/* * Copyright (c) 1992, 1993, 1994, 1995, 1996, 1997 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that: (1) source code distributions * retain the above copyright notice and this paragraph in its entirety, (2) * distributions including binary code include the above copyright notice and * this paragraph in its entirety in the documentation or other materials * provided with the distribution, and (3) all advertising materials mentioning * features or use of this software display the following acknowledgement: * ``This product includes software developed by the University of California, * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of * the University nor the names of its contributors may be used to endorse * or promote products derived from this software without specific prior * written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * OSPF support contributed by Jeffrey Honig (jch@mitchell.cit.cornell.edu) */ /* \summary: Open Shortest Path First (OSPF) printer */ #include #include "netdissect-stdinc.h" #include "netdissect.h" #include "addrtoname.h" #include "extract.h" #include "gmpls.h" #include "ospf.h" static const struct tok ospf_option_values[] = { { OSPF_OPTION_MT, "MultiTopology" }, /* draft-ietf-ospf-mt-09 */ { OSPF_OPTION_E, "External" }, { OSPF_OPTION_MC, "Multicast" }, { OSPF_OPTION_NP, "NSSA" }, { OSPF_OPTION_L, "LLS" }, { OSPF_OPTION_DC, "Demand Circuit" }, { OSPF_OPTION_O, "Opaque" }, { OSPF_OPTION_DN, "Up/Down" }, { 0, NULL } }; static const struct tok ospf_authtype_values[] = { { OSPF_AUTH_NONE, "none" }, { OSPF_AUTH_SIMPLE, "simple" }, { OSPF_AUTH_MD5, "MD5" }, { 0, NULL } }; static const struct tok ospf_rla_flag_values[] = { { RLA_FLAG_B, "ABR" }, { RLA_FLAG_E, "ASBR" }, { RLA_FLAG_V, "Virtual" }, { RLA_FLAG_W, "Wildcard" }, { RLA_FLAG_NT, "Nt" }, { RLA_FLAG_H, "Host" }, { 0, NULL } }; static const struct tok type2str[] = { { OSPF_TYPE_HELLO, "Hello" }, { OSPF_TYPE_DD, "Database Description" }, { OSPF_TYPE_LS_REQ, "LS-Request" }, { OSPF_TYPE_LS_UPDATE, "LS-Update" }, { OSPF_TYPE_LS_ACK, "LS-Ack" }, { 0, NULL } }; static const struct tok lsa_values[] = { { LS_TYPE_ROUTER, "Router" }, { LS_TYPE_NETWORK, "Network" }, { LS_TYPE_SUM_IP, "Summary" }, { LS_TYPE_SUM_ABR, "ASBR Summary" }, { LS_TYPE_ASE, "External" }, { LS_TYPE_GROUP, "Multicast Group" }, { LS_TYPE_NSSA, "NSSA" }, { LS_TYPE_OPAQUE_LL, "Link Local Opaque" }, { LS_TYPE_OPAQUE_AL, "Area Local Opaque" }, { LS_TYPE_OPAQUE_DW, "Domain Wide Opaque" }, { 0, NULL } }; static const struct tok ospf_dd_flag_values[] = { { OSPF_DB_INIT, "Init" }, { OSPF_DB_MORE, "More" }, { OSPF_DB_MASTER, "Master" }, { OSPF_DB_RESYNC, "OOBResync" }, { 0, NULL } }; static const struct tok lsa_opaque_values[] = { { LS_OPAQUE_TYPE_TE, "Traffic Engineering" }, { LS_OPAQUE_TYPE_GRACE, "Graceful restart" }, { LS_OPAQUE_TYPE_RI, "Router Information" }, { 0, NULL } }; static const struct tok lsa_opaque_te_tlv_values[] = { { LS_OPAQUE_TE_TLV_ROUTER, "Router Address" }, { LS_OPAQUE_TE_TLV_LINK, "Link" }, { 0, NULL } }; static const struct tok lsa_opaque_te_link_tlv_subtlv_values[] = { { LS_OPAQUE_TE_LINK_SUBTLV_LINK_TYPE, "Link Type" }, { LS_OPAQUE_TE_LINK_SUBTLV_LINK_ID, "Link ID" }, { LS_OPAQUE_TE_LINK_SUBTLV_LOCAL_IP, "Local