl, worker->daemon->local_zones); return; } else if(cmdcmp(p, "list_local_data", 15)) { do_list_local_data(ssl, worker, worker->daemon->local_zones); return; } else if(cmdcmp(p, "view_list_local_zones", 21)) { do_view_list_local_zones(ssl, worker, skipwhite(p+21)); return; } else if(cmdcmp(p, "view_list_local_data", 20)) { do_view_list_local_data(ssl, worker, skipwhite(p+20)); return; } else if(cmdcmp(p, "ratelimit_list", 14)) { do_ratelimit_list(ssl, worker, p+14); return; } else if(cmdcmp(p, "ip_ratelimit_list", 17)) { do_ip_ratelimit_list(ssl, worker, p+17); return; } else if(cmdcmp(p, "list_auth_zones", 15)) { do_list_auth_zones(ssl, worker->env.auth_zones); return; } else if(cmdcmp(p, "auth_zone_reload", 16)) { do_auth_zone_reload(ssl, worker, skipwhite(p+16)); return; } else if(cmdcmp(p, "auth_zone_transfer", 18)) { do_auth_zone_transfer(ssl, worker, skipwhite(p+18)); return; } else if(cmdcmp(p, "insecure_add", 12)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_insecure_add(ssl, worker, skipwhite(p+12)); return; } else if(cmdcmp(p, "insecure_remove", 15)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_insecure_remove(ssl, worker, skipwhite(p+15)); return; } else if(cmdcmp(p, "flush_stats", 11)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_flush_stats(ssl, worker); return; } else if(cmdcmp(p, "flush_requestlist", 17)) { /* must always distribute this cmd */ if(rc) distribute_cmd(rc, ssl, cmd); do_flush_requestlist(ssl, worker); return; } else if(cmdcmp(p, "lookup", 6)) { do_lookup(ssl, worker, skipwhite(p+6)); return; /* The following are commands that read stdin. * Each line needs to be distributed if THREADS_DISABLED. */ } else if(cmdcmp(p, "local_zones_remove", 18)) { do_zones_remove(rc, ssl, worker); return; } else if(cmdcmp(p, "local_zones", 11)) { do_zones_add(rc, ssl, worker); return; } else if(cmdcmp(p, "local_datas_remove", 18)) { do_datas_remove(rc, ssl, worker); return; } else if(cmdcmp(p, "local_datas", 11)) { do_datas_add(rc, ssl, worker); return; } else if(cmdcmp(p, "view_local_datas_remove", 23)){ do_view_datas_remove(rc, ssl, worker, skipwhite(p+23)); return; } else if(cmdcmp(p, "view_local_datas", 16)) { do_view_datas_add(rc, ssl, worker, skipwhite(p+16)); return; } else if(cmdcmp(p, "print_cookie_secrets", 20)) { do_print_cookie_secrets(ssl, worker); return; } #ifdef THREADS_DISABLED /* other processes must execute the command as well */ /* commands that should not be distributed, returned above. */ if(rc) { /* only if this thread is the master (rc) thread */ /* done before the code below, which may split the string */ distribute_cmd(rc, ssl, cmd); } #endif if(cmdcmp(p, "verbosity", 9)) { do_verbosity(ssl, skipwhite(p+9)); } else if(cmdcmp(p, "local_zone_remove", 17)) { do_zone_remove(ssl, worker->daemon->local_zones, skipwhite(p+17)); } else if(cmdcmp(p, "local_zone", 10)) { do_zone_add(ssl, worker->daemon->local_zones, skipwhite(p+10)); } else if(cmdcmp(p, "local_data_remove", 17)) { do_data_remove(ssl, worker->daemon->local_zones, skipwhite(p+17)); } else if(cmdcmp(p, "local_data", 10)) { do_data_add(ssl, worker->daemon->local_zones, skipwhite(p+10)); } else if(cmdcmp(p, "forward_add", 11)) { do_forward_add(ssl, worker, skipwhite(p+11)); } else if(cmdcmp(p, "forward_remove", 14)) { do_forward_remove(ssl, worker, skipwhite(p+14)); } else if(cmdcmp(p, "forward", 7)) { do_forward(ssl, worker, skipwhite(p+7)); } else if(cmdcmp(p, "stub_add", 8)) { do_stub_add(ssl, worker, skipwhite(p+8)); } else if(cmdcmp(p, "stub_remove", 11)) { do_stub_remove(ssl, worker, skipwhite(p+11)); } else if(cmdcmp(p, "view_local_zone_remove", 22)) { do_view_zone_remove(ssl, worker, skipwhite(p+22)); } else if(cmdcmp(p, "view_local_zone", 15)) { do_view_zone_add(ssl, worker, skipwhite(p+15)); } else if(cmdcmp(p, "view_local_data_remove", 22)) { do_view_data_remove(ssl, worker, skipwhite(p+22)); } else if(cmdcmp(p, "view_local_data", 15)) { do_view_data_add(ssl, worker, skipwhite(p+15)); } else if(cmdcmp(p, "flush_zone", 10)) { do_flush_zone(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "flush_type", 10)) { do_flush_type(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "flush_infra", 11)) { do_flush_infra(ssl, worker, skipwhite(p+11)); } else if(cmdcmp(p, "flush", 5)) { do_flush_name(ssl, worker, skipwhite(p+5)); } else if(cmdcmp(p, "dump_requestlist", 16)) { do_dump_requestlist(ssl, worker); } else if(cmdcmp(p, "dump_infra", 10)) { do_dump_infra(ssl, worker); } else if(cmdcmp(p, "log_reopen", 10)) { do_log_reopen(ssl, worker); } else if(cmdcmp(p, "set_option", 10)) { do_set_option(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "get_option", 10)) { do_get_option(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "flush_bogus", 11)) { do_flush_bogus(ssl, worker, skipwhite(p+11)); } else if(cmdcmp(p, "flush_negative", 14)) { do_flush_negative(ssl, worker, skipwhite(p+14)); } else if(cmdcmp(p, "rpz_enable", 10)) { do_rpz_enable(ssl, worker, skipwhite(p+10)); } else if(cmdcmp(p, "rpz_disable", 11)) { do_rpz_disable(ssl, worker, skipwhite(p+11)); } else if(cmdcmp(p, "add_cookie_secret", 17)) { do_add_cookie_secret(ssl, worker, skipwhite(p+17)); } else if(cmdcmp(p, "drop_cookie_secret", 18)) { do_drop_cookie_secret(ssl, worker); } else if(cmdcmp(p, "activate_cookie_secret", 22)) { do_activate_cookie_secret(ssl, worker); } else { (void)ssl_printf(ssl, "error unknown command '%s'\n", p); } } void daemon_remote_exec(struct worker* worker) { /* read the cmd string */ uint8_t* msg = NULL; uint32_t len = 0; if(!tube_read_msg(worker->cmd, &msg, &len, 0)) { log_err("daemon_remote_exec: tube_read_msg failed"); return; } verbose(VERB_ALGO, "remote exec distributed: %s", (char*)msg); execute_cmd(NULL, NULL, NULL, (char*)msg, worker); free(msg); } /** handle remote control request */ static void handle_req(struct daemon_remote* rc, struct rc_state* s, RES* res) { int r; char pre[10]; char magic[7]; char buf[MAX_CMD_STRLINE]; #ifdef USE_WINSOCK /* makes it possible to set the socket blocking again. */ /* basically removes it from winsock_event ... */ WSAEventSelect(s->c->fd, NULL, 0); #endif fd_set_block(s->c->fd); /* try to read magic UBCT[version]_space_ string */ if(res->ssl) { ERR_clear_error(); if((r=SSL_read(res->ssl, magic, (int)sizeof(magic)-1)) <= 0) { int r2; if((r2=SSL_get_error(res->ssl, r)) == SSL_ERROR_ZERO_RETURN) return; log_crypto_err_io("could not SSL_read", r2); return; } } else { while(1) { ssize_t rr = recv(res->fd, magic, sizeof(magic)-1, 0); if(rr <= 0) { if(rr == 0) return; if(errno == EINTR || errno == EAGAIN) continue; log_err("could not recv: %s", sock_strerror(errno)); return; } r = (int)rr; break; } } magic[6] = 0; if( r != 6 || strncmp(magic, "UBCT", 4) != 0) { verbose(VERB_QUERY, "control connection has bad magic string"); /* probably wrong tool connected, ignore it completely */ return; } /* read the command line */ if(!ssl_read_line(res, buf, sizeof(buf))) { return; } snprintf(pre, sizeof(pre), "UBCT%d ", UNBOUND_CONTROL_VERSION); if(strcmp(magic, pre) != 0) { verbose(VERB_QUERY, "control connection had bad " "version %s, cmd: %s", magic, buf); ssl_printf(res, "error version mismatch\n"); return; } verbose(VERB_DETAIL, "control cmd: %s", buf); /* figure out what to do */ execute_cmd(rc, s, res, buf, rc->worker); } /** handle SSL_do_handshake changes to the file descriptor to wait for later */ static int remote_handshake_later(struct daemon_remote* rc, struct rc_state* s, struct comm_point* c, int r, int r2) { if(r2 == SSL_ERROR_WANT_READ) { if(s->shake_state == rc_hs_read) { /* try again later */ return 0; } s->shake_state = rc_hs_read; comm_point_listen_for_rw(c, 1, 0); return 0; } else if(r2 == SSL_ERROR_WANT_WRITE) { if(s->shake_state == rc_hs_write) { /* try again later */ return 0; } s->shake_state = rc_hs_write; comm_point_listen_for_rw(c, 0, 1); return 0; } else { if(r == 0) log_err("remote control connection closed prematurely"); log_addr(VERB_OPS, "failed connection from", &s->c->repinfo.remote_addr, s->c->repinfo.remote_addrlen); log_crypto_err_io("remote control failed ssl", r2); clean_point(rc, s); } return 0; } int remote_control_callback(struct comm_point* c, void* arg, int err, struct comm_reply* ATTR_UNUSED(rep)) { RES res; struct rc_state* s = (struct rc_state*)arg; struct daemon_remote* rc = s->rc; int r; if(err != NETEVENT_NOERROR) { if(err==NETEVENT_TIMEOUT) log_err("remote control timed out"); clean_point(rc, s); return 0; } if(s->ssl) { /* (continue to) setup the SSL connection */ ERR_clear_error(); r = SSL_do_handshake(s->ssl); if(r != 1) { int r2 = SSL_get_error(s->ssl, r); return remote_handshake_later(rc, s, c, r, r2); } s->shake_state = rc_none; } /* once handshake has completed, check authentication */ if (!rc->use_cert) { verbose(VERB_ALGO, "unauthenticated remote control connection"); } else if(SSL_get_verify_result(s->ssl) == X509_V_OK) { #ifdef HAVE_SSL_GET1_PEER_CERTIFICATE X509* x = SSL_get1_peer_certificate(s->ssl); #else X509* x = SSL_get_peer_certificate(s->ssl); #endif if(!x) { verbose(VERB_DETAIL, "remote control connection " "provided no client certificate"); clean_point(rc, s); return 0; } verbose(VERB_ALGO, "remote control connection authenticated"); X509_free(x); } else { verbose(VERB_DETAIL, "remote control connection failed to " "authenticate with client certificate"); clean_point(rc, s); return 0; } /* if OK start to actually handle the request */ res.ssl = s->ssl; res.fd = c->fd; handle_req(rc, s, &res); verbose(VERB_ALGO, "remote control operation completed"); clean_point(rc, s); return 0; } /** * This routine polls a socket for readiness. * @param fd: file descriptor, -1 uses no fd for a timer only. * @param timeout: time in msec to wait. 0 means nonblocking test, * -1 waits blocking for events. * @param pollin: check for input event. * @param pollout: check for output event. * @param event: output variable, set to true if the event happens. * It is false if there was an error or timeout. * @return false is system call failure, also logged. */ static int sock_poll_timeout(int fd, int timeout, int pollin, int pollout, int* event) { int loopcount = 0; /* Loop if the system call returns an errno to do so, like EINTR. */ log_assert(pollin || pollout); while(1) { struct pollfd p, *fds; int nfds, ret; if(++loopcount > IPC_LOOP_MAX) { log_err("sock_poll_timeout: loop"); if(event) *event = 0; return 0; } if(fd == -1) { fds = NULL; nfds = 0; } else { fds = &p; nfds = 1; memset(&p, 0, sizeof(p)); p.fd = fd; #ifndef USE_WINSOCK p.events = POLLERR | POLLHUP ; #endif if(pollin) p.events |= POLLIN; if(pollout) p.events |= POLLOUT; } #ifndef USE_WINSOCK ret = poll(fds, nfds, timeout); #else if(fds == NULL) { Sleep(timeout); ret = 0; } else { ret = WSAPoll(fds, nfds, timeout); } #endif if(ret == -1) { #ifndef USE_WINSOCK if( errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif ) continue; /* Try again. */ #endif /* For WSAPoll we only get errors here: * o WSAENETDOWN * o WSAEFAULT * o WSAEINVAL * o WSAENOBUFS */ log_err("poll: %s", sock_strerror(errno)); if(event) *event = 0; return 0; } else if(ret == 0) { /* Timeout */ if(event) *event = 0; return 1; } break; } if(event) *event = 1; return 1; } /** fast reload convert fast reload notification status to string */ static const char* fr_notification_to_string(enum fast_reload_notification status) { switch(status) { case fast_reload_notification_none: return "none"; case fast_reload_notification_done: return "done"; case fast_reload_notification_done_error: return "done_error"; case fast_reload_notification_exit: return "exit"; case fast_reload_notification_exited: return "exited"; case fast_reload_notification_printout: return "printout"; case fast_reload_notification_reload_stop: return "reload_stop"; case fast_reload_notification_reload_ack: return "reload_ack"; case fast_reload_notification_reload_nopause_poll: return "reload_nopause_poll"; case fast_reload_notification_reload_start: return "reload_start"; default: break; } return "unknown"; } #ifndef THREADS_DISABLED /** fast reload, poll for notification incoming. True if quit */ static int fr_poll_for_quit(struct fast_reload_thread* fr) { int inevent, loopexit = 0, bcount = 0; uint32_t cmd; ssize_t ret; if(fr->need_to_quit) return 1; /* Is there data? */ if(!sock_poll_timeout(fr->commpair[1], 0, 1, 0, &inevent)) { log_err("fr_poll_for_quit: poll failed"); return 0; } if(!inevent) return 0; /* Read the data */ while(1) { if(++loopexit > IPC_LOOP_MAX) { log_err("fr_poll_for_quit: recv loops %s", sock_strerror(errno)); return 0; } ret = recv(fr->commpair[1], ((char*)&cmd)+bcount, sizeof(cmd)-bcount, 0); if(ret == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK #endif ) continue; /* Try again. */ log_err("fr_poll_for_quit: recv: %s", sock_strerror(errno)); return 0; } else if(ret+(ssize_t)bcount != sizeof(cmd)) { bcount += ret; if((size_t)bcount < sizeof(cmd)) continue; } break; } if(cmd == fast_reload_notification_exit) { fr->need_to_quit = 1; verbose(VERB_ALGO, "fast reload: exit notification received"); return 1; } log_err("fr_poll_for_quit: unknown notification status received: %d %s", cmd, fr_notification_to_string(cmd)); return 0; } /** fast reload thread. Send notification from the fast reload thread */ static void fr_send_notification(struct fast_reload_thread* fr, enum fast_reload_notification status) { int outevent, loopexit = 0, bcount = 0; uint32_t cmd; ssize_t ret; verbose(VERB_ALGO, "fast reload: send notification %s", fr_notification_to_string(status)); /* Make a blocking attempt to send. But meanwhile stay responsive, * once in a while for quit commands. In case the server has to quit. */ /* see if there is incoming quit signals */ if(fr_poll_for_quit(fr)) return; cmd = status; while(1) { if(++loopexit > IPC_LOOP_MAX) { log_err("fast reload: could not send notification"); return; } /* wait for socket to become writable */ if(!sock_poll_timeout(fr->commpair[1], IPC_NOTIFICATION_WAIT, 0, 1, &outevent)) { log_err("fast reload: poll failed"); return; } if(fr_poll_for_quit(fr)) return; if(!outevent) continue; ret = send(fr->commpair[1], ((char*)&cmd)+bcount, sizeof(cmd)-bcount, 0); if(ret == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK #endif ) continue; /* Try again. */ log_err("fast reload send notification: send: %s", sock_strerror(errno)); return; } else if(ret+(ssize_t)bcount != sizeof(cmd)) { bcount += ret; if((size_t)bcount < sizeof(cmd)) continue; } break; } } /** fast reload thread queue up text string for output */ static int fr_output_text(struct fast_reload_thread* fr, const char* msg) { char* item = strdup(msg); if(!item) { log_err("fast reload output text: strdup out of memory"); return 0; } lock_basic_lock(&fr->fr_output_lock); if(!cfg_strlist_append(fr->fr_output, item)) { lock_basic_unlock(&fr->fr_output_lock); /* The item is freed by cfg_strlist_append on failure. */ log_err("fast reload output text: append out of memory"); return 0; } lock_basic_unlock(&fr->fr_output_lock); return 1; } /** fast reload thread output vmsg function */ static int fr_output_vmsg(struct fast_reload_thread* fr, const char* format, va_list args) { char msg[1024]; vsnprintf(msg, sizeof(msg), format, args); return fr_output_text(fr, msg); } /** fast reload thread printout function, with printf arguments */ static int fr_output_printf(struct fast_reload_thread* fr, const