Interface IP address" }, { LS_OPAQUE_TE_LINK_SUBTLV_REMOTE_IP, "Remote Interface IP address" }, { LS_OPAQUE_TE_LINK_SUBTLV_TE_METRIC, "Traffic Engineering Metric" }, { LS_OPAQUE_TE_LINK_SUBTLV_MAX_BW, "Maximum Bandwidth" }, { LS_OPAQUE_TE_LINK_SUBTLV_MAX_RES_BW, "Maximum Reservable Bandwidth" }, { LS_OPAQUE_TE_LINK_SUBTLV_UNRES_BW, "Unreserved Bandwidth" }, { LS_OPAQUE_TE_LINK_SUBTLV_ADMIN_GROUP, "Administrative Group" }, { LS_OPAQUE_TE_LINK_SUBTLV_LINK_LOCAL_REMOTE_ID, "Link Local/Remote Identifier" }, { LS_OPAQUE_TE_LINK_SUBTLV_LINK_PROTECTION_TYPE, "Link Protection Type" }, { LS_OPAQUE_TE_LINK_SUBTLV_INTF_SW_CAP_DESCR, "Interface Switching Capability" }, { LS_OPAQUE_TE_LINK_SUBTLV_SHARED_RISK_GROUP, "Shared Risk Link Group" }, { LS_OPAQUE_TE_LINK_SUBTLV_BW_CONSTRAINTS, "Bandwidth Constraints" }, { 0, NULL } }; static const struct tok lsa_opaque_grace_tlv_values[] = { { LS_OPAQUE_GRACE_TLV_PERIOD, "Grace Period" }, { LS_OPAQUE_GRACE_TLV_REASON, "Graceful restart Reason" }, { LS_OPAQUE_GRACE_TLV_INT_ADDRESS, "IPv4 interface address" }, { 0, NULL } }; static const struct tok lsa_opaque_grace_tlv_reason_values[] = { { LS_OPAQUE_GRACE_TLV_REASON_UNKNOWN, "Unknown" }, { LS_OPAQUE_GRACE_TLV_REASON_SW_RESTART, "Software Restart" }, { LS_OPAQUE_GRACE_TLV_REASON_SW_UPGRADE, "Software Reload/Upgrade" }, { LS_OPAQUE_GRACE_TLV_REASON_CP_SWITCH, "Control Processor Switch" }, { 0, NULL } }; static const struct tok lsa_opaque_te_tlv_link_type_sub_tlv_values[] = { { LS_OPAQUE_TE_LINK_SUBTLV_LINK_TYPE_PTP, "Point-to-point" }, { LS_OPAQUE_TE_LINK_SUBTLV_LINK_TYPE_MA, "Multi-Access" }, { 0, NULL } }; static const struct tok lsa_opaque_ri_tlv_values[] = { { LS_OPAQUE_RI_TLV_CAP, "Router Capabilities" }, { 0, NULL } }; static const struct tok lsa_opaque_ri_tlv_cap_values[] = { { 1, "Reserved" }, { 2, "Reserved" }, { 4, "Reserved" }, { 8, "Reserved" }, { 16, "graceful restart capable" }, { 32, "graceful restart helper" }, { 64, "Stub router support" }, { 128, "Traffic engineering" }, { 256, "p2p over LAN" }, { 512, "path computation server" }, { 0, NULL } }; static const struct tok ospf_lls_tlv_values[] = { { OSPF_LLS_EO, "Extended Options" }, { OSPF_LLS_MD5, "MD5 Authentication" }, { 0, NULL } }; static const struct tok ospf_lls_eo_options[] = { { OSPF_LLS_EO_LR, "LSDB resync" }, { OSPF_LLS_EO_RS, "Restart" }, { 0, NULL } }; int ospf_grace_lsa_print(netdissect_options *ndo, const u_char *tptr, u_int ls_length) { u_int tlv_type, tlv_length; while (ls_length > 0) { ND_TCHECK_4(tptr); if (ls_length < 4) { ND_PRINT("\n\t Remaining LS length %u < 4", ls_length); return -1; } tlv_type = GET_BE_U_2(tptr); tlv_length = GET_BE_U_2(tptr + 2); tptr+=4; ls_length-=4; ND_PRINT("\n\t %s TLV (%u), length %u, value: ", tok2str(lsa_opaque_grace_tlv_values,"unknown",tlv_type), tlv_type, tlv_length); if (tlv_length > ls_length) { ND_PRINT("\n\t Bogus length %u > %u", tlv_length, ls_length); return -1; } /* Infinite loop protection. */ if (tlv_type == 0 || tlv_length ==0) { return -1; } ND_TCHECK_LEN(tptr, tlv_length); switch(tlv_type) { case LS_OPAQUE_GRACE_TLV_PERIOD: if (tlv_length != 4) { ND_PRINT("\n\t Bogus length %u != 4", tlv_length); return -1; } ND_PRINT("%us", GET_BE_U_4(tptr)); break; case LS_OPAQUE_GRACE_TLV_REASON: if (tlv_length != 1) { ND_PRINT("\n\t Bogus length %u != 1", tlv_length); return -1; } ND_PRINT("%s (%u)", tok2str(lsa_opaque_grace_tlv_reason_values, "Unknown", GET_U_1(tptr)), GET_U_1(tptr)); break; case LS_OPAQUE_GRACE_TLV_INT_ADDRESS: if (tlv_length != 4) { ND_PRINT("\n\t Bogus length %u != 4", tlv_length); return -1; } ND_PRINT("%s", GET_IPADDR_STRING(tptr)); break; default: if (ndo->ndo_vflag <= 1) { if (!print_unknown_data(ndo, tptr, "\n\t ", tlv_length)) return -1; } break; } /* in OSPF everything has to be 32-bit aligned, including TLVs */ if (tlv_length%4 != 0) tlv_length+=4-(tlv_length%4); ls_length-=tlv_length; tptr+=tlv_length; } return 0; trunc: return -1; } int ospf_te_lsa_print(netdissect_options *ndo, const u_char *tptr, u_int ls_length) { u_int tlv_type, tlv_length, subtlv_type, subtlv_length; u_int priority_level, te_class, count_srlg; union { /* int to float conversion buffer for several subTLVs */ float f; uint32_t i; } bw; while (ls_length != 0) { ND_TCHECK_4(tptr); if (ls_length < 4) { ND_PRINT("\n\t Remaining LS length %u < 4", ls_length); return -1; } tlv_type = GET_BE_U_2(tptr); tlv_length = GET_BE_U_2(tptr + 2); tptr+=4; ls_length-=4; ND_PRINT("\n\t %s TLV (%u), length: %u", tok2str(lsa_opaque_te_tlv_values,"unknown",tlv_type), tlv_type, tlv_length); if (tlv_length > ls_length) { ND_PRINT("\n\t Bogus length %u > %u", tlv_length, ls_length); return -1; } /* Infinite loop protection. */ if (tlv_type == 0 || tlv_length ==0) { return -1; } switch(tlv_type) { case LS_OPAQUE_TE_TLV_LINK: while (tlv_length != 0) { if (tlv_length < 4) { ND_PRINT("\n\t Remaining TLV length %u < 4", tlv_length); return -1; } subtlv_type = GET_BE_U_2(tptr); subtlv_length = GET_BE_U_2(tptr + 2); tptr+=4; tlv_length-=4; /* Infinite loop protection */ if (subtlv_type == 0 || subtlv_length == 0) goto invalid; ND_PRINT("\n\t %s subTLV (%u), length: %u", tok2str(lsa_opaque_te_link_tlv_subtlv_values,"unknown",subtlv_type), subtlv_type, subtlv_length); if (tlv_length < subtlv_length) { ND_PRINT("\n\t Remaining TLV length %u < %u", tlv_length + 4, subtlv_length + 4); return -1; } ND_TCHECK_LEN(tptr, subtlv_length); switch(subtlv_type) { case LS_OPAQUE_TE_LINK_SUBTLV_ADMIN_GROUP: if (subtlv_length != 4) { ND_PRINT(" != 4"); goto invalid; } ND_PRINT(", 0x%08x", GET_BE_U_4(tptr)); break; case LS_OPAQUE_TE_LINK_SUBTLV_LINK_ID: case LS_OPAQUE_TE_LINK_SUBTLV_LINK_LOCAL_REMOTE_ID: if (subtlv_length != 4 && subtlv_length != 8) { ND_PRINT(" != 4 && != 8"); goto invalid; } ND_PRINT(", %s (0x%08x)", GET_IPADDR_STRING(tptr), GET_BE_U_4(tptr)); if (subtlv_length == 8) /* rfc4203 */ ND_PRINT(", %s (0x%08x)", GET_IPADDR_STRING(tptr+4), GET_BE_U_4(tptr + 4)); break; case LS_OPAQUE_TE_LINK_SUBTLV_LOCAL_IP: case LS_OPAQUE_TE_LINK_SUBTLV_REMOTE_IP: if (subtlv_length != 4) { ND_PRINT(" != 4"); goto invalid; } ND_PRINT(", %s", GET_IPADDR_STRING(tptr)); break; case LS_OPAQUE_TE_LINK_SUBTLV_MAX_BW: case LS_OPAQUE_TE_LINK_SUBTLV_MAX_RES_BW: if (subtlv_length != 4) { ND_PRINT(" != 4"); goto invalid; } bw.i = GET_BE_U_4(tptr); ND_PRINT(", %.3f Mbps", bw.f * 8 / 1000000); break; case LS_OPAQUE_TE_LINK_SUBTLV_UNRES_BW: if (subtlv_length != 32) { ND_PRINT(" != 32"); goto invalid; } for (te_class = 0; te_class < 8; te_class++) { bw.i = GET_BE_U_4(tptr + te_class * 4); ND_PRINT("\n\t\tTE-Class %u: %.3f Mbps", te_class, bw.f * 8 / 1000000); } break; case LS_OPAQUE_TE_LINK_SUBTLV_BW_CONSTRAINTS: if (subtlv_length < 4) { ND_PRINT(" < 4"); goto invalid; } /* BC Model Id (1 octet) + Reserved (3 octets) */ ND_PRINT("\n\t\tBandwidth Constraints Model ID: %s (%u)", tok2str(diffserv_te_bc_values, "unknown", GET_U_1(tptr)), GET_U_1(tptr)); if (subtlv_length % 4 != 0) { ND_PRINT("\n\t\tlength %u != N x 4", subtlv_length); goto invalid; } if (subtlv_length > 36) { ND_PRINT("\n\t\tlength %u > 36", subtlv_length); goto invalid; } /* decode BCs until the subTLV ends */ for (te_class = 0; te_class < (subtlv_length-4)/4; te_class++) { bw.i = GET_BE_U_4(tptr + 4 + te_class * 4); ND_PRINT("\n\t\t Bandwidth constraint CT%u: %.3f Mbps", te_class, bw.f * 8 / 1000000); } break; case LS_OPAQUE_TE_LINK_SUBTLV_TE_METRIC: if (subtlv_length != 4) { ND_PRINT(" != 4"); goto invalid; } ND_PRINT(", Metric %u", GET_BE_U_4(tptr)); break; case LS_OPAQUE_TE_LINK_SUBTLV_LINK_PROTECTION_TYPE: /* Protection Cap (1 octet) + Reserved ((3 octets) */ if (subtlv_length != 4) { ND_PRINT(" != 4"); goto invalid; } ND_PRINT(", %s", bittok2str(gmpls_link_prot_values, "none", GET_U_1(tptr))); break; case LS_OPAQUE_TE_LINK_SUBTLV_INTF_SW_CAP_DESCR: if (subtlv_length < 36) { ND_PRINT(" < 36"); goto invalid; } /* Switching Cap (1 octet) + Encoding (1) + Reserved (2) */ ND_PRINT("\n\t\tInterface Switching Capability: %s", tok2str(gmpls_switch_cap_values, "Unknown", GET_U_1((tptr)))); ND_PRINT("\n\t\tLSP Encoding: %s\n\t\tMax LSP Bandwidth:", tok2str(gmpls_encoding_values, "Unknown", GET_U_1((tptr + 1)))); for (priority_level = 0; priority_level < 8; priority_level++) { bw.i = GET_BE_U_4(tptr + 4 + (priority_level * 4)); ND_PRINT("\n\t\t priority level %u: %.3f Mbps", priority_level, bw.f * 8 / 1000000); } break; case LS_OPAQUE_TE_LINK_SUBTLV_LINK_TYPE: if (subtlv_length != 1) { ND_PRINT(" != 1"); goto invalid; } ND_PRINT(", %s (%u)", tok2str(lsa_opaque_te_tlv_link_type_sub_tlv_values,"unknown",GET_U_1(tptr)), GET_U_1(tptr)); break; case LS_OPAQUE_TE_LINK_SUBTLV_SHARED_RISK_GROUP: if (subtlv_length % 4 != 0) { ND_PRINT(" != N x 4"); goto invalid; } count_srlg = subtlv_length / 4; if (count_srlg != 0) ND_PRINT("\n\t\t Shared risk group: "); while (count_srlg > 0) { bw.i = GET_BE_U_4(tptr); ND_PRINT("%u", bw.i); tptr+=4; count_srlg--; if (count_srlg > 0) ND_PRINT(", "); } break; default: if (ndo->ndo_vflag <= 1) { if (!print_unknown_data(ndo, tptr, "\n\t\t", subtlv_length)) return -1; } break; } /* in OSPF everything has to be 32-bit aligned, including subTLVs */ if (subtlv_length%4 != 0) subtlv_length+=4-(subtlv_length%4); if (tlv_length < subtlv_length) { ND_PRINT("\n\t Remaining TLV length %u < %u", tlv_length + 4, subtlv_length + 4); return -1; } tlv_length-=subtlv_length; tptr+=subtlv_length; } break; case LS_OPAQUE_TE_TLV_ROUTER: if (tlv_length < 4) { ND_PRINT("\n\t TLV length %u < 4", tlv_length); return -1; } ND_PRINT(", %s", GET_IPADDR_STRING(tptr)); break; default: if (ndo->ndo_vflag <= 1) { if (!print_unknown_data(ndo, tptr, "\n\t ", tlv_length)) return -1; } break; } /* in OSPF everything has to be 32-bit aligned, including TLVs */ if (tlv_length%4 != 