char* format, ...) ATTR_FORMAT(printf, 2, 3); /** fast reload thread printout function, prints to list and signals * the remote control thread to move that to get written to the socket * of the remote control connection. */ static int fr_output_printf(struct fast_reload_thread* fr, const char* format, ...) { va_list args; int ret; va_start(args, format); ret = fr_output_vmsg(fr, format, args); va_end(args); return ret; } /** fast reload thread, init time counters */ static void fr_init_time(struct timeval* time_start, struct timeval* time_read, struct timeval* time_construct, struct timeval* time_reload, struct timeval* time_end) { memset(time_start, 0, sizeof(*time_start)); memset(time_read, 0, sizeof(*time_read)); memset(time_construct, 0, sizeof(*time_construct)); memset(time_reload, 0, sizeof(*time_reload)); memset(time_end, 0, sizeof(*time_end)); if(gettimeofday(time_start, NULL) < 0) log_err("gettimeofday: %s", strerror(errno)); } /** * Structure with constructed elements for use during fast reload. * At the start it contains the tree items for the new config. * After the tree items are swapped into the server, the old elements * are kept in here. They can then be deleted. */ struct fast_reload_construct { /** construct for views */ struct views* views; /** construct for auth zones */ struct auth_zones* auth_zones; /** construct for forwards */ struct iter_forwards* fwds; /** construct for stubs */ struct iter_hints* hints; /** construct for respip_set */ struct respip_set* respip_set; /** construct for access control */ struct acl_list* acl; /** construct for access control interface */ struct acl_list* acl_interface; /** construct for tcp connection limit */ struct tcl_list* tcl; /** construct for local zones */ struct local_zones* local_zones; /** if there is response ip configuration in use */ int use_response_ip; /** if there is an rpz zone */ int use_rpz; /** construct for edns strings */ struct edns_strings* edns_strings; /** construct for trust anchors */ struct val_anchors* anchors; /** construct for nsec3 key size */ size_t* nsec3_keysize; /** construct for nsec3 max iter */ size_t* nsec3_maxiter; /** construct for nsec3 keyiter count */ int nsec3_keyiter_count; /** construct for target fetch policy */ int* target_fetch_policy; /** construct for max dependency depth */ int max_dependency_depth; /** construct for donotquery addresses */ struct iter_donotq* donotq; /** construct for private addresses and domains */ struct iter_priv* priv; /** construct whitelist for capsforid names */ struct rbtree_type* caps_white; /** construct for nat64 */ struct iter_nat64 nat64; /** construct for wait_limits_netblock */ struct rbtree_type wait_limits_netblock; /** construct for wait_limits_cookie_netblock */ struct rbtree_type wait_limits_cookie_netblock; /** construct for domain limits */ struct rbtree_type domain_limits; /** storage for the old configuration elements. The outer struct * is allocated with malloc here, the items are from config. */ struct config_file* oldcfg; }; /** fast reload thread, read config */ static int fr_read_config(struct fast_reload_thread* fr, struct config_file** newcfg) { /* Create new config structure. */ *newcfg = config_create(); if(!*newcfg) { if(!fr_output_printf(fr, "config_create failed: out of memory\n")) return 0; fr_send_notification(fr, fast_reload_notification_printout); return 0; } if(fr_poll_for_quit(fr)) return 1; /* Read new config from file */ if(!config_read(*newcfg, fr->worker->daemon->cfgfile, fr->worker->daemon->chroot)) { config_delete(*newcfg); if(!fr_output_printf(fr, "config_read %s%s%s%s failed: %s\n", (fr->worker->daemon->chroot?"worker->daemon->chroot?fr->worker->daemon->chroot:""), (fr->worker->daemon->chroot?"> ":""), fr->worker->daemon->cfgfile, strerror(errno))) return 0; fr_send_notification(fr, fast_reload_notification_printout); return 0; } if(fr_poll_for_quit(fr)) return 1; if(fr->fr_verb >= 1) { if(!fr_output_printf(fr, "done read config file %s%s%s%s\n", (fr->worker->daemon->chroot?"worker->daemon->chroot?fr->worker->daemon->chroot:""), (fr->worker->daemon->chroot?"> ":""), fr->worker->daemon->cfgfile)) return 0; fr_send_notification(fr, fast_reload_notification_printout); } return 1; } /** Check if two taglists are equal. */ static int taglist_equal(char** tagname_a, int num_tags_a, char** tagname_b, int num_tags_b) { int i; if(num_tags_a != num_tags_b) return 0; for(i=0; i= num_tags_b) return 0; /* So, b is longer than a. Check if the initial start of the two * taglists is the same. */ if(!taglist_equal(tagname_a, num_tags_a, tagname_b, num_tags_a)) return 0; return 1; } /** fast reload thread, check tag defines. */ static int fr_check_tag_defines(struct fast_reload_thread* fr, struct config_file* newcfg) { /* The tags are kept in a bitlist for items. Some of them are stored * in query info. If the tags change, then the old values are * inaccurate. The solution is to then flush the query list. * Unless the change only involves adding new tags at the end, that * needs no changes. */ if(!taglist_equal(fr->worker->daemon->cfg->tagname, fr->worker->daemon->cfg->num_tags, newcfg->tagname, newcfg->num_tags) && !taglist_change_at_end(fr->worker->daemon->cfg->tagname, fr->worker->daemon->cfg->num_tags, newcfg->tagname, newcfg->num_tags)) { /* The tags have changed too much, the define-tag config. */ if(fr->fr_drop_mesh) return 1; /* already dropping queries */ fr->fr_drop_mesh = 1; fr->worker->daemon->fast_reload_drop_mesh = fr->fr_drop_mesh; if(!fr_output_printf(fr, "tags have changed, with " "'define-tag', and the queries have to be dropped " "for consistency, setting '+d'\n")) return 0; fr_send_notification(fr, fast_reload_notification_printout); } return 1; } /** fast reload thread, check if config item has changed, if not add to * the explanatory string. */ static void fr_check_changed_cfg(int cmp, const char* desc, char* str, size_t len) { if(cmp) { size_t slen = strlen(str); size_t desclen = strlen(desc); if(slen == 0) { snprintf(str, len, "%s", desc); return; } if(len - slen < desclen+2) return; /* It does not fit */ snprintf(str+slen, len-slen, " %s", desc); } } /** fast reload thread, check if config string has changed, checks NULLs. */ static void fr_check_changed_cfg_str(char* cmp1, char* cmp2, const char* desc, char* str, size_t len) { if((!cmp1 && cmp2) || (cmp1 && !cmp2) || (cmp1 && cmp2 && strcmp(cmp1, cmp2) != 0)) { fr_check_changed_cfg(1, desc, str, len); } } /** fast reload thread, check if config strlist has changed. */ static void fr_check_changed_cfg_strlist(struct config_strlist* cmp1, struct config_strlist* cmp2, const char* desc, char* str, size_t len) { struct config_strlist* p1 = cmp1, *p2 = cmp2; while(p1 && p2) { if((!p1->str && p2->str) || (p1->str && !p2->str) || (p1->str && p2->str && strcmp(p1->str, p2->str) != 0)) { /* The strlist is different. */ fr_check_changed_cfg(1, desc, str, len); return; } p1 = p1->next; p2 = p2->next; } if((!p1 && p2) || (p1 && !p2)) { fr_check_changed_cfg(1, desc, str, len); } } /** fast reload thread, check if config str2list has changed. */ static void fr_check_changed_cfg_str2list(struct config_str2list* cmp1, struct config_str2list* cmp2, const char* desc, char* str, size_t len) { struct config_str2list* p1 = cmp1, *p2 = cmp2; while(p1 && p2) { if((!p1->str && p2->str) || (p1->str && !p2->str) || (p1->str && p2->str && strcmp(p1->str, p2->str) != 0)) { /* The str2list is different. */ fr_check_changed_cfg(1, desc, str, len); return; } if((!p1->str2 && p2->str2) || (p1->str2 && !p2->str2) || (p1->str2 && p2->str2 && strcmp(p1->str2, p2->str2) != 0)) { /* The str2list is different. */ fr_check_changed_cfg(1, desc, str, len); return; } p1 = p1->next; p2 = p2->next; } if((!p1 && p2) || (p1 && !p2)) { fr_check_changed_cfg(1, desc, str, len); } } /** fast reload thread, check compatible config items */ static int fr_check_compat_cfg(struct fast_reload_thread* fr, struct config_file* newcfg) { int i; char changed_str[1024]; struct config_file* cfg = fr->worker->env.cfg; changed_str[0]=0; /* Find incompatible options, and if so, print an error. */ fr_check_changed_cfg(cfg->num_threads != newcfg->num_threads, "num-threads", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->do_ip4 != newcfg->do_ip4, "do-ip4", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->do_ip6 != newcfg->do_ip6, "do-ip6", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->do_udp != newcfg->do_udp, "do-udp", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->do_tcp != newcfg->do_tcp, "do-tcp", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->port != newcfg->port, "port", changed_str, sizeof(changed_str)); /* But cfg->outgoing_num_ports has been changed at startup, * possibly to reduce it, so do not check it here. */ fr_check_changed_cfg(cfg->outgoing_num_tcp != newcfg->outgoing_num_tcp, "outgoing-num-tcp", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->incoming_num_tcp != newcfg->incoming_num_tcp, "incoming-num-tcp", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->num_out_ifs != newcfg->num_out_ifs, "outgoing-interface", changed_str, sizeof(changed_str)); if(cfg->num_out_ifs == newcfg->num_out_ifs) { for(i=0; inum_out_ifs; i++) fr_check_changed_cfg(strcmp(cfg->out_ifs[i], newcfg->out_ifs[i]) != 0, "outgoing-interface", changed_str, sizeof(changed_str)); } fr_check_changed_cfg(cfg->num_ifs != newcfg->num_ifs, "interface", changed_str, sizeof(changed_str)); if(cfg->num_ifs == newcfg->num_ifs) { for(i=0; inum_ifs; i++) fr_check_changed_cfg(strcmp(cfg->ifs[i], newcfg->ifs[i]) != 0, "interface", changed_str, sizeof(changed_str)); } fr_check_changed_cfg(cfg->if_automatic != newcfg->if_automatic, "interface-automatic", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->so_rcvbuf != newcfg->so_rcvbuf, "so-rcvbuf", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->so_sndbuf != newcfg->so_sndbuf, "so-sndbuf", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->so_reuseport != newcfg->so_reuseport, "so-reuseport", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->ip_transparent != newcfg->ip_transparent, "ip-transparent", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->ip_freebind != newcfg->ip_freebind, "ip-freebind", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->udp_connect != newcfg->udp_connect, "udp-connect", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->msg_buffer_size != newcfg->msg_buffer_size, "msg-buffer-size", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->do_tcp_keepalive != newcfg->do_tcp_keepalive, "edns-tcp-keepalive", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->tcp_keepalive_timeout != newcfg->tcp_keepalive_timeout, "edns-tcp-keepalive-timeout", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->tcp_idle_timeout != newcfg->tcp_idle_timeout, "tcp-idle-timeout", changed_str, sizeof(changed_str)); /* Not changed, only if DoH is used, it is then stored in commpoints, * as well as used from cfg. */ fr_check_changed_cfg( cfg->harden_large_queries != newcfg->harden_large_queries, "harden-large-queries", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->http_max_streams != newcfg->http_max_streams, "http-max-streams", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str(cfg->http_endpoint, newcfg->http_endpoint, "http-endpoint", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->http_notls_downstream != newcfg->http_notls_downstream, "http_notls_downstream", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->https_port != newcfg->https_port, "https-port", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->ssl_port != newcfg->ssl_port, "tls-port", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str(cfg->ssl_service_key, newcfg->ssl_service_key, "tls-service-key", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str(cfg->ssl_service_pem, newcfg->ssl_service_pem, "tls-service-pem", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str(cfg->tls_cert_bundle, newcfg->tls_cert_bundle, "tls-cert-bundle", changed_str, sizeof(changed_str)); fr_check_changed_cfg_strlist(cfg->proxy_protocol_port, newcfg->proxy_protocol_port, "proxy-protocol-port", changed_str, sizeof(changed_str)); fr_check_changed_cfg_strlist(cfg->tls_additional_port, newcfg->tls_additional_port, "tls-additional-port", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str(cfg->if_automatic_ports, newcfg->if_automatic_ports, "interface-automatic-ports", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->udp_upstream_without_downstream != newcfg->udp_upstream_without_downstream, "udp-upstream-without-downstream", changed_str, sizeof(changed_str)); if(changed_str[0] != 0) { /* The new config changes some items that do not work with * fast reload. */ if(!fr_output_printf(fr, "The config changes items that are " "not compatible with fast_reload, perhaps do reload " "or restart: %s", changed_str) || !fr_output_printf(fr, "\n")) return 0; fr_send_notification(fr, fast_reload_notification_printout); return 0; } return 1; } /** fast reload thread, check nopause config items */ static int fr_check_nopause_cfg(struct fast_reload_thread* fr, struct config_file* newcfg) { char changed_str[1024]; struct config_file* cfg = fr->worker->env.cfg; if(!fr->fr_nopause) return 1; /* The nopause is not enabled, so no problem. */ changed_str[0]=0; /* Check for iter_env. */ fr_check_changed_cfg( cfg->outbound_msg_retry != newcfg->outbound_msg_retry, "outbound-msg-retry", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->max_sent_count != newcfg->max_sent_count, "max-sent-count", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->max_query_restarts != newcfg->max_query_restarts, "max-query-restarts", changed_str, sizeof(changed_str)); fr_check_changed_cfg(strcmp(cfg->target_fetch_policy, newcfg->target_fetch_policy) != 0, "target-fetch-policy", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->donotquery_localhost != newcfg->donotquery_localhost, "do-not-query-localhost", changed_str, sizeof(changed_str)); fr_check_changed_cfg_strlist(cfg->donotqueryaddrs, newcfg->donotqueryaddrs, "do-not-query-localhost", changed_str, sizeof(changed_str)); fr_check_changed_cfg_strlist(cfg->private_address, newcfg->private_address, "private-address", changed_str, sizeof(changed_str)); fr_check_changed_cfg_strlist(cfg->private_domain, newcfg->private_domain, "private-domain", changed_str, sizeof(changed_str)); fr_check_changed_cfg_strlist(cfg->caps_whitelist, newcfg->caps_whitelist, "caps-exempt", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->do_nat64 != newcfg->do_nat64, "do-nat64", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str(cfg->nat64_prefix, newcfg->nat64_prefix, "nat64-prefix", changed_str, sizeof(changed_str)); /* Check for val_env. */ fr_check_changed_cfg(cfg->bogus_ttl != newcfg->bogus_ttl, "val-bogus-ttl", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->val_date_override != newcfg->val_date_override, "val-date-override", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->val_sig_skew_min != newcfg->val_sig_skew_min, "val-sig-skew-min", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->val_sig_skew_max != newcfg->val_sig_skew_max, "val-sig-skew-max", changed_str, sizeof(changed_str)); fr_check_changed_cfg(cfg->val_max_restart != newcfg->val_max_restart, "val-max-restart", changed_str, sizeof(changed_str)); fr_check_changed_cfg(strcmp(cfg->val_nsec3_key_iterations, newcfg->val_nsec3_key_iterations) != 0, "val-nsec3-keysize-iterations", changed_str, sizeof(changed_str)); /* Check for infra. */ fr_check_changed_cfg(cfg->host_ttl != newcfg->host_ttl, "infra-host-ttl", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->infra_keep_probing != newcfg->infra_keep_probing, "infra-keep-probing", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->ratelimit != newcfg->ratelimit, "ratelimit", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->ip_ratelimit != newcfg->ip_ratelimit, "ip-ratelimit", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->ip_ratelimit_cookie != newcfg->ip_ratelimit_cookie, "ip-ratelimit-cookie", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str2list(cfg->wait_limit_netblock, newcfg->wait_limit_netblock, "wait-limit-netblock", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str2list(cfg->wait_limit_cookie_netblock, newcfg->wait_limit_cookie_netblock, "wait-limit-cookie-netblock", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str2list(cfg->ratelimit_below_domain, newcfg->ratelimit_below_domain, "ratelimit-below-domain", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str2list(cfg->ratelimit_for_domain, newcfg->ratelimit_for_domain, "ratelimit-for-domain", changed_str, sizeof(changed_str)); /* Check for dnstap. */ fr_check_changed_cfg( cfg->dnstap_send_identity != newcfg->dnstap_send_identity, "dnstap-send-identity", changed_str, sizeof(changed_str)); fr_check_changed_cfg( cfg->dnstap_send_version != newcfg->dnstap_send_version, "dnstap-send-version", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str(cfg->dnstap_identity, newcfg->dnstap_identity, "dnstap-identity", changed_str, sizeof(changed_str)); fr_check_changed_cfg_str(cfg->dnstap_version, newcfg->dnstap_version, "dnstap-version", changed_str, sizeof(changed_str)); if(changed_str[0] != 0) { /* The new config changes some items that need a pause, * to be able to update the variables. */ if(!fr_output_printf(fr, "The config changes items that need " "the fast_reload +p option, for nopause, " "disabled to be reloaded: %s", changed_str) || !fr_output_printf(fr, "\n")) return 0; fr_send_notification(fr, fast_reload_notification_printout); return 0; } return 1; } /** fast reload thread, clear construct information, deletes items */ static void fr_construct_clear(struct fast_reload_construct* ct) { if(!ct) return; auth_zones_delete(ct->auth_zones); forwards_delete(ct->fwds); hints_delete(ct->hints); respip_set_delete(ct->respip_set); local_zones_delete(ct->local_zones); acl_list_delete(ct->acl); acl_list_delete(ct->acl_interface); tcl_list_delete(ct->tcl); edns_strings_delete(ct->edns_strings); anchors_delete(ct->anchors); views_delete(ct->views); free(ct->nsec3_keysize); free(ct->nsec3_maxiter); free(ct->target_fetch_policy); donotq_delete(ct->donotq); priv_delete(ct->priv); caps_white_delete(ct->caps_white); wait_limits_free(&ct->wait_limits_netblock); wait_limits_free(&ct->wait_limits_cookie_netblock); domain_limits_free(&ct->domain_limits); /* Delete the log identity here so that the global value is not * reset by config_delete. */ if(ct->oldcfg && ct->oldcfg->log_identity) { free(ct->oldcfg->log_identity); ct->oldcfg->log_identity = NULL; } config_delete(ct->oldcfg); } /** get memory for strlist */ static size_t getmem_config_strlist(struct config_strlist* p) { size_t m = 0; struct config_strlist* s; for(s = p; s; s = s->next) m += sizeof(*s) + getmem_str(s->str); return m; } /** get memory for str2list */ static size_t getmem_config_str2list(struct config_str2list* p) { size_t m = 0; struct config_str2list* s; for(s = p; s; s = s->next) m += sizeof(*s) + getmem_str(s->str) + getmem_str(s->str2); return m; } /** get memory for str3list */ static size_t getmem_config_str3list(struct config_str3list* p) { size_t m = 0; struct config_str3list* s; for(s = p; s; s = s->next) m += sizeof(*s) + getmem_str(s->str) + getmem_str(s->str2) + getmem_str(s->str3); return m; } /** get memory for strbytelist */ static size_t getmem_config_strbytelist(struct config_strbytelist* p) { size_t m = 0; struct config_strbytelist* s; for(s = p; s; s = s->next) m += sizeof(*s) + getmem_str(s->str) + (s->str2?s->str2len:0); return m; } /** get memory used by ifs array */ static size_t getmem_ifs(int numifs, char** ifs) { size_t m = 0; int i; m += numifs * sizeof(char*); for(i=0; inext) m += sizeof(*s) + getmem_str(s->name) + getmem_config_strlist(s->hosts) + getmem_config_strlist(s->addrs); return m; } /** get memory for config_auth */ static size_t getmem_config_auth(struct config_auth* p) { size_t m = 0; struct config_auth* s; for(s = p; s; s = s->next) m += sizeof(*s) + getmem_str(s->name) + getmem_config_strlist(s->masters) + getmem_config_strlist(s->urls) + getmem_config_strlist(s->allow_notify) + getmem_str(s->zonefile) + s->rpz_taglistlen + getmem_str(s->rpz_action_override) + getmem_str(s->rpz_log_name) + getmem_str(s->rpz_cname); return m; } /** get memory for config_view */ static size_t getmem_config_view(struct config_view* p) { size_t m = 0; struct config_view* s; for(s = p; s; s = s->next) m += sizeof(*s) + getmem_str(s->name) + getmem_config_str2list(s->local_zones) + getmem_config_strlist(s->local_data) + getmem_config_strlist(s->local_zones_nodefault) #ifdef USE_IPSET + getmem_config_strlist(s->local_zones_ipset) #endif + getmem_config_str2list(s->respip_actions) + getmem_config_str2list(s->respip_data); return m; } /** get memory used by config_file item, estimate */ static size_t config_file_getmem(struct config_file* cfg) { size_t m = 0; m += sizeof(*cfg); m += getmem_config_strlist(cfg->proxy_protocol_port); m += getmem_str(cfg->ssl_service_key); m += getmem_str(cfg->ssl_service_pem); m += getmem_str(cfg->tls_cert_bundle); m += getmem_config_strlist(cfg->tls_additional_port); m += getmem_config_strlist(cfg->tls_session_ticket_keys.first); m += getmem_str(cfg->tls_ciphers); m += getmem_str(cfg->tls_ciphersuites); m += getmem_str(cfg->http_endpoint); m += (cfg->outgoing_avail_ports?65536*sizeof(int):0); m += getmem_str(cfg->target_fetch_policy); m += getmem_str(cfg->if_automatic_ports); m += getmem_ifs(cfg->num_ifs, cfg->ifs); m += getmem_ifs(cfg->num_out_ifs, cfg->out_ifs); m += getmem_config_strlist(cfg->root_hints); m += getmem_config_stub(cfg->stubs); m += getmem_config_stub(cfg->forwards); m += getmem_config_auth(cfg->auths); m += getmem_config_view(cfg->views); m += getmem_config_strlist(cfg->donotqueryaddrs); #ifdef CLIENT_SUBNET m += getmem_config_strlist(cfg->client_subnet); m += getmem_config_strlist(cfg->client_subnet_zone); #endif m += getmem_config_str2list(cfg->acls); m += getmem_config_str2list(cfg->tcp_connection_limits); m += getmem_config_strlist(cfg->caps_whitelist); m += getmem_config_strlist(cfg->private_address); m += getmem_config_strlist(cfg->private_domain); m += getmem_str(cfg->chrootdir); m += getmem_str(cfg->username); m += getmem_str(cfg->directory); m += getmem_str(cfg->logfile); m += getmem_str(cfg->pidfile); m += getmem_str(cfg->log_identity); m += getmem_str(cfg->identity); m += getmem_str(cfg->version); m += getmem_str(cfg->http_user_agent); m += getmem_str(cfg->nsid_cfg_str); m += (cfg->nsid?cfg->nsid_len:0); m += getmem_str(cfg->module_conf); m += getmem_config_strlist(cfg->trust_anchor_file_list); m += getmem_config_strlist(cfg->trust_anchor_list); m += getmem_config_strlist(cfg->auto_trust_anchor_file_list); m += getmem_config_strlist(cfg->trusted_keys_file_list); m += getmem_config_strlist(cfg->domain_insecure); m += getmem_str(cfg->val_nsec3_key_iterations); m += getmem_config_str2list(cfg->local_zones); m += getmem_config_strlist(cfg->local_zones_nodefault); #ifdef USE_IPSET m += getmem_config_strlist(cfg->local_zones_ipset); #endif m += getmem_config_strlist(cfg->local_data); m += getmem_config_str3list(cfg->local_zone_overrides); m += getmem_config_strbytelist(cfg->local_zone_tags); m += getmem_config_strbytelist(cfg->acl_tags); m += getmem_config_str3list(cfg->acl_tag_actions); m += getmem_config_str3list(cfg->acl_tag_datas); m += getmem_config_str2list(cfg->acl_view); m += getmem_config_str2list(cfg->interface_actions); m += getmem_config_strbytelist(cfg->interface_tags); m += getmem_config_str3list(cfg->interface_tag_actions); m += getmem_config_str3list(cfg->interface_tag_datas); m += getmem_config_str2list(cfg->interface_view); m += getmem_config_strbytelist(cfg->respip_tags); m += getmem_config_str2list(cfg->respip_actions); m += getmem_config_str2list(cfg->respip_data); m += getmem_ifs(cfg->num_tags, cfg->tagname); m += getmem_config_strlist(cfg->control_ifs.first); m += getmem_str(cfg->server_key_file); m += getmem_str(cfg->server_cert_file); m += getmem_str(cfg->control_key_file); m += getmem_str(cfg->control_cert_file); m += getmem_config_strlist(cfg->python_script); m += getmem_config_strlist(cfg->dynlib_file); m += getmem_str(cfg->dns64_prefix); m += getmem_config_strlist(cfg->dns64_ignore_aaaa); m += getmem_str(cfg->nat64_prefix); m += getmem_str(cfg->dnstap_socket_path); m += getmem_str(cfg->dnstap_ip); m += getmem_str(cfg->dnstap_tls_server_name); m += getmem_str(cfg->dnstap_tls_cert_bundle); m += getmem_str(cfg->dnstap_tls_client_key_file); m += getmem_str(cfg->dnstap_tls_client_cert_file); m += getmem_str(cfg->dnstap_identity); m += getmem_str(cfg->dnstap_version); m += getmem_config_str2list(cfg->ratelimit_for_domain); m += getmem_config_str2list(cfg->ratelimit_below_domain); m += getmem_config_str2list(cfg->edns_client_strings); m += getmem_str(cfg->dnscrypt_provider); m += getmem_config_strlist(cfg->dnscrypt_secret_key); m += getmem_config_strlist(cfg->dnscrypt_provider_cert); m += getmem_config_strlist(cfg->dnscrypt_provider_cert_rotated); #ifdef USE_IPSECMOD m += getmem_config_strlist(cfg->ipsecmod_whitelist); m += getmem_str(cfg->ipsecmod_hook); #endif #ifdef USE_CACHEDB m += getmem_str(cfg->cachedb_backend); m += getmem_str(cfg->cachedb_secret); #ifdef USE_REDIS m += getmem_str(cfg->redis_server_host); m += getmem_str(cfg->redis_replica_server_host); m += getmem_str(cfg->redis_server_path); m += getmem_str(cfg->redis_replica_server_path); m += getmem_str(cfg->redis_server_password); m += getmem_str(cfg->redis_replica_server_password); #endif #endif #ifdef USE_IPSET m += getmem_str(cfg->ipset_name_v4); m += getmem_str(cfg->ipset_name_v6); #endif return m; } /** fast reload thread, print memory used by construct of items. */ static int fr_printmem(struct fast_reload_thread* fr, struct config_file* newcfg, struct fast_reload_construct* ct) { size_t mem = 0; if(fr_poll_for_quit(fr)) return 1; mem += views_get_mem(ct->views); mem += respip_set_get_mem(ct->respip_set); mem += auth_zones_get_mem(ct->auth_zones); mem += forwards_get_mem(ct->fwds); mem += hints_get_mem(ct->hints); mem += local_zones_get_mem(ct->local_zones); mem += acl_list_get_mem(ct->acl); mem += acl_list_get_mem(ct->acl_interface); mem += tcl_list_get_mem(ct->tcl); mem += edns_strings_get_mem(ct->edns_strings); mem += anchors_get_mem(ct->anchors); mem += sizeof(*ct->oldcfg); mem += config_file_getmem(newcfg); if(!fr_output_printf(fr, "memory use %d bytes\n", (int)mem)) return 0; fr_send_notification(fr, fast_reload_notification_printout); return 1; } /** fast reload thread, setup the acl_interface for the ports that * the server has. */ static int ct_acl_interface_setup_ports(struct acl_list* acl_interface, struct daemon* daemon) { /* clean acl_interface */ acl_interface_init(acl_interface); if(!setup_acl_for_ports(acl_interface, daemon->ports[0])) return 0; if(daemon->reuseport) { size_t i; for(i=1; inum_ports; i++) { if(!setup_acl_for_ports(acl_interface, daemon->ports[i])) return 0; } } return 1; } /** fast reload, add new change to list of auth zones */ static int fr_add_auth_zone_change(struct fast_reload_thread* fr, struct auth_zone* old_z, struct auth_zone* new_z, int is_deleted, int is_added, int is_changed) { struct fast_reload_auth_change* item; item = calloc(1, sizeof(*item)); if(!item) { log_err("malloc failure in add auth zone change"); return 0; } item->old_z = old_z; item->new_z = new_z; item->is_deleted = is_deleted; item->is_added = is_added; item->is_changed = is_changed; item->next = fr->auth_zone_change_list; fr->auth_zone_change_list = item; return 1; } /** See if auth master is equal */ static int xfr_auth_master_equal(struct auth_master* m1, struct auth_master* m2) { if(!m1 && !m2) return 1; if(!m1 || !m2) return 0; if((m1->host && !m2->host) || (!m1->host && m2->host)) return 0; if(m1->host && m2->host && strcmp(m1->host, m2->host) != 0) return 0; if((m1->file && !m2->file) || (!m1->file && m2->file)) return 0; if(m1->file && m2->file && strcmp(m1->file, m2->file) != 0) return 0; if((m1->http && !m2->http) || (!m1->http && m2->http)) return 0; if((m1->ixfr && !m2->ixfr) || (!m1->ixfr && m2->ixfr)) return 0; if((m1->allow_notify && !m2->allow_notify) || (!m1->allow_notify && m2->allow_notify)) return 0; if((m1->ssl && !m2->ssl) || (!m1->ssl && m2->ssl)) return 0; if(m1->port != m2->port) return 0; return 1; } /** See if list of auth masters is equal */ static int xfr_masterlist_equal(struct auth_master* list1, struct auth_master* list2) { struct auth_master* p1 = list1, *p2 = list2; while(p1 && p2) { if(!xfr_auth_master_equal(p1, p2)) return 0; p1 = p1->next; p2 = p2->next; } if(!p1 && !p2) return 1; return 0; } /** See if the list of masters has changed. */ static int xfr_masters_equal(struct auth_xfer* xfr1, struct auth_xfer* xfr2) { if(xfr1 == NULL && xfr2 == NULL) return 1; if(xfr1 == NULL && xfr2 != NULL) return 0; if(xfr1 != NULL && xfr2 == NULL) return 0; if(xfr_masterlist_equal(xfr1->task_probe->masters, xfr2->task_probe->masters) && xfr_masterlist_equal(xfr1->task_transfer->masters, xfr2->task_transfer->masters)) return 1; return 0; } /** Check what has changed in auth zones, like added and deleted zones */ static int auth_zones_check_changes(struct fast_reload_thread* fr, struct fast_reload_construct* ct) { /* Check every zone in turn. */ struct auth_zone* new_z, *old_z; struct module_env* env = &fr->worker->env; fr->old_auth_zones = ct->auth_zones; /* Nobody is using the new ct version yet. * Also the ct lock is picked up before the env lock for auth_zones. */ lock_rw_rdlock(&ct->auth_zones->lock); /* Find deleted zones by looping over the current list and looking * up in the new tree. */ lock_rw_rdlock(&env->auth_zones->lock); RBTREE_FOR(old_z, struct auth_zone*, &env->auth_zones->ztree) { new_z = auth_zone_find(ct->auth_zones, old_z->name, old_z->namelen, old_z->dclass); if(!new_z) { /* The zone has been removed. */ if(!fr_add_auth_zone_change(fr, old_z, NULL, 1, 0, 0)) { lock_rw_unlock(&env->auth_zones->lock); lock_rw_unlock(&ct->auth_zones->lock); return 0; } } } lock_rw_unlock(&env->auth_zones->lock); /* Find added zones by looping over new list and lookup in current. */ RBTREE_FOR(new_z, struct auth_zone*, &ct->auth_zones->ztree) { lock_rw_rdlock(&env->auth_zones->lock); old_z = auth_zone_find(env->auth_zones, new_z->name, new_z->namelen, new_z->dclass); if(!old_z) { /* The zone has been added. */ lock_rw_unlock(&env->auth_zones->lock); if(!fr_add_auth_zone_change(fr, NULL, new_z, 0, 1, 0)) { lock_rw_unlock(&ct->auth_zones->lock); return 0; } } else { uint32_t old_serial = 0, new_serial = 0; int have_old = 0, have_new = 0; struct auth_xfer* old_xfr, *new_xfr; lock_rw_rdlock(&new_z->lock); lock_rw_rdlock(&old_z->lock); new_xfr = auth_xfer_find(ct->auth_zones, new_z->name, new_z->namelen, new_z->dclass); old_xfr = auth_xfer_find(env->auth_zones, old_z->name, old_z->namelen, old_z->dclass); if(new_xfr) { lock_basic_lock(&new_xfr->lock); } if(old_xfr) { lock_basic_lock(&old_xfr->lock); } lock_rw_unlock(&env->auth_zones->lock); /* Change in the auth zone can be detected. */ /* A change in serial number means that auth_xfer * has to be updated. */ have_old = (auth_zone_get_serial(old_z, &old_serial)!=0); have_new = (auth_zone_get_serial(new_z, &new_serial)!=0); if(have_old != have_new || old_serial != new_serial || !xfr_masters_equal(old_xfr, new_xfr)) { /* The zone has been changed. */ if(!fr_add_auth_zone_change(fr, old_z, new_z, 0, 0, 1)) { lock_rw_unlock(&old_z->lock); lock_rw_unlock(&new_z->lock); lock_rw_unlock(&ct->auth_zones->lock); if(new_xfr) { lock_basic_unlock(&new_xfr->lock); } if(old_xfr) { lock_basic_unlock(&old_xfr->lock); } return 0; } } if(new_xfr) { lock_basic_unlock(&new_xfr->lock); } if(old_xfr) { lock_basic_unlock(&old_xfr->lock); } lock_rw_unlock(&old_z->lock); lock_rw_unlock(&new_z->lock); } } lock_rw_unlock(&ct->auth_zones->lock); return 1; } /** fast reload thread, construct from config the new items */ static int fr_construct_from_config(struct fast_reload_thread* fr, struct config_file* newcfg, struct fast_reload_construct* ct) { int have_view_respip_cfg = 0; if(!(ct->views = views_create())) { fr_construct_clear(ct); return 0; } if(!views_apply_cfg(ct->views, newcfg)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!(ct->acl = acl_list_create())) { fr_construct_clear(ct); return 0; } if(!acl_list_apply_cfg(ct->acl, newcfg, ct->views)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!(ct->acl_interface = acl_list_create())) { fr_construct_clear(ct); return 0; } if(!ct_acl_interface_setup_ports(ct->acl_interface, fr->worker->daemon)) { fr_construct_clear(ct); return 0; } if(!acl_interface_apply_cfg(ct->acl_interface, newcfg, ct->views)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!(ct->tcl = tcl_list_create())) { fr_construct_clear(ct); return 0; } if(!tcl_list_apply_cfg(ct->tcl, newcfg)) { fr_construct_clear(ct); return 0; } if(fr->worker->daemon->tcl->tree.count != 0) fr->worker->daemon->fast_reload_tcl_has_changes = 1; else fr->worker->daemon->fast_reload_tcl_has_changes = 0; if(fr_poll_for_quit(fr)) return 1; if(!(ct->auth_zones = auth_zones_create())) { fr_construct_clear(ct); return 0; } if(!auth_zones_apply_cfg(ct->auth_zones, newcfg, 1, &ct->use_rpz, fr->worker->daemon->env, &fr->worker->daemon->mods)) { fr_construct_clear(ct); return 0; } if(!auth_zones_check_changes(fr, ct)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!(ct->fwds = forwards_create())) { fr_construct_clear(ct); return 0; } if(!forwards_apply_cfg(ct->fwds, newcfg)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!(ct->hints = hints_create())) { fr_construct_clear(ct); return 0; } if(!hints_apply_cfg(ct->hints, newcfg)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!(ct->local_zones = local_zones_create())) { fr_construct_clear(ct); return 0; } if(!local_zones_apply_cfg(ct->local_zones, newcfg)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!(ct->respip_set = respip_set_create())) { fr_construct_clear(ct); return 0; } if(!respip_global_apply_cfg(ct->respip_set, newcfg)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!respip_views_apply_cfg(ct->views, newcfg, &have_view_respip_cfg)) { fr_construct_clear(ct); return 0; } ct->use_response_ip = !respip_set_is_empty(ct->respip_set) || have_view_respip_cfg; if(fr_poll_for_quit(fr)) return 1; if(!(ct->edns_strings = edns_strings_create())) { fr_construct_clear(ct); return 0; } if(!edns_strings_apply_cfg(ct->edns_strings, newcfg)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(fr->worker->env.anchors) { /* There are trust anchors already, so create it for reload. */ if(!(ct->anchors = anchors_create())) { fr_construct_clear(ct); return 0; } if(!anchors_apply_cfg(ct->anchors, newcfg)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; } if(!val_env_parse_key_iter(newcfg->val_nsec3_key_iterations, &ct->nsec3_keysize, &ct->nsec3_maxiter, &ct->nsec3_keyiter_count)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!read_fetch_policy(&ct->target_fetch_policy, &ct->max_dependency_depth, newcfg->target_fetch_policy)) { fr_construct_clear(ct); return 0; } if(!(ct->donotq = donotq_create())) { fr_construct_clear(ct); return 0; } if(!donotq_apply_cfg(ct->donotq, newcfg)) { fr_construct_clear(ct); return 0; } if(!(ct->priv = priv_create())) { fr_construct_clear(ct); return 0; } if(!priv_apply_cfg(ct->priv, newcfg)) { fr_construct_clear(ct); return 0; } if(newcfg->caps_whitelist) { if(!(ct->caps_white = caps_white_create())) { fr_construct_clear(ct); return 0; } if(!caps_white_apply_cfg(ct->caps_white, newcfg)) { fr_construct_clear(ct); return 0; } } if(!nat64_apply_cfg(&ct->nat64, newcfg)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!setup_wait_limits(&ct->wait_limits_netblock, &ct->wait_limits_cookie_netblock, newcfg)) { fr_construct_clear(ct); return 0; } if(!setup_domain_limits(&ct->domain_limits, newcfg)) { fr_construct_clear(ct); return 0; } if(fr_poll_for_quit(fr)) return 1; if(!(ct->oldcfg = (struct config_file*)calloc(1, sizeof(*ct->oldcfg)))) { fr_construct_clear(ct); log_err("out of memory"); return 0; } if(fr->fr_verb >= 2) { if(!fr_printmem(fr, newcfg, ct)) return 0; } return 1; } /** fast reload thread, finish timers */ static int fr_finish_time(struct fast_reload_thread* fr, struct timeval* time_start, struct timeval* time_read, struct timeval* time_construct, struct timeval* time_reload, struct timeval* time_end) { struct timeval total, readtime, constructtime, reloadtime, deletetime; if(gettimeofday(time_end, NULL) < 0) log_err("gettimeofday: %s", strerror(errno)); timeval_subtract(&total, time_end, time_start); timeval_subtract(&readtime, time_read, time_start); timeval_subtract(&constructtime, time_construct, time_read); timeval_subtract(&reloadtime, time_reload, time_construct); timeval_subtract(&deletetime, time_end, time_reload); if(!fr_output_printf(fr, "read disk %3d.%6.6ds\n", (int)readtime.tv_sec, (int)readtime.tv_usec)) return 0; if(!fr_output_printf(fr, "construct %3d.%6.6ds\n", (int)constructtime.tv_sec, (int)constructtime.tv_usec)) return 0; if(!fr_output_printf(fr, "reload %3d.%6.6ds\n", (int)reloadtime.tv_sec, (int)reloadtime.tv_usec)) return 0; if(!fr_output_printf(fr, "deletes %3d.%6.6ds\n", (int)deletetime.tv_sec, (int)deletetime.tv_usec)) return 0; if(!fr_output_printf(fr, "total time %3d.%6.6ds\n", (int)total.tv_sec, (int)total.tv_usec)) return 0; fr_send_notification(fr, fast_reload_notification_printout); return 1; } /** Swap auth zone information */ static void auth_zones_swap(struct auth_zones* az, struct auth_zones* data) { rbtree_type oldztree = az->ztree; int old_have_downstream = az->have_downstream; struct auth_zone* old_rpz_first = az->rpz_first; az->ztree = data->ztree; data->ztree = oldztree; az->have_downstream = data->have_downstream; data->have_downstream = old_have_downstream; /* Leave num_query_up and num_query_down, the statistics can * remain counted. */ az->rpz_first = data->rpz_first; data->rpz_first = old_rpz_first; /* The xtree is not swapped. This contains the auth_xfer elements * that contain tasks in progress, like zone transfers. * The unchanged zones can keep their tasks in the tree, and thus * the xfer elements can continue to be their callbacks. */ } #if defined(ATOMIC_POINTER_LOCK_FREE) && defined(HAVE_LINK_ATOMIC_STORE) /** Fast reload thread, if atomics are available, copy the config items * one by one with atomic store operations. */ static void fr_atomic_copy_cfg(struct config_file* oldcfg, struct config_file* cfg, struct config_file* newcfg) { #define COPY_VAR_int(var) oldcfg->var = cfg->var; atomic_store((_Atomic int*)&cfg->var, newcfg->var); newcfg->var = 0; #define COPY_VAR_ptr(var) oldcfg->var = cfg->var; atomic_store((void* _Atomic*)&cfg->var, newcfg->var); newcfg->var = 0; #define COPY_VAR_unsigned_int(var) oldcfg->var = cfg->var; atomic_store((_Atomic unsigned*)&cfg->var, newcfg->var); newcfg->var = 0; #define COPY_VAR_size_t(var) oldcfg->var = cfg->var; atomic_store((_Atomic size_t*)&cfg->var, newcfg->var); newcfg->var = 0; #define COPY_VAR_uint8_t(var) oldcfg->var = cfg->var; atomic_store((_Atomic uint8_t*)&cfg->var, newcfg->var); newcfg->var = 0; #define COPY_VAR_uint16_t(var) oldcfg->var = cfg->var; atomic_store((_Atomic uint16_t*)&cfg->var, newcfg->var); newcfg->var = 0; #define COPY_VAR_uint32_t(var) oldcfg->var = cfg->var; atomic_store((_Atomic uint32_t*)&cfg->var, newcfg->var); newcfg->var = 0; #define COPY_VAR_int32_t(var) oldcfg->var = cfg->var; atomic_store((_Atomic int32_t*)&cfg->var, newcfg->var); newcfg->var = 0; /* If config file items are missing from this list, they are * not updated by fast-reload +p. */ /* For missing items, the oldcfg item is not updated, still NULL, * and the cfg stays the same. The newcfg item is untouched. * The newcfg item is then deleted later. */ /* Items that need synchronisation are omitted from the list. * Use fast-reload without +p to update them together. */ COPY_VAR_int(verbosity); COPY_VAR_int(stat_interval); COPY_VAR_int(stat_cumulative); COPY_VAR_int(stat_extended); COPY_VAR_int(stat_inhibit_zero); COPY_VAR_int(num_threads); COPY_VAR_int(port); COPY_VAR_int(do_ip4); COPY_VAR_int(do_ip6); COPY_VAR_int(do_nat64); COPY_VAR_int(prefer_ip4); COPY_VAR_int(prefer_ip6); COPY_VAR_int(do_udp); COPY_VAR_int(do_tcp); COPY_VAR_size_t(max_reuse_tcp_queries); COPY_VAR_int(tcp_reuse_timeout); COPY_VAR_int(tcp_auth_query_timeout); COPY_VAR_int(tcp_upstream); COPY_VAR_int(udp_upstream_without_downstream); COPY_VAR_int(tcp_mss); COPY_VAR_int(outgoing_tcp_mss); COPY_VAR_int(tcp_idle_timeout); COPY_VAR_int(do_tcp_keepalive); COPY_VAR_int(tcp_keepalive_timeout); COPY_VAR_int(sock_queue_timeout); COPY_VAR_ptr(proxy_protocol_port); COPY_VAR_ptr(ssl_service_key); COPY_VAR_ptr(ssl_service_pem); COPY_VAR_int(ssl_port); COPY_VAR_int(ssl_upstream); COPY_VAR_ptr(tls_cert_bundle); COPY_VAR_int(tls_win_cert); COPY_VAR_ptr(tls_additional_port); /* The first is used to walk throught the list but last is * only used during config read. */ COPY_VAR_ptr(tls_session_ticket_keys.first); COPY_VAR_ptr(tls_session_ticket_keys.last); COPY_VAR_ptr(tls_ciphers); COPY_VAR_ptr(tls_ciphersuites); COPY_VAR_int(tls_use_sni); COPY_VAR_int(https_port); COPY_VAR_ptr(http_endpoint); COPY_VAR_uint32_t(http_max_streams); COPY_VAR_size_t(http_query_buffer_size); COPY_VAR_size_t(http_response_buffer_size); COPY_VAR_int(http_nodelay); COPY_VAR_int(http_notls_downstream); COPY_VAR_int(outgoing_num_ports); COPY_VAR_size_t(outgoing_num_tcp); COPY_VAR_size_t(incoming_num_tcp); COPY_VAR_ptr(outgoing_avail_ports); COPY_VAR_size_t(edns_buffer_size); COPY_VAR_size_t(stream_wait_size); COPY_VAR_size_t(msg_buffer_size); COPY_VAR_size_t(msg_cache_size); COPY_VAR_size_t(msg_cache_slabs); COPY_VAR_size_t(num_queries_per_thread); COPY_VAR_size_t(jostle_time); COPY_VAR_size_t(rrset_cache_size); COPY_VAR_size_t(rrset_cache_slabs); COPY_VAR_int(host_ttl); COPY_VAR_size_t(infra_cache_slabs); COPY_VAR_size_t(infra_cache_numhosts); COPY_VAR_int(infra_cache_min_rtt); COPY_VAR_int(infra_cache_max_rtt); COPY_VAR_int(infra_keep_probing); COPY_VAR_int(delay_close); COPY_VAR_int(udp_connect); COPY_VAR_ptr(target_fetch_policy); COPY_VAR_int(fast_server_permil); COPY_VAR_size_t(fast_server_num); COPY_VAR_int(if_automatic); COPY_VAR_ptr(if_automatic_ports); COPY_VAR_size_t(so_rcvbuf); COPY_VAR_size_t(so_sndbuf); COPY_VAR_int(so_reuseport); COPY_VAR_int(ip_transparent); COPY_VAR_int(ip_freebind); COPY_VAR_int(ip_dscp); /* Not copied because the length and items could then not match. num_ifs, ifs, num_out_ifs, out_ifs */ COPY_VAR_ptr(root_hints); COPY_VAR_ptr(stubs); COPY_VAR_ptr(forwards); COPY_VAR_ptr(auths); COPY_VAR_ptr(views); COPY_VAR_ptr(donotqueryaddrs); #ifdef CLIENT_SUBNET COPY_VAR_ptr(client_subnet); COPY_VAR_ptr(client_subnet_zone); COPY_VAR_uint16_t(client_subnet_opcode); COPY_VAR_int(client_subnet_always_forward); COPY_VAR_uint8_t(max_client_subnet_ipv4); COPY_VAR_uint8_t(max_client_subnet_ipv6); COPY_VAR_uint8_t(min_client_subnet_ipv4); COPY_VAR_uint8_t(min_client_subnet_ipv6); COPY_VAR_uint32_t(max_ecs_tree_size_ipv4); COPY_VAR_uint32_t(max_ecs_tree_size_ipv6); #endif COPY_VAR_ptr(acls); COPY_VAR_int(donotquery_localhost); COPY_VAR_ptr(tcp_connection_limits); COPY_VAR_int(harden_short_bufsize); COPY_VAR_int(harden_large_queries); COPY_VAR_int(harden_glue); COPY_VAR_int(harden_dnssec_stripped); COPY_VAR_int(harden_below_nxdomain); COPY_VAR_int(harden_referral_path); COPY_VAR_int(harden_algo_downgrade); COPY_VAR_int(harden_unknown_additional); COPY_VAR_int(use_caps_bits_for_id); COPY_VAR_ptr(caps_whitelist); COPY_VAR_ptr(private_address); COPY_VAR_ptr(private_domain); COPY_VAR_size_t(unwanted_threshold); COPY_VAR_int(max_ttl); COPY_VAR_int(min_ttl); COPY_VAR_int(max_negative_ttl); COPY_VAR_int(min_negative_ttl); COPY_VAR_int(prefetch); COPY_VAR_int(prefetch_key); COPY_VAR_int(deny_any); COPY_VAR_ptr(chrootdir); COPY_VAR_ptr(username); COPY_VAR_ptr(directory); COPY_VAR_ptr(logfile); COPY_VAR_ptr(pidfile); COPY_VAR_int(use_syslog); COPY_VAR_int(log_time_ascii); COPY_VAR_int(log_queries); COPY_VAR_int(log_replies); COPY_VAR_int(log_tag_queryreply); COPY_VAR_int(log_local_actions); COPY_VAR_int(log_servfail); COPY_VAR_ptr(log_identity); COPY_VAR_int(log_destaddr); COPY_VAR_int(hide_identity); COPY_VAR_int(hide_version); COPY_VAR_int(hide_trustanchor); COPY_VAR_int(hide_http_user_agent); COPY_VAR_ptr(identity); COPY_VAR_ptr(version); COPY_VAR_ptr(http_user_agent); COPY_VAR_ptr(nsid_cfg_str); /* Not copied because the length and items could then not match. nsid; nsid_len; */ COPY_VAR_ptr(module_conf); COPY_VAR_ptr(trust_anchor_file_list); COPY_VAR_ptr(trust_anchor_list); COPY_VAR_ptr(auto_trust_anchor_file_list); COPY_VAR_ptr(trusted_keys_file_list); COPY_VAR_ptr(domain_insecure); COPY_VAR_int(trust_anchor_signaling); COPY_VAR_int(root_key_sentinel); COPY_VAR_int32_t(val_date_override); COPY_VAR_int32_t(val_sig_skew_min); COPY_VAR_int32_t(val_sig_skew_max); COPY_VAR_int32_t(val_max_restart); COPY_VAR_int(bogus_ttl); COPY_VAR_int(val_clean_additional); COPY_VAR_int(val_log_level); COPY_VAR_int(val_log_squelch); COPY_VAR_int(val_permissive_mode); COPY_VAR_int(aggressive_nsec); COPY_VAR_int(ignore_cd); COPY_VAR_int(disable_edns_do); COPY_VAR_int(serve_expired); COPY_VAR_int(serve_expired_ttl); COPY_VAR_int(serve_expired_ttl_reset); COPY_VAR_int(serve_expired_reply_ttl); COPY_VAR_int(serve_expired_client_timeout); COPY_VAR_int(ede_serve_expired); COPY_VAR_int(dns_error_reporting); COPY_VAR_int(serve_original_ttl); COPY_VAR_ptr(val_nsec3_key_iterations); COPY_VAR_int(zonemd_permissive_mode); COPY_VAR_unsigned_int(add_holddown); COPY_VAR_unsigned_int(del_holddown); COPY_VAR_unsigned_int(keep_missing); COPY_VAR_int(permit_small_holddown); COPY_VAR_size_t(key_cache_size); COPY_VAR_size_t(key_cache_slabs); COPY_VAR_size_t(neg_cache_size); COPY_VAR_ptr(local_zones); COPY_VAR_ptr(local_zones_nodefault); #ifdef USE_IPSET COPY_VAR_ptr(local_zones_ipset); #endif COPY_VAR_int(local_zones_disable_default); COPY_VAR_ptr(local_data); COPY_VAR_ptr(local_zone_overrides); COPY_VAR_int(unblock_lan_zones); COPY_VAR_int(insecure_lan_zones); /* These reference tags COPY_VAR_ptr(local_zone_tags); COPY_VAR_ptr(acl_tags); COPY_VAR_ptr(acl_tag_actions); COPY_VAR_ptr(acl_tag_datas); */ COPY_VAR_ptr(acl_view); COPY_VAR_ptr(interface_actions); /* These reference tags COPY_VAR_ptr(interface_tags); COPY_VAR_ptr(interface_tag_actions); COPY_VAR_ptr(interface_tag_datas); */ COPY_VAR_ptr(interface_view); /* This references tags COPY_VAR_ptr(respip_tags); */ COPY_VAR_ptr(respip_actions); COPY_VAR_ptr(respip_data); /* Not copied because the length and items could then not match. * also the respip module keeps a pointer to the array in its state. tagname, num_tags */ COPY_VAR_int(remote_control_enable); /* The first is used to walk throught the list but last is * only used during config read. */ COPY_VAR_ptr(control_ifs.first); COPY_VAR_ptr(control_ifs.last); COPY_VAR_int(control_use_cert); COPY_VAR_int(control_port); COPY_VAR_ptr(server_key_file); COPY_VAR_ptr(server_cert_file); COPY_VAR_ptr(control_key_file); COPY_VAR_ptr(control_cert_file); COPY_VAR_ptr(python_script); COPY_VAR_ptr(dynlib_file); COPY_VAR_int(use_systemd); COPY_VAR_int(do_daemonize); COPY_VAR_int(minimal_responses); COPY_VAR_int(rrset_roundrobin); COPY_VAR_int(unknown_server_time_limit); COPY_VAR_int(discard_timeout); COPY_VAR_int(wait_limit); COPY_VAR_int(wait_limit_cookie); COPY_VAR_ptr(wait_limit_netblock); COPY_VAR_ptr(wait_limit_cookie_netblock); COPY_VAR_size_t(max_udp_size); COPY_VAR_ptr(dns64_prefix); COPY_VAR_int(dns64_synthall); COPY_VAR_ptr(dns64_ignore_aaaa); COPY_VAR_ptr(nat64_prefix); COPY_VAR_int(dnstap); COPY_VAR_int(dnstap_bidirectional); COPY_VAR_ptr(dnstap_socket_path); COPY_VAR_ptr(dnstap_ip); COPY_VAR_int(dnstap_tls); COPY_VAR_ptr(dnstap_tls_server_name); COPY_VAR_ptr(dnstap_tls_cert_bundle); COPY_VAR_ptr(dnstap_tls_client_key_file); COPY_VAR_ptr(dnstap_tls_client_cert_file); COPY_VAR_int(dnstap_send_identity); COPY_VAR_int(dnstap_send_version); COPY_VAR_ptr(dnstap_identity); COPY_VAR_ptr(dnstap_version); COPY_VAR_int(dnstap_sample_rate); COPY_VAR_int(dnstap_log_resolver_query_messages); COPY_VAR_int(dnstap_log_resolver_response_messages); COPY_VAR_int(dnstap_log_client_query_messages); COPY_VAR_int(dnstap_log_client_response_messages); COPY_VAR_int(dnstap_log_forwarder_query_messages); COPY_VAR_int(dnstap_log_forwarder_response_messages); COPY_VAR_int(disable_dnssec_lame_check); COPY_VAR_int(ip_ratelimit); COPY_VAR_int(ip_ratelimit_cookie); COPY_VAR_size_t(ip_ratelimit_slabs); COPY_VAR_size_t(ip_ratelimit_size); COPY_VAR_int(ip_ratelimit_factor); COPY_VAR_int(ip_ratelimit_backoff); COPY_VAR_int(ratelimit); COPY_VAR_size_t(ratelimit_slabs); COPY_VAR_size_t(ratelimit_size); COPY_VAR_ptr(ratelimit_for_domain); COPY_VAR_ptr(ratelimit_below_domain); COPY_VAR_int(ratelimit_factor); COPY_VAR_int(ratelimit_backoff); COPY_VAR_int(outbound_msg_retry); COPY_VAR_int(max_sent_count); COPY_VAR_int(max_query_restarts); COPY_VAR_int(qname_minimisation); COPY_VAR_int(qname_minimisation_strict); COPY_VAR_int(shm_enable); COPY_VAR_int(shm_key); COPY_VAR_ptr(edns_client_strings); COPY_VAR_uint16_t(edns_client_string_opcode); COPY_VAR_int(dnscrypt); COPY_VAR_int(dnscrypt_port); COPY_VAR_ptr(dnscrypt_provider); COPY_VAR_ptr(dnscrypt_secret_key); COPY_VAR_ptr(dnscrypt_provider_cert); COPY_VAR_ptr(dnscrypt_provider_cert_rotated); COPY_VAR_size_t(dnscrypt_shared_secret_cache_size); COPY_VAR_size_t(dnscrypt_shared_secret_cache_slabs); COPY_VAR_size_t(dnscrypt_nonce_cache_size); COPY_VAR_size_t(dnscrypt_nonce_cache_slabs); COPY_VAR_int(pad_responses); COPY_VAR_size_t(pad_responses_block_size); COPY_VAR_int(pad_queries); COPY_VAR_size_t(pad_queries_block_size); #ifdef USE_IPSECMOD COPY_VAR_int(ipsecmod_enabled); COPY_VAR_ptr(ipsecmod_whitelist); COPY_VAR_ptr(ipsecmod_hook); COPY_VAR_int(ipsecmod_ignore_bogus); COPY_VAR_int(ipsecmod_max_ttl); COPY_VAR_int(ipsecmod_strict); #endif #ifdef USE_CACHEDB COPY_VAR_ptr(cachedb_backend); COPY_VAR_ptr(cachedb_secret); COPY_VAR_int(cachedb_no_store); COPY_VAR_int(cachedb_check_when_serve_expired); #ifdef USE_REDIS COPY_VAR_ptr(redis_server_host); COPY_VAR_ptr(redis_replica_server_host); COPY_VAR_int(redis_server_port); COPY_VAR_int(redis_replica_server_port); COPY_VAR_ptr(redis_server_path); COPY_VAR_ptr(redis_replica_server_path); COPY_VAR_ptr(redis_server_password); COPY_VAR_ptr(redis_replica_server_password); COPY_VAR_int(redis_timeout); COPY_VAR_int(redis_replica_timeout); COPY_VAR_int(redis_command_timeout); COPY_VAR_int(redis_replica_command_timeout); COPY_VAR_int(redis_connect_timeout); COPY_VAR_int(redis_replica_connect_timeout); COPY_VAR_int(redis_expire_records); COPY_VAR_int(redis_logical_db); COPY_VAR_int(redis_replica_logical_db); #endif #endif COPY_VAR_int(do_answer_cookie); /* Not copied because the length and content could then not match. cookie_secret[40], cookie_secret_len */ #ifdef USE_IPSET COPY_VAR_ptr(ipset_name_v4); COPY_VAR_ptr(ipset_name_v6); #endif COPY_VAR_int(ede); } #endif /* ATOMIC_POINTER_LOCK_FREE && HAVE_LINK_ATOMIC_STORE */ /** fast reload thread, adjust the cache sizes */ static void fr_adjust_cache(struct module_env* env, struct config_file* oldcfg) { if(env->cfg->msg_cache_size != oldcfg->msg_cache_size) slabhash_adjust_size(env->msg_cache, env->cfg->msg_cache_size); if(env->cfg->rrset_cache_size != oldcfg->rrset_cache_size) slabhash_adjust_size(&env->rrset_cache->table, env->cfg->rrset_cache_size); if(env->key_cache && env->cfg->key_cache_size != oldcfg->key_cache_size) slabhash_adjust_size(env->key_cache->slab, env->cfg->key_cache_size); if(env->cfg->infra_cache_numhosts != oldcfg->infra_cache_numhosts) { size_t inframem = env->cfg->infra_cache_numhosts * (sizeof(struct infra_key) + sizeof(struct infra_data) + INFRA_BYTES_NAME); slabhash_adjust_size(env->infra_cache->hosts, inframem); } if(env->cfg->ratelimit_size != oldcfg->ratelimit_size) { slabhash_adjust_size(env->infra_cache->domain_rates, env->cfg->ratelimit_size); slabhash_adjust_size(env->infra_cache->client_ip_rates, env->cfg->ratelimit_size); } if(env->neg_cache && env->cfg->neg_cache_size != oldcfg->neg_cache_size) { val_neg_adjust_size(env->neg_cache, env->cfg->neg_cache_size); } } /** fast reload thread, adjust the iterator env */ static void fr_adjust_iter_env(struct module_env* env, struct fast_reload_construct* ct) { int m; struct iter_env* iter_env = NULL; /* There is no comparison here to see if no options changed and thus * no swap is needed, the trees with addresses and domains can be * large and that would take too long. Instead the trees are * swapped in. */ /* Because the iterator env is not locked, the update cannot happen * when fr nopause is used. Without it the fast reload pauses the * other threads, so they are not currently using the structure. */ m = modstack_find(env->modstack, "iterator"); if(m != -1) iter_env = (struct iter_env*)env->modinfo[m]; if(iter_env) { /* Swap the data so that the delete happens afterwards. */ int* oldtargetfetchpolicy = iter_env->target_fetch_policy; int oldmaxdependencydepth = iter_env->max_dependency_depth; struct iter_donotq* olddonotq = iter_env->donotq; struct iter_priv* oldpriv = iter_env->priv; struct rbtree_type* oldcapswhite = iter_env->caps_white; struct iter_nat64 oldnat64 = iter_env->nat64; iter_env->target_fetch_policy = ct->target_fetch_policy; iter_env->max_dependency_depth = ct->max_dependency_depth; iter_env->donotq = ct->donotq; iter_env->priv = ct->priv; iter_env->caps_white = ct->caps_white; iter_env->nat64 = ct->nat64; iter_env->outbound_msg_retry = env->cfg->outbound_msg_retry; iter_env->max_sent_count = env->cfg->max_sent_count; iter_env->max_query_restarts = env->cfg->max_query_restarts; ct->target_fetch_policy = oldtargetfetchpolicy; ct->max_dependency_depth = oldmaxdependencydepth; ct->donotq = olddonotq; ct->priv = oldpriv; ct->caps_white = oldcapswhite; ct->nat64 = oldnat64; } } /** fast reload thread, adjust the validator env */ static void fr_adjust_val_env(struct module_env* env, struct fast_reload_construct* ct, struct config_file* oldcfg) { int m; struct val_env* val_env = NULL; if(env->cfg->bogus_ttl == oldcfg->bogus_ttl && env->cfg->val_date_override == oldcfg->val_date_override && env->cfg->val_sig_skew_min == oldcfg->val_sig_skew_min && env->cfg->val_sig_skew_max == oldcfg->val_sig_skew_max && env->cfg->val_max_restart == oldcfg->val_max_restart && strcmp(env->cfg->val_nsec3_key_iterations, oldcfg->val_nsec3_key_iterations) == 0) return; /* no changes */ /* Because the validator env is not locked, the update cannot happen * when fr nopause is used. Without it the fast reload pauses the * other threads, so they are not currently using the structure. */ m = modstack_find(env->modstack, "validator"); if(m != -1) val_env = (struct val_env*)env->modinfo[m]; if(val_env) { /* Swap the arrays so that the delete happens afterwards. */ size_t* oldkeysize = val_env->nsec3_keysize; size_t* oldmaxiter = val_env->nsec3_maxiter; val_env->nsec3_keysize = NULL; val_env->nsec3_maxiter = NULL; val_env_apply_cfg(val_env, env->cfg, ct->nsec3_keysize, ct->nsec3_maxiter, ct->nsec3_keyiter_count); ct->nsec3_keysize = oldkeysize; ct->nsec3_maxiter = oldmaxiter; if(env->neg_cache) { lock_basic_lock(&env->neg_cache->lock); env->neg_cache->nsec3_max_iter = val_env-> nsec3_maxiter[val_env->nsec3_keyiter_count-1]; lock_basic_unlock(&env->neg_cache->lock); } } } /** fast reload thread, adjust the infra cache parameters */ static void fr_adjust_infra(struct module_env* env, struct fast_reload_construct* ct) { struct infra_cache* infra = env->infra_cache; struct config_file* cfg = env->cfg; struct rbtree_type oldwaitlim = infra->wait_limits_netblock; struct rbtree_type oldwaitlimcookie = infra->wait_limits_cookie_netblock; struct rbtree_type olddomainlim = infra->domain_limits; /* The size of the infra cache and ip rates is changed * in fr_adjust_cache. */ infra->host_ttl = cfg->host_ttl; infra->infra_keep_probing = cfg->infra_keep_probing; infra_dp_ratelimit = cfg->ratelimit; infra_ip_ratelimit = cfg->ip_ratelimit; infra_ip_ratelimit_cookie = cfg->ip_ratelimit_cookie; infra->wait_limits_netblock = ct->wait_limits_netblock; infra->wait_limits_cookie_netblock = ct->wait_limits_cookie_netblock; infra->domain_limits = ct->domain_limits; ct->wait_limits_netblock = oldwaitlim; ct->wait_limits_cookie_netblock = oldwaitlimcookie; ct->domain_limits = olddomainlim; } /** fast reload thread, reload config with putting the new config items * in place and swapping out the old items. */ static int fr_reload_config(struct fast_reload_thread* fr, struct config_file* newcfg, struct fast_reload_construct* ct) { struct daemon* daemon = fr->worker->daemon; struct module_env* env = daemon->env; /* These are constructed in the fr_construct_from_config routine. */ log_assert(ct->oldcfg); log_assert(ct->fwds); log_assert(ct->hints); /* Grab big locks to satisfy lock conditions. */ lock_rw_wrlock(&ct->views->lock); lock_rw_wrlock(&env->views->lock); lock_rw_wrlock(&ct->respip_set->lock); lock_rw_wrlock(&env->respip_set->lock); lock_rw_wrlock(&ct->local_zones->lock); lock_rw_wrlock(&daemon->local_zones->lock); lock_rw_wrlock(&ct->auth_zones->rpz_lock); lock_rw_wrlock(&env->auth_zones->rpz_lock); lock_rw_wrlock(&ct->auth_zones->lock); lock_rw_wrlock(&env->auth_zones->lock); lock_rw_wrlock(&ct->fwds->lock); lock_rw_wrlock(&env->fwds->lock); lock_rw_wrlock(&ct->hints->lock); lock_rw_wrlock(&env->hints->lock); if(ct->anchors) { lock_basic_lock(&ct->anchors->lock); lock_basic_lock(&env->anchors->lock); } #if defined(ATOMIC_POINTER_LOCK_FREE) && defined(HAVE_LINK_ATOMIC_STORE) if(fr->fr_nopause) { fr_atomic_copy_cfg(ct->oldcfg, env->cfg, newcfg); } else { #endif /* Store old config elements. */ *ct->oldcfg = *env->cfg; /* Insert new config elements. */ *env->cfg = *newcfg; #if defined(ATOMIC_POINTER_LOCK_FREE) && defined(HAVE_LINK_ATOMIC_STORE) } #endif if(env->cfg->log_identity || ct->oldcfg->log_identity) { /* pick up new log_identity string to use for log output. */ log_ident_set_or_default(env->cfg->log_identity); } /* the newcfg elements are in env->cfg, so should not be freed here. */ #if defined(ATOMIC_POINTER_LOCK_FREE) && defined(HAVE_LINK_ATOMIC_STORE) /* if used, the routine that copies the config has zeroed items. */ if(!fr->fr_nopause) #endif memset(newcfg, 0, sizeof(*newcfg)); /* Quickly swap the tree roots themselves with the already allocated * elements. This is a quick swap operation on the pointer. * The other threads are stopped and locks are held, so that a * consistent view of the configuration, before, and after, exists * towards the state machine for query resolution. */ forwards_swap_tree(env->fwds, ct->fwds); hints_swap_tree(env->hints, ct->hints); views_swap_tree(env->views, ct->views); acl_list_swap_tree(daemon->acl, ct->acl); acl_list_swap_tree(daemon->acl_interface, ct->acl_interface); tcl_list_swap_tree(daemon->tcl, ct->tcl); local_zones_swap_tree(daemon->local_zones, ct->local_zones); respip_set_swap_tree(env->respip_set, ct->respip_set); daemon->use_response_ip = ct->use_response_ip; daemon->use_rpz = ct->use_rpz; auth_zones_swap(env->auth_zones, ct->auth_zones); edns_strings_swap_tree(env->edns_strings, ct->edns_strings); anchors_swap_tree(env->anchors, ct->anchors); #ifdef USE_CACHEDB daemon->env->cachedb_enabled = cachedb_is_enabled(&daemon->mods, daemon->env); #endif #ifdef USE_DNSTAP if(env->cfg->dnstap) { if(!fr->fr_nopause) dt_apply_cfg(daemon->dtenv, env->cfg); else dt_apply_logcfg(daemon->dtenv, env->cfg); } #endif fr_adjust_cache(env, ct->oldcfg); if(!fr->fr_nopause) { fr_adjust_iter_env(env, ct); fr_adjust_val_env(env, ct, ct->oldcfg); fr_adjust_infra(env, ct); } /* Set globals with new config. */ config_apply(env->cfg); lock_rw_unlock(&ct->views->lock); lock_rw_unlock(&env->views->lock); lock_rw_unlock(&ct->respip_set->lock); lock_rw_unlock(&env->respip_set->lock); lock_rw_unlock(&ct->local_zones->lock); lock_rw_unlock(&daemon->local_zones->lock); lock_rw_unlock(&ct->auth_zones->lock); lock_rw_unlock(&env->auth_zones->lock); lock_rw_unlock(&ct->auth_zones->rpz_lock); lock_rw_unlock(&env->auth_zones->rpz_lock); lock_rw_unlock(&ct->fwds->lock); lock_rw_unlock(&env->fwds->lock); lock_rw_unlock(&ct->hints->lock); lock_rw_unlock(&env->hints->lock); if(ct->anchors) { lock_basic_unlock(&ct->anchors->lock); lock_basic_unlock(&env->anchors->lock); } return 1; } /** fast reload, poll for ack incoming. */ static void fr_poll_for_ack(struct fast_reload_thread* fr) { int loopexit = 0, bcount = 0; uint32_t cmd; ssize_t ret; if(fr->need_to_quit) return; /* Is there data? */ if(!sock_poll_timeout(fr->commpair[1], -1, 1, 0, NULL)) { log_err("fr_poll_for_ack: poll failed"); return; } /* Read the data */ while(1) { if(++loopexit > IPC_LOOP_MAX) { log_err("fr_poll_for_ack: recv loops %s", sock_strerror(errno)); return; } ret = recv(fr->commpair[1], ((char*)&cmd)+bcount, sizeof(cmd)-bcount, 0); if(ret == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK #endif ) continue; /* Try again. */ log_err("fr_poll_for_ack: recv: %s", sock_strerror(errno)); return; } else if(ret+(ssize_t)bcount != sizeof(cmd)) { bcount += ret; if((size_t)bcount < sizeof(cmd)) continue; } break; } if(cmd == fast_reload_notification_exit) { fr->need_to_quit = 1; verbose(VERB_ALGO, "fast reload wait for ack: " "exit notification received"); return; } if(cmd != fast_reload_notification_reload_ack) { verbose(VERB_ALGO, "fast reload wait for ack: " "wrong notification %d", (int)cmd); } } /** fast reload thread, reload ipc communication to stop and start threads. */ static int fr_reload_ipc(struct fast_reload_thread* fr, struct config_file* newcfg, struct fast_reload_construct* ct) { int result = 1; if(!fr->fr_nopause) { fr_send_notification(fr, fast_reload_notification_reload_stop); fr_poll_for_ack(fr); } if(!fr_reload_config(fr, newcfg, ct)) { result = 0; } if(!fr->fr_nopause) { fr_send_notification(fr, fast_reload_notification_reload_start); fr_poll_for_ack(fr); } return result; } /** fast reload thread, load config */ static int fr_load_config(struct fast_reload_thread* fr, struct timeval* time_read, struct timeval* time_construct, struct timeval* time_reload) { struct fast_reload_construct ct; struct config_file* newcfg = NULL; memset(&ct, 0, sizeof(ct)); /* Read file. */ if(!fr_read_config(fr, &newcfg)) return 0; if(gettimeofday(time_read, NULL) < 0) log_err("gettimeofday: %s", strerror(errno)); if(fr_poll_for_quit(fr)) { config_delete(newcfg); return 1; } /* Check if the config can be loaded */ if(!fr_check_tag_defines(fr, newcfg)) { config_delete(newcfg); return 0; } if(!fr_check_compat_cfg(fr, newcfg)) { config_delete(newcfg); return 0; } if(!fr_check_nopause_cfg(fr, newcfg)) { config_delete(newcfg); return 0; } if(fr_poll_for_quit(fr)) { config_delete(newcfg); return 1; } /* Construct items. */ if(!fr_construct_from_config(fr, newcfg, &ct)) { config_delete(newcfg); if(!fr_output_printf(fr, "Could not construct from the " "config, check for errors with unbound-checkconf, or " "out of memory. The parse errors are printed in " "the log.\n")) return 0; fr_send_notification(fr, fast_reload_notification_printout); return 0; } if(gettimeofday(time_construct, NULL) < 0) log_err("gettimeofday: %s", strerror(errno)); if(fr_poll_for_quit(fr)) { config_delete(newcfg); fr_construct_clear(&ct); return 1; } /* Reload server. */ if(!fr_reload_ipc(fr, newcfg, &ct)) { config_delete(newcfg); fr_construct_clear(&ct); if(!fr_output_printf(fr, "error: reload failed\n")) return 0; fr_send_notification(fr, fast_reload_notification_printout); return 0; } if(gettimeofday(time_reload, NULL) < 0) log_err("gettimeofday: %s", strerror(errno)); if(fr_poll_for_quit(fr)) { config_delete(newcfg); fr_construct_clear(&ct); return 1; } if(fr->fr_nopause) { /* Poll every thread, with a no-work poll item over the * command pipe. This makes the worker thread surely move * to deal with that event, and thus the thread is no longer * holding, eg. a string item from the old config struct. * And then the old config struct can safely be deleted. * Only needed when nopause is used, because without that * the worker threads are already waiting on a command pipe * item. This nopause command pipe item does not take work, * it returns immediately, so it does not delay the workers. * They can be polled one at a time. But its processing causes * the worker to have released data items from old config. * This also makes sure the threads are not holding locks on * individual items in the local_zones, views, respip_set. */ fr_send_notification(fr, fast_reload_notification_reload_nopause_poll); fr_poll_for_ack(fr); } /* Delete old. */ config_delete(newcfg); fr_construct_clear(&ct); return 1; } /** fast reload thread. the thread main function */ static void* fast_reload_thread_main(void* arg) { struct fast_reload_thread* fast_reload_thread = (struct fast_reload_thread*)arg; struct timeval time_start, time_read, time_construct, time_reload, time_end; log_thread_set(&fast_reload_thread->threadnum); verbose(VERB_ALGO, "start fast reload thread"); if(fast_reload_thread->fr_verb >= 1) { fr_init_time(&time_start, &time_read, &time_construct, &time_reload, &time_end); if(fr_poll_for_quit(fast_reload_thread)) goto done; } /* print output to the client */ if(fast_reload_thread->fr_verb >= 1) { if(!fr_output_printf(fast_reload_thread, "thread started\n")) goto done_error; fr_send_notification(fast_reload_thread, fast_reload_notification_printout); if(fr_poll_for_quit(fast_reload_thread)) goto done; } if(!fr_load_config(fast_reload_thread, &time_read, &time_construct, &time_reload)) goto done_error; if(fr_poll_for_quit(fast_reload_thread)) goto done; if(fast_reload_thread->fr_verb >= 1) { if(!fr_finish_time(fast_reload_thread, &time_start, &time_read, &time_construct, &time_reload, &time_end)) goto done_error; if(fr_poll_for_quit(fast_reload_thread)) goto done; } if(!fr_output_printf(fast_reload_thread, "ok\n")) goto done_error; fr_send_notification(fast_reload_thread, fast_reload_notification_printout); verbose(VERB_ALGO, "stop fast reload thread"); /* If this is not an exit due to quit earlier, send regular done. */ if(!fast_reload_thread->need_to_quit) fr_send_notification(fast_reload_thread, fast_reload_notification_done); /* If during the fast_reload_notification_done send, * fast_reload_notification_exit was received, ack it. If the * thread is exiting due to quit received earlier, also ack it.*/ done: if(fast_reload_thread->need_to_quit) fr_send_notification(fast_reload_thread, fast_reload_notification_exited); return NULL; done_error: verbose(VERB_ALGO, "stop fast reload thread with done_error"); fr_send_notification(fast_reload_thread, fast_reload_notification_done_error); return NULL; } #endif /* !THREADS_DISABLED */ /** create a socketpair for bidirectional communication, false on failure */ static int create_socketpair(int* pair, struct ub_randstate* rand) { #ifndef USE_WINSOCK if(socketpair(AF_UNIX, SOCK_STREAM, 0, pair) == -1) { log_err("socketpair: %s", strerror(errno)); return 0; } (void)rand; #else struct sockaddr_in addr, baddr, accaddr, connaddr; socklen_t baddrlen, accaddrlen, connaddrlen; uint8_t localhost[] = {127, 0, 0, 1}; uint8_t nonce[16], recvnonce[16]; size_t i; int lst, pollin_event, bcount, loopcount; int connect_poll_timeout = 200; /* msec to wait for connection */ ssize_t ret; pair[0] = -1; pair[1] = -1; for(i=0; i (socklen_t)sizeof(baddr)) { log_err("create socketpair: getsockname returned addr too big"); sock_close(lst); sock_close(pair[1]); pair[1] = -1; return 0; } /* the socket is blocking */ if(connect(pair[1], (struct sockaddr*)&baddr, baddrlen) == -1) { log_err("create socketpair: connect: %s", sock_strerror(errno)); sock_close(lst); sock_close(pair[1]); pair[1] = -1; return 0; } if(!sock_poll_timeout(lst, connect_poll_timeout, 1, 0, &pollin_event)) { log_err("create socketpair: poll for accept failed: %s", sock_strerror(errno)); sock_close(lst); sock_close(pair[1]); pair[1] = -1; return 0; } if(!pollin_event) { log_err("create socketpair: poll timeout for accept"); sock_close(lst); sock_close(pair[1]); pair[1] = -1; return 0; } accaddrlen = (socklen_t)sizeof(accaddr); pair[0] = accept(lst, (struct sockaddr*)&accaddr, &accaddrlen); if(pair[0] == -1) { log_err("create socketpair: accept: %s", sock_strerror(errno)); sock_close(lst); sock_close(pair[1]); pair[1] = -1; return 0; } if(accaddrlen > (socklen_t)sizeof(accaddr)) { log_err("create socketpair: accept returned addr too big"); sock_close(lst); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } if(accaddr.sin_family != AF_INET || memcmp(localhost, &accaddr.sin_addr, 4) != 0) { log_err("create socketpair: accept from wrong address"); sock_close(lst); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } connaddrlen = (socklen_t)sizeof(connaddr); if(getsockname(pair[1], (struct sockaddr*)&connaddr, &connaddrlen) == -1) { log_err("create socketpair: getsockname connectedaddr: %s", sock_strerror(errno)); sock_close(lst); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } if(connaddrlen > (socklen_t)sizeof(connaddr)) { log_err("create socketpair: getsockname connectedaddr returned addr too big"); sock_close(lst); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } if(connaddr.sin_family != AF_INET || memcmp(localhost, &connaddr.sin_addr, 4) != 0) { log_err("create socketpair: getsockname connectedaddr returned wrong address"); sock_close(lst); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } if(accaddr.sin_port != connaddr.sin_port) { log_err("create socketpair: accept from wrong port"); sock_close(lst); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } sock_close(lst); loopcount = 0; bcount = 0; while(1) { if(++loopcount > IPC_LOOP_MAX) { log_err("create socketpair: send failed due to loop"); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } ret = send(pair[1], (void*)(nonce+bcount), sizeof(nonce)-bcount, 0); if(ret == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK #endif ) continue; /* Try again. */ log_err("create socketpair: send: %s", sock_strerror(errno)); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } else if(ret+(ssize_t)bcount != sizeof(nonce)) { bcount += ret; if((size_t)bcount < sizeof(nonce)) continue; } break; } if(!sock_poll_timeout(pair[0], connect_poll_timeout, 1, 0, &pollin_event)) { log_err("create socketpair: poll failed: %s", sock_strerror(errno)); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } if(!pollin_event) { log_err("create socketpair: poll timeout for recv"); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } loopcount = 0; bcount = 0; while(1) { if(++loopcount > IPC_LOOP_MAX) { log_err("create socketpair: recv failed due to loop"); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } ret = recv(pair[0], (void*)(recvnonce+bcount), sizeof(nonce)-bcount, 0); if(ret == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK #endif ) continue; /* Try again. */ log_err("create socketpair: recv: %s", sock_strerror(errno)); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } else if(ret == 0) { log_err("create socketpair: stream closed"); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } else if(ret+(ssize_t)bcount != sizeof(nonce)) { bcount += ret; if((size_t)bcount < sizeof(nonce)) continue; } break; } if(memcmp(nonce, recvnonce, sizeof(nonce)) != 0) { log_err("create socketpair: recv wrong nonce"); sock_close(pair[0]); sock_close(pair[1]); pair[0] = -1; pair[1] = -1; return 0; } #endif return 1; } /** fast reload thread. setup the thread info */ static int fast_reload_thread_setup(struct worker* worker, int fr_verb, int fr_nopause, int fr_drop_mesh) { struct fast_reload_thread* fr; int numworkers = worker->daemon->num; worker->daemon->fast_reload_thread = (struct fast_reload_thread*) calloc(1, sizeof(*worker->daemon->fast_reload_thread)); if(!worker->daemon->fast_reload_thread) return 0; fr = worker->daemon->fast_reload_thread; fr->fr_verb = fr_verb; fr->fr_nopause = fr_nopause; fr->fr_drop_mesh = fr_drop_mesh; worker->daemon->fast_reload_drop_mesh = fr->fr_drop_mesh; /* The thread id printed in logs, numworker+1 is the dnstap thread. * This is numworkers+2. */ fr->threadnum = numworkers+2; fr->commpair[0] = -1; fr->commpair[1] = -1; fr->commreload[0] = -1; fr->commreload[1] = -1; if(!create_socketpair(fr->commpair, worker->daemon->rand)) { free(fr); worker->daemon->fast_reload_thread = NULL; return 0; } fr->worker = worker; fr->fr_output = (struct config_strlist_head*)calloc(1, sizeof(*fr->fr_output)); if(!fr->fr_output) { sock_close(fr->commpair[0]); sock_close(fr->commpair[1]); free(fr); worker->daemon->fast_reload_thread = NULL; return 0; } if(!create_socketpair(fr->commreload, worker->daemon->rand)) { sock_close(fr->commpair[0]); sock_close(fr->commpair[1]); free(fr->fr_output); free(fr); worker->daemon->fast_reload_thread = NULL; return 0; } lock_basic_init(&fr->fr_output_lock); lock_protect(&fr->fr_output_lock, fr->fr_output, sizeof(*fr->fr_output)); return 1; } /** fast reload, delete auth zone change list */ static void fr_auth_change_list_delete( struct fast_reload_auth_change* auth_zone_change_list) { struct fast_reload_auth_change* item, *next; item = auth_zone_change_list; while(item) { next = item->next; free(item); item = next; } } /** fast reload thread. desetup and delete the thread info. */ static void fast_reload_thread_desetup(struct fast_reload_thread* fast_reload_thread) { if(!fast_reload_thread) return; if(fast_reload_thread->service_event && fast_reload_thread->service_event_is_added) { ub_event_del(fast_reload_thread->service_event); fast_reload_thread->service_event_is_added = 0; } if(fast_reload_thread->service_event) ub_event_free(fast_reload_thread->service_event); sock_close(fast_reload_thread->commpair[0]); sock_close(fast_reload_thread->commpair[1]); sock_close(fast_reload_thread->commreload[0]); sock_close(fast_reload_thread->commreload[1]); if(fast_reload_thread->printq) { fr_main_perform_printout(fast_reload_thread); /* If it is empty now, there is nothing to print on fd. */ if(fr_printq_empty(fast_reload_thread->printq)) { fr_printq_delete(fast_reload_thread->printq); } else { /* Keep the printq around to printout the remaining * text to the remote client. Until it is done, it * sits on a list, that is in the daemon struct. * The event can then spool the remaining text to the * remote client and eventually delete itself from the * callback. */ fr_printq_list_insert(fast_reload_thread->printq, fast_reload_thread->worker->daemon); fast_reload_thread->printq = NULL; } } lock_basic_destroy(&fast_reload_thread->fr_output_lock); if(fast_reload_thread->fr_output) { config_delstrlist(fast_reload_thread->fr_output->first); free(fast_reload_thread->fr_output); } fr_auth_change_list_delete(fast_reload_thread->auth_zone_change_list); free(fast_reload_thread); } /** * Fast reload thread, send a command to the thread. Blocking on timeout. * It handles received input from the thread, if any is received. */ static void fr_send_cmd_to(struct fast_reload_thread* fr, enum fast_reload_notification status, int check_cmds, int blocking) { int outevent, loopexit = 0, bcount = 0; uint32_t cmd; ssize_t ret; verbose(VERB_ALGO, "send notification to fast reload thread: %s", fr_notification_to_string(status)); cmd = status; while(1) { if(++loopexit > IPC_LOOP_MAX) { log_err("send notification to fast reload: could not send notification: loop"); return; } if(check_cmds) fr_check_cmd_from_thread(fr); /* wait for socket to become writable */ if(!sock_poll_timeout(fr->commpair[0], (blocking?-1:IPC_NOTIFICATION_WAIT), 0, 1, &outevent)) { log_err("send notification to fast reload: poll failed"); return; } if(!outevent) continue; /* keep static analyzer happy; send(-1,..) */ log_assert(fr->commpair[0] >= 0); ret = send(fr->commpair[0], ((char*)&cmd)+bcount, sizeof(cmd)-bcount, 0); if(ret == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK #endif ) continue; /* Try again. */ log_err("send notification to fast reload: send: %s", sock_strerror(errno)); return; } else if(ret+(ssize_t)bcount != sizeof(cmd)) { bcount += ret; if((size_t)bcount < sizeof(cmd)) continue; } break; } } /** Fast reload, the main thread handles that the fast reload thread has * exited. */ static void fr_main_perform_done(struct fast_reload_thread* fr) { struct worker* worker = fr->worker; verbose(VERB_ALGO, "join with fastreload thread"); ub_thread_join(fr->tid); verbose(VERB_ALGO, "joined with fastreload thread"); fast_reload_thread_desetup(fr); worker->daemon->fast_reload_thread = NULL; } /** Append strlist after strlist */ static void cfg_strlist_append_listhead(struct config_strlist_head* list, struct config_strlist_head* more) { if(!more->first) return; if(list->last) list->last->next = more->first; else list->first = more->first; list->last = more->last; } /** Fast reload, the remote control thread handles that the fast reload thread * has output to be printed, on the linked list that is locked. */ static void fr_main_perform_printout(struct fast_reload_thread* fr) { struct config_strlist_head out; /* Fetch the list of items to be printed */ lock_basic_lock(&fr->fr_output_lock); out.first = fr->fr_output->first; out.last = fr->fr_output->last; fr->fr_output->first = NULL; fr->fr_output->last = NULL; lock_basic_unlock(&fr->fr_output_lock); if(!fr->printq || !fr->printq->client_cp) { /* There is no output socket, delete it. */ config_delstrlist(out.first); return; } /* Put them on the output list, not locked because the list * producer and consumer are both owned by the remote control thread, * it moves the items to the list for printing in the event callback * for the client_cp. */ cfg_strlist_append_listhead(fr->printq->to_print, &out); /* Set the client_cp to output if not already */ if(!fr->printq->client_cp->event_added) comm_point_listen_for_rw(fr->printq->client_cp, 0, 1); } /** fast reload, receive ack from workers that they are waiting, run * by the mainthr after sending them reload_stop. */ static void fr_read_ack_from_workers(struct fast_reload_thread* fr) { struct daemon* daemon = fr->worker->daemon; /* Every worker sends one byte, wait for num-1 bytes. */ int count=0, total=daemon->num-1; while(count < total) { uint8_t r; ssize_t ret; ret = recv(fr->commreload[0], (void*)&r, 1, 0); if(ret == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK #endif ) continue; /* Try again */ log_err("worker reload ack: recv failed: %s", sock_strerror(errno)); return; } count++; verbose(VERB_ALGO, "worker reload ack from (uint8_t)%d", (int)r); } } /** fast reload, poll for reload_start in mainthr waiting on a notification * from the fast reload thread. */ static void fr_poll_for_reload_start(struct fast_reload_thread* fr) { int loopexit = 0, bcount = 0; uint32_t cmd; ssize_t ret; /* Is there data? */ if(!sock_poll_timeout(fr->commpair[0], -1, 1, 0, NULL)) { log_err("fr_poll_for_reload_start: poll failed"); return; } /* Read the data */ while(1) { if(++loopexit > IPC_LOOP_MAX) { log_err("fr_poll_for_reload_start: recv loops %s", sock_strerror(errno)); return; } ret = recv(fr->commpair[0], ((char*)&cmd)+bcount, sizeof(cmd)-bcount, 0); if(ret == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK #endif ) continue; /* Try again. */ log_err("fr_poll_for_reload_start: recv: %s", sock_strerror(errno)); return; } else if(ret+(ssize_t)bcount != sizeof(cmd)) { bcount += ret; if((size_t)bcount < sizeof(cmd)) continue; } break; } if(cmd != fast_reload_notification_reload_start) { verbose(VERB_ALGO, "fast reload wait for ack: " "wrong notification %d", (int)cmd); } } /** Pick up the worker mesh changes, after fast reload. */ static void fr_worker_pickup_mesh(struct worker* worker) { struct mesh_area* mesh = worker->env.mesh; struct config_file* cfg = worker->env.cfg; mesh->use_response_ip = worker->daemon->use_response_ip; mesh->use_rpz = worker->daemon->use_rpz; mesh->max_reply_states = cfg->num_queries_per_thread; mesh->max_forever_states = (mesh->max_reply_states+1)/2; #ifndef S_SPLINT_S mesh->jostle_max.tv_sec = (time_t)(cfg->jostle_time / 1000); mesh->jostle_max.tv_usec = (time_t)((cfg->jostle_time % 1000)*1000); #endif } /** * Remove the old tcl_addr entries from the open connections. * They are only incremented when an accept is performed on a tcp comm point. * @param front: listening comm ports of the worker. */ static void tcl_remove_old(struct listen_dnsport* front) { struct listen_list* l; l = front->cps; while(l) { if(l->com->type == comm_tcp_accept) { int i; for(i=0; icom->max_tcp_count; i++) { if(l->com->tcp_handlers[i]->tcl_addr) { /* Because the increment of the * connection limit was in the old * tcl list, the new list does not * need a decrement. With NULL it is * not decremented when the connection * is done, and also there is no * reference to the old connection * limit structure. */ l->com->tcp_handlers[i]->tcl_addr = NULL; } } } l = l->next; } } /** Stop zonemd lookup */ static void auth_zone_zonemd_stop_lookup(struct auth_zone* z, struct mesh_area* mesh) { struct query_info qinfo; uint16_t qflags = BIT_RD; qinfo.qname_len = z->namelen; qinfo.qname = z->name; qinfo.qclass = z->dclass; qinfo.qtype = z->zonemd_callback_qtype; qinfo.local_alias = NULL; mesh_remove_callback(mesh, &qinfo, qflags, &auth_zonemd_dnskey_lookup_callback, z); } /** Pick up the auth zone locks. */ static void fr_pickup_auth_locks(struct worker* worker, struct auth_zone* namez, struct auth_zone* old_z, struct auth_zone* new_z, struct auth_xfer** xfr, struct auth_xfer** loadxfr) { uint8_t nm[LDNS_MAX_DOMAINLEN+1]; size_t nmlen; uint16_t dclass; log_assert(namez->namelen <= sizeof(nm)); lock_rw_rdlock(&namez->lock); nmlen = namez->namelen; dclass = namez->dclass; memmove(nm, namez->name, nmlen); lock_rw_unlock(&namez->lock); lock_rw_wrlock(&worker->daemon->fast_reload_thread->old_auth_zones->lock); lock_rw_wrlock(&worker->env.auth_zones->lock); if(new_z) { lock_rw_wrlock(&new_z->lock); } if(old_z) { lock_rw_wrlock(&old_z->lock); } if(loadxfr) *loadxfr = auth_xfer_find(worker->daemon->fast_reload_thread-> old_auth_zones, nm, nmlen, dclass); if(xfr) *xfr = auth_xfer_find(worker->env.auth_zones, nm, nmlen, dclass); if(loadxfr && *loadxfr) { lock_basic_lock(&(*loadxfr)->lock); } if(xfr && *xfr) { lock_basic_lock(&(*xfr)->lock); } } /** Fast reload, worker picks up deleted auth zone */ static void fr_worker_auth_del(struct worker* worker, struct fast_reload_auth_change* item, int for_change) { int released = 0; /* Did this routine release callbacks. */ struct auth_xfer* xfr = NULL; lock_rw_wrlock(&item->old_z->lock); if(item->old_z->zonemd_callback_env && item->old_z->zonemd_callback_env->worker == worker){ /* This worker was performing a zonemd lookup, * stop the lookup and remove that entry. */ auth_zone_zonemd_stop_lookup(item->old_z, worker->env.mesh); item->old_z->zonemd_callback_env = NULL; } lock_rw_unlock(&item->old_z->lock); fr_pickup_auth_locks(worker, item->old_z, item->old_z, NULL, &xfr, NULL); lock_rw_unlock(&worker->daemon->fast_reload_thread->old_auth_zones->lock); lock_rw_unlock(&worker->env.auth_zones->lock); lock_rw_unlock(&item->old_z->lock); if(xfr) { /* Release callbacks on the xfr, if this worker holds them. */ if(xfr->task_nextprobe->worker == worker || xfr->task_probe->worker == worker || xfr->task_transfer->worker == worker) { released = 1; xfr_disown_tasks(xfr, worker); } lock_basic_unlock(&xfr->lock); } if(!for_change && (released || worker->thread_num == 0)) { /* See if the xfr item can be deleted. */ xfr = NULL; fr_pickup_auth_locks(worker, item->old_z, item->old_z, NULL, &xfr, NULL); lock_rw_unlock(&worker->daemon->fast_reload_thread->old_auth_zones->lock); lock_rw_unlock(&item->old_z->lock); if(xfr && xfr->task_nextprobe->worker == NULL && xfr->task_probe->worker == NULL && xfr->task_transfer->worker == NULL) { (void)rbtree_delete(&worker->env.auth_zones->xtree, &xfr->node); lock_rw_unlock(&worker->env.auth_zones->lock); lock_basic_unlock(&xfr->lock); auth_xfer_delete(xfr); } else { lock_rw_unlock(&worker->env.auth_zones->lock); if(xfr) { lock_basic_unlock(&xfr->lock); } } } } /** Fast reload, auth xfer config is picked up */ static void auth_xfr_pickup_config(struct auth_xfer* loadxfr, struct auth_xfer* xfr) { struct auth_master *probe_masters, *transfer_masters; log_assert(loadxfr->namelen == xfr->namelen); log_assert(loadxfr->namelabs == xfr->namelabs); log_assert(loadxfr->dclass == xfr->dclass); /* The lists can be swapped in, the other xfr struct will be deleted * afterwards. */ probe_masters = xfr->task_probe->masters; transfer_masters = xfr->task_transfer->masters; xfr->task_probe->masters = loadxfr->task_probe->masters; xfr->task_transfer->masters = loadxfr->task_transfer->masters; loadxfr->task_probe->masters = probe_masters; loadxfr->task_transfer->masters = transfer_masters; } /** Fast reload, worker picks up added auth zone */ static void fr_worker_auth_add(struct worker* worker, struct fast_reload_auth_change* item, int for_change) { struct auth_xfer* xfr = NULL, *loadxfr = NULL; /* Start zone transfers and lookups. */ fr_pickup_auth_locks(worker, item->new_z, NULL, item->new_z, &xfr, &loadxfr); if(xfr == NULL && item->new_z->zone_is_slave) { /* The xfr item needs to be created. The auth zones lock * is held to make this possible. */ xfr = auth_xfer_create(worker->env.auth_zones, item->new_z); auth_xfr_pickup_config(loadxfr, xfr); /* Serial information is copied into the xfr struct. */ if(!xfr_find_soa(item->new_z, xfr)) { xfr->serial = 0; } } else if(for_change && xfr) { if(!xfr_find_soa(item->new_z, xfr)) { xfr->serial = 0; } } lock_rw_unlock(&item->new_z->lock); lock_rw_unlock(&worker->env.auth_zones->lock); lock_rw_unlock(&worker->daemon->fast_reload_thread->old_auth_zones->lock); if(loadxfr) { lock_basic_unlock(&loadxfr->lock); } if(xfr) { auth_xfer_pickup_initial_zone(xfr, &worker->env); if(for_change) { xfr->task_probe->only_lookup = 0; } lock_basic_unlock(&xfr->lock); } /* Perform ZONEMD verification lookups. */ lock_rw_wrlock(&item->new_z->lock); /* holding only the new_z lock */ auth_zone_verify_zonemd(item->new_z, &worker->env, &worker->env.mesh->mods, NULL, 0, 1); lock_rw_unlock(&item->new_z->lock); } /** Fast reload, worker picks up changed auth zone */ static void fr_worker_auth_cha(struct worker* worker, struct fast_reload_auth_change* item) { int todelete = 0; struct auth_xfer* loadxfr = NULL, *xfr = NULL; /* Since the zone has been changed, by rereading it from zone file, * existing transfers and probes are likely for the old version. * Stop them, and start new ones if needed. */ fr_worker_auth_del(worker, item, 1); if(worker->thread_num != 0) return; /* The old callbacks are stopped, tasks have been disowned. The * new config contents can be picked up. SOA information is picked * up in the auth_add routine, as it has the new_z ready. */ fr_pickup_auth_locks(worker, item->new_z, item->old_z, item->new_z, &xfr, &loadxfr); /* The xfr is not there any more if the zone is not set to have * zone transfers. Or the xfr needs to be created if it is set to * have zone transfers. */ if(loadxfr && xfr) { /* Copy the config from loadxfr to the xfr in current use. */ auth_xfr_pickup_config(loadxfr, xfr); } else if(!loadxfr && xfr) { /* Delete the xfr. */ (void)rbtree_delete(&worker->env.auth_zones->xtree, &xfr->node); todelete = 1; item->new_z->zone_is_slave = 0; } else if(loadxfr && !xfr) { /* Create the xfr. */ xfr = auth_xfer_create(worker->env.auth_zones, item->new_z); auth_xfr_pickup_config(loadxfr, xfr); item->new_z->zone_is_slave = 1; } lock_rw_unlock(&item->new_z->lock); lock_rw_unlock(&item->old_z->lock); lock_rw_unlock(&worker->daemon->fast_reload_thread->old_auth_zones->lock); lock_rw_unlock(&worker->env.auth_zones->lock); if(loadxfr) { lock_basic_unlock(&loadxfr->lock); } if(xfr) { lock_basic_unlock(&xfr->lock); } if(todelete) { auth_xfer_delete(xfr); } fr_worker_auth_add(worker, item, 1); } /** Fast reload, the worker picks up changes in auth zones. */ static void fr_worker_pickup_auth_changes(struct worker* worker, struct fast_reload_auth_change* auth_zone_change_list) { struct fast_reload_auth_change* item; for(item = auth_zone_change_list; item; item = item->next) { if(item->is_deleted) { fr_worker_auth_del(worker, item, 0); } if(item->is_added) { if(worker->thread_num == 0) { fr_worker_auth_add(worker, item, 0); } } if(item->is_changed) { fr_worker_auth_cha(worker, item); } } } /** Fast reload, the worker picks up changes in outside_network. */ static void fr_worker_pickup_outside_network(struct worker* worker) { struct outside_network* outnet = worker->back; struct config_file* cfg = worker->env.cfg; outnet->use_caps_for_id = cfg->use_caps_bits_for_id; outnet->unwanted_threshold = cfg->unwanted_threshold; outnet->tls_use_sni = cfg->tls_use_sni; outnet->tcp_mss = cfg->outgoing_tcp_mss; outnet->ip_dscp = cfg->ip_dscp; outnet->max_reuse_tcp_queries = cfg->max_reuse_tcp_queries; outnet->tcp_reuse_timeout = cfg->tcp_reuse_timeout; outnet->tcp_auth_query_timeout = cfg->tcp_auth_query_timeout; outnet->delayclose = cfg->delay_close; if(outnet->delayclose) { #ifndef S_SPLINT_S outnet->delay_tv.tv_sec = cfg->delay_close/1000; outnet->delay_tv.tv_usec = (cfg->delay_close%1000)*1000; #endif } } void fast_reload_worker_pickup_changes(struct worker* worker) { /* The pickup of changes is called when the fast reload has * a syncronized moment, and all the threads are paused and the * reload has been applied. Then the worker can pick up the new * changes and store them in worker-specific structs. * The pickup is also called when there is no pause, and then * it is called after the reload has completed, and the worker * get a signal to release old information, it can then pick * up the new information. But in the mean time, the reload has * swapped in trees, and the worker has been running with the * older information for some time. */ fr_worker_pickup_mesh(worker); /* If the tcp connection limit has changed, the open connections * need to remove their reference for the old tcp limits counters. */ if(worker->daemon->fast_reload_tcl_has_changes) tcl_remove_old(worker->front); /* If there are zonemd lookups, but the zone was deleted, the * lookups should be cancelled. */ fr_worker_pickup_auth_changes(worker, worker->daemon->fast_reload_thread->auth_zone_change_list); #ifdef USE_CACHEDB worker->env.cachedb_enabled = worker->daemon->env->cachedb_enabled; #endif fr_worker_pickup_outside_network(worker); } /** fast reload thread, handle reload_stop notification, send reload stop * to other threads over IPC and collect their ack. When that is done, * ack to the caller, the fast reload thread, and wait for it to send start. */ static void fr_main_perform_reload_stop(struct fast_reload_thread* fr) { struct daemon* daemon = fr->worker->daemon; int i; /* Send reload_stop to other threads. */ for(i=0; inum; i++) { if(i == fr->worker->thread_num) continue; /* Do not send to ourselves. */ worker_send_cmd(daemon->workers[i], worker_cmd_reload_stop); } /* Wait for the other threads to ack. */ fr_read_ack_from_workers(fr); /* Send ack to fast reload thread. */ fr_send_cmd_to(fr, fast_reload_notification_reload_ack, 0, 1); /* Wait for reload_start from fast reload thread to resume. */ fr_poll_for_reload_start(fr); /* Send reload_start to other threads */ for(i=0; inum; i++) { if(i == fr->worker->thread_num) continue; /* Do not send to ourselves. */ worker_send_cmd(daemon->workers[i], worker_cmd_reload_start); } /* Pick up changes for this worker. */ if(fr->worker->daemon->fast_reload_drop_mesh) { verbose(VERB_ALGO, "worker: drop mesh queries after reload"); mesh_delete_all(fr->worker->env.mesh); } fast_reload_worker_pickup_changes(fr->worker); /* Wait for the other threads to ack. */ fr_read_ack_from_workers(fr); /* Send ack to fast reload thread. */ fr_send_cmd_to(fr, fast_reload_notification_reload_ack, 0, 1); verbose(VERB_ALGO, "worker resume after reload"); } /** Fast reload, the main thread performs the nopause poll. It polls every * other worker thread briefly over the command pipe ipc. The command takes * no time for the worker, it can return immediately. After that it sends * an acknowledgement to the fastreload thread. */ static void fr_main_perform_reload_nopause_poll(struct fast_reload_thread* fr) { struct daemon* daemon = fr->worker->daemon; int i; /* Send the reload_poll to other threads. They can respond * one at a time. */ for(i=0; inum; i++) { if(i == fr->worker->thread_num) continue; /* Do not send to ourselves. */ worker_send_cmd(daemon->workers[i], worker_cmd_reload_poll); } /* Wait for the other threads to ack. */ fr_read_ack_from_workers(fr); fast_reload_worker_pickup_changes(fr->worker); /* Send ack to fast reload thread. */ fr_send_cmd_to(fr, fast_reload_notification_reload_ack, 0, 1); } /** Fast reload, perform the command received from the fast reload thread */ static void fr_main_perform_cmd(struct fast_reload_thread* fr, enum fast_reload_notification status) { verbose(VERB_ALGO, "main perform fast reload status: %s", fr_notification_to_string(status)); if(status == fast_reload_notification_printout) { fr_main_perform_printout(fr); } else if(status == fast_reload_notification_done || status == fast_reload_notification_done_error || status == fast_reload_notification_exited) { fr_main_perform_done(fr); } else if(status == fast_reload_notification_reload_stop) { fr_main_perform_reload_stop(fr); } else if(status == fast_reload_notification_reload_nopause_poll) { fr_main_perform_reload_nopause_poll(fr); } else { log_err("main received unknown status from fast reload: %d %s", (int)status, fr_notification_to_string(status)); } } /** Fast reload, handle command from fast reload to the main thread. */ static void fr_main_handle_cmd(struct fast_reload_thread* fr) { enum fast_reload_notification status; ssize_t ret; /* keep static analyzer happy; recv(-1,..) */ log_assert(fr->commpair[0] >= 0); ret = recv(fr->commpair[0], ((char*)&fr->service_read_cmd)+fr->service_read_cmd_count, sizeof(fr->service_read_cmd)-fr->service_read_cmd_count, 0); if(ret == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS #endif ) return; /* Continue later. */ #ifdef USE_WINSOCK if(WSAGetLastError() == WSAEWOULDBLOCK) { ub_winsock_tcp_wouldblock(fr->service_event, UB_EV_READ); return; /* Continue later. */ } #endif log_err("read cmd from fast reload thread, recv: %s", sock_strerror(errno)); return; } else if(ret == 0) { verbose(VERB_ALGO, "closed connection from fast reload thread"); fr->service_read_cmd_count = 0; /* handle this like an error */ fr->service_read_cmd = fast_reload_notification_done_error; } else if(ret + (ssize_t)fr->service_read_cmd_count < (ssize_t)sizeof(fr->service_read_cmd)) { fr->service_read_cmd_count += ret; /* Continue later. */ return; } status = fr->service_read_cmd; fr->service_read_cmd = 0; fr->service_read_cmd_count = 0; fr_main_perform_cmd(fr, status); } /** Fast reload, poll for and handle cmd from fast reload thread. */ static void fr_check_cmd_from_thread(struct fast_reload_thread* fr) { int inevent = 0; struct worker* worker = fr->worker; /* Stop in case the thread has exited, or there is no read event. */ while(worker->daemon->fast_reload_thread) { if(!sock_poll_timeout(fr->commpair[0], 0, 1, 0, &inevent)) { log_err("check for cmd from fast reload thread: " "poll failed"); #ifdef USE_WINSOCK if(worker->daemon->fast_reload_thread) ub_winsock_tcp_wouldblock(worker->daemon-> fast_reload_thread->service_event, UB_EV_READ); #endif return; } if(!inevent) { #ifdef USE_WINSOCK if(worker->daemon->fast_reload_thread) ub_winsock_tcp_wouldblock(worker->daemon-> fast_reload_thread->service_event, UB_EV_READ); #endif return; } fr_main_handle_cmd(fr); } } void fast_reload_service_cb(int ATTR_UNUSED(fd), short ATTR_UNUSED(bits), void* arg) { struct fast_reload_thread* fast_reload_thread = (struct fast_reload_thread*)arg; struct worker* worker = fast_reload_thread->worker; /* Read and handle the command */ fr_main_handle_cmd(fast_reload_thread); if(worker->daemon->fast_reload_thread != NULL) { /* If not exited, see if there are more pending statuses * from the fast reload thread. */ fr_check_cmd_from_thread(fast_reload_thread); } } #ifdef HAVE_SSL /** fast reload, send client item over SSL. Returns number of bytes * printed, 0 on wait later, or -1 on failure. */ static int fr_client_send_item_ssl(struct fast_reload_printq* printq) { int r; ERR_clear_error(); r = SSL_write(printq->remote.ssl, printq->client_item+printq->client_byte_count, printq->client_len - printq->client_byte_count); if(r <= 0) { int want = SSL_get_error(printq->remote.ssl, r); if(want == SSL_ERROR_ZERO_RETURN) { log_err("fast_reload print to remote client: " "SSL_write says connection closed."); return -1; } else if(want == SSL_ERROR_WANT_READ) { /* wait for read condition */ printq->client_cp->ssl_shake_state = comm_ssl_shake_hs_read; comm_point_listen_for_rw(printq->client_cp, 1, 0); return 0; } else if(want == SSL_ERROR_WANT_WRITE) { #ifdef USE_WINSOCK ub_winsock_tcp_wouldblock(comm_point_internal(printq->client_cp), UB_EV_WRITE); #endif return 0; /* write more later */ } else if(want == SSL_ERROR_SYSCALL) { #ifdef EPIPE if(errno == EPIPE && verbosity < 2) { /* silence 'broken pipe' */ return -1; } #endif if(errno != 0) log_err("fast_reload print to remote client: " "SSL_write syscall: %s", sock_strerror(errno)); return -1; } log_crypto_err_io("fast_reload print to remote client: " "could not SSL_write", want); return -1; } return r; } #endif /* HAVE_SSL */ /** fast reload, send client item for fd, returns bytes sent, or 0 for wait * later, or -1 on failure. */ static int fr_client_send_item_fd(struct fast_reload_printq* printq) { int r; r = (int)send(printq->remote.fd, printq->client_item+printq->client_byte_count, printq->client_len - printq->client_byte_count, 0); if(r == -1) { if( #ifndef USE_WINSOCK errno == EINTR || errno == EAGAIN # ifdef EWOULDBLOCK || errno == EWOULDBLOCK # endif #else WSAGetLastError() == WSAEINTR || WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK #endif ) { #ifdef USE_WINSOCK ub_winsock_tcp_wouldblock(comm_point_internal(printq->client_cp), UB_EV_WRITE); #endif return 0; /* Try again. */ } log_err("fast_reload print to remote client: send failed: %s", sock_strerror(errno)); return -1; } return r; } /** fast reload, send current client item. false on failure or wait later. */ static int fr_client_send_item(struct fast_reload_printq* printq) { int r; #ifdef HAVE_SSL if(printq->remote.ssl) { r = fr_client_send_item_ssl(printq); } else { #endif r = fr_client_send_item_fd(printq); #ifdef HAVE_SSL } #endif if(r == 0) { /* Wait for later. */ return 0; } else if(r == -1) { /* It failed, close comm point and stop sending. */ fr_printq_remove(printq); return 0; } printq->client_byte_count += r; if(printq->client_byte_count < printq->client_len) return 0; /* Print more later. */ return 1; } /** fast reload, pick up the next item to print */ static void fr_client_pickup_next_item(struct fast_reload_printq* printq) { struct config_strlist* item; /* Pop first off the list. */ if(!printq->to_print->first) { printq->client_item = NULL; printq->client_len = 0; printq->client_byte_count = 0; return; } item = printq->to_print->first; if(item->next) { printq->to_print->first = item->next; } else { printq->to_print->first = NULL; printq->to_print->last = NULL; } item->next = NULL; printq->client_len = 0; printq->client_byte_count = 0; printq->client_item = item->str; item->str = NULL; free(item); /* The len is the number of bytes to print out, and thus excludes * the terminator zero. */ if(printq->client_item) printq->client_len = (int)strlen(printq->client_item); } int fast_reload_client_callback(struct comm_point* ATTR_UNUSED(c), void* arg, int err, struct comm_reply* ATTR_UNUSED(rep)) { struct fast_reload_printq* printq = (struct fast_reload_printq*)arg; if(!printq->client_cp) { fr_printq_remove(printq); return 0; /* the output is closed and deleted */ } if(err != NETEVENT_NOERROR) { verbose(VERB_ALGO, "fast reload client: error, close it"); fr_printq_remove(printq); return 0; } #ifdef HAVE_SSL if(printq->client_cp->ssl_shake_state == comm_ssl_shake_hs_read) { /* read condition satisfied back to writing */ comm_point_listen_for_rw(printq->client_cp, 0, 1); printq->client_cp->ssl_shake_state = comm_ssl_shake_none; } #endif /* HAVE_SSL */ /* Pickup an item if there are none */ if(!printq->client_item) { fr_client_pickup_next_item(printq); } if(!printq->client_item) { if(printq->in_list) { /* Nothing more to print, it can be removed. */ fr_printq_remove(printq); return 0; } /* Done with printing for now. */ comm_point_stop_listening(printq->client_cp); return 0; } /* Try to print out a number of items, if they can print in full. */ while(printq->client_item) { /* Send current item, if any. */ if(printq->client_item && printq->client_len != 0 && printq->client_byte_count < printq->client_len) { if(!fr_client_send_item(printq)) return 0; } /* The current item is done. */ if(printq->client_item) { free(printq->client_item); printq->client_item = NULL; printq->client_len = 0; printq->client_byte_count = 0; } if(!printq->to_print->first) { if(printq->in_list) { /* Nothing more to print, it can be removed. */ fr_printq_remove(printq); return 0; } /* Done with printing for now. */ comm_point_stop_listening(printq->client_cp); return 0; } fr_client_pickup_next_item(printq); } return 0; } #ifndef THREADS_DISABLED /** fast reload printq create */ static struct fast_reload_printq* fr_printq_create(struct comm_point* c, struct worker* worker) { struct fast_reload_printq* printq = calloc(1, sizeof(*printq)); if(!printq) return NULL; printq->to_print = calloc(1, sizeof(*printq->to_print)); if(!printq->to_print) { free(printq); return NULL; } printq->worker = worker; printq->client_cp = c; printq->client_cp->callback = fast_reload_client_callback; printq->client_cp->cb_arg = printq; return printq; } #endif /* !THREADS_DISABLED */ /** fast reload printq delete */ static void fr_printq_delete(struct fast_reload_printq* printq) { if(!printq) return; #ifdef HAVE_SSL if(printq->remote.ssl) { SSL_shutdown(printq->remote.ssl); SSL_free(printq->remote.ssl); } #endif comm_point_delete(printq->client_cp); if(printq->to_print) { config_delstrlist(printq->to_print->first); free(printq->to_print); } free(printq); } /** fast reload printq, returns true if the list is empty and no item */ static int fr_printq_empty(struct fast_reload_printq* printq) { if(printq->to_print->first == NULL && printq->client_item == NULL) return 1; return 0; } /** fast reload printq, insert onto list */ static void fr_printq_list_insert(struct fast_reload_printq* printq, struct daemon* daemon) { if(printq->in_list) return; printq->next = daemon->fast_reload_printq_list; if(printq->next) printq->next->prev = printq; printq->prev = NULL; printq->in_list = 1; daemon->fast_reload_printq_list = printq; } /** fast reload printq delete list */ void fast_reload_printq_list_delete(struct fast_reload_printq* list) { struct fast_reload_printq* printq = list, *next; while(printq) { next = printq->next; fr_printq_delete(printq); printq = next; } } /** fast reload printq remove the item from the printq list */ static void fr_printq_list_remove(struct fast_reload_printq* printq) { struct daemon* daemon = printq->worker->daemon; if(printq->prev == NULL) daemon->fast_reload_printq_list = printq->next; else printq->prev->next = printq->next; if(printq->next) printq->next->prev = printq->prev; printq->in_list = 0; } /** fast reload printq, remove the printq when no longer needed, * like the stream is closed. */ static void fr_printq_remove(struct fast_reload_printq* printq) { if(!printq) return; if(printq->worker->daemon->fast_reload_thread && printq->worker->daemon->fast_reload_thread->printq == printq) printq->worker->daemon->fast_reload_thread->printq = NULL; if(printq->in_list) fr_printq_list_remove(printq); fr_printq_delete(printq); } /** fast reload thread, send stop command to the thread, from the main thread. */ static void fr_send_stop(struct fast_reload_thread* fr) { fr_send_cmd_to(fr, fast_reload_notification_exit, 1, 0); } void fast_reload_thread_start(RES* ssl, struct worker* worker, struct rc_state* s, int fr_verb, int fr_nopause, int fr_drop_mesh) { if(worker->daemon->fast_reload_thread) { log_err("fast reload thread already running"); return; } if(!fast_reload_thread_setup(worker, fr_verb, fr_nopause, fr_drop_mesh)) { if(!ssl_printf(ssl, "error could not setup thread\n")) return; return; } worker->daemon->fast_reload_thread->started = 1; #ifndef THREADS_DISABLED /* Setup command listener in remote servicing thread */ /* The listener has to be nonblocking, so the the remote servicing * thread can continue to service DNS queries, the fast reload * thread is going to read the config from disk and apply it. */ /* The commpair[1] element can stay blocking, it is used by the * fast reload thread to communicate back. The thread needs to wait * at these times, when it has to check briefly it can use poll. */ fd_set_nonblock(worker->daemon->fast_reload_thread->commpair[0]); worker->daemon->fast_reload_thread->service_event = ub_event_new( comm_base_internal(worker->base), worker->daemon->fast_reload_thread->commpair[0], UB_EV_READ | UB_EV_PERSIST, fast_reload_service_cb, worker->daemon->fast_reload_thread); if(!worker->daemon->fast_reload_thread->service_event) { fast_reload_thread_desetup(worker->daemon->fast_reload_thread); if(!ssl_printf(ssl, "error out of memory\n")) return; return; } if(ub_event_add(worker->daemon->fast_reload_thread->service_event, NULL) != 0) { fast_reload_thread_desetup(worker->daemon->fast_reload_thread); if(!ssl_printf(ssl, "error out of memory adding service event\n")) return; return; } worker->daemon->fast_reload_thread->service_event_is_added = 1; /* Setup the comm point to the remote control client as an event * on the remote servicing thread, which it already is. * It needs a new callback to service it. */ log_assert(s); state_list_remove_elem(&s->rc->busy_list, s->c); s->rc->active --; /* Set the comm point file descriptor to nonblocking. So that * printout to the remote control client does not block the * server thread from servicing DNS queries. */ fd_set_nonblock(s->c->fd); worker->daemon->fast_reload_thread->printq = fr_printq_create(s->c, worker); if(!worker->daemon->fast_reload_thread->printq) { fast_reload_thread_desetup(worker->daemon->fast_reload_thread); if(!ssl_printf(ssl, "error out of memory create printq\n")) return; return; } worker->daemon->fast_reload_thread->printq->remote = *ssl; s->rc = NULL; /* move away the rc state */ /* Nothing to print right now, so no need to have it active. */ comm_point_stop_listening(worker->daemon->fast_reload_thread->printq->client_cp); /* Start fast reload thread */ ub_thread_create(&worker->daemon->fast_reload_thread->tid, fast_reload_thread_main, worker->daemon->fast_reload_thread); #else (void)s; #endif } void fast_reload_thread_stop(struct fast_reload_thread* fast_reload_thread) { struct worker* worker = fast_reload_thread->worker; if(!fast_reload_thread) return; fr_send_stop(fast_reload_thread); if(worker->daemon->fast_reload_thread != NULL) { /* If it did not exit yet, join with the thread now. It is * going to exit because the exit command is sent to it. */ fr_main_perform_done(fast_reload_thread); } }