0) tlv_length+=4-(tlv_length%4); if (tlv_length > ls_length) { ND_PRINT("\n\t Bogus padded length %u > %u", tlv_length, ls_length); return -1; } ls_length-=tlv_length; tptr+=tlv_length; } return 0; trunc: return -1; invalid: nd_print_invalid(ndo); return -1; } static int ospf_print_lshdr(netdissect_options *ndo, const struct lsa_hdr *lshp) { u_int ls_type; u_int ls_length; ls_length = GET_BE_U_2(lshp->ls_length); if (ls_length < sizeof(struct lsa_hdr)) { ND_PRINT("\n\t Bogus length %u < header (%zu)", ls_length, sizeof(struct lsa_hdr)); return(-1); } ND_PRINT("\n\t Advertising Router %s, seq 0x%08x, age %us, length %zu", GET_IPADDR_STRING(lshp->ls_router), GET_BE_U_4(lshp->ls_seq), GET_BE_U_2(lshp->ls_age), ls_length - sizeof(struct lsa_hdr)); ls_type = GET_U_1(lshp->ls_type); switch (ls_type) { /* the LSA header for opaque LSAs was slightly changed */ case LS_TYPE_OPAQUE_LL: case LS_TYPE_OPAQUE_AL: case LS_TYPE_OPAQUE_DW: ND_PRINT("\n\t %s LSA (%u), Opaque-Type %s LSA (%u), Opaque-ID %u", tok2str(lsa_values,"unknown",ls_type), ls_type, tok2str(lsa_opaque_values, "unknown", GET_U_1(lshp->un_lsa_id.opaque_field.opaque_type)), GET_U_1(lshp->un_lsa_id.opaque_field.opaque_type), GET_BE_U_3(lshp->un_lsa_id.opaque_field.opaque_id) ); break; /* all other LSA types use regular style LSA headers */ default: ND_PRINT("\n\t %s LSA (%u), LSA-ID: %s", tok2str(lsa_values,"unknown",ls_type), ls_type, GET_IPADDR_STRING(lshp->un_lsa_id.lsa_id)); break; } ND_PRINT("\n\t Options: [%s]", bittok2str(ospf_option_values, "none", GET_U_1(lshp->ls_options))); return (ls_length); } /* draft-ietf-ospf-mt-09 */ static const struct tok ospf_topology_values[] = { { 0, "default" }, { 1, "multicast" }, { 2, "management" }, { 0, NULL } }; /* * Print all the per-topology metrics. */ static void ospf_print_tos_metrics(netdissect_options *ndo, const union un_tos *tos) { u_int metric_count; u_int toscount; u_int tos_type; toscount = GET_U_1(tos->link.link_tos_count)+1; metric_count = 0; /* * All but the first metric contain a valid topology id. */ while (toscount != 0) { tos_type = GET_U_1(tos->metrics.tos_type); ND_PRINT("\n\t\ttopology %s (%u), metric %u", tok2str(ospf_topology_values, "Unknown", metric_count ? tos_type : 0), metric_count ? tos_type : 0, GET_BE_U_2(tos->metrics.tos_metric)); metric_count++; tos++; toscount--; } } /* * Print a single link state advertisement. If truncated or if LSA length * field is less than the length of the LSA header, return NULl, else * return pointer to data past end of LSA. */ static const uint8_t * ospf_print_lsa(netdissect_options *ndo, const struct lsa *lsap) { const uint8_t *ls_end; const struct rlalink *rlp; const nd_ipv4 *ap; const struct aslametric *almp; const struct mcla *mcp; const uint8_t *lp; u_int tlv_type, tlv_length, rla_count, topology; int ospf_print_lshdr_ret; u_int ls_length; const uint8_t *tptr; tptr = (const uint8_t *)lsap->lsa_un.un_unknown; /* squelch compiler warnings */ ospf_print_lshdr_ret = ospf_print_lshdr(ndo, &lsap->ls_hdr); if (ospf_print_lshdr_ret < 0) return(NULL); ls_length = (u_int)ospf_print_lshdr_ret; ls_end = (const uint8_t *)lsap + ls_length; /* * ospf_print_lshdr() returns -1 if the length is too short, * so we know ls_length is >= sizeof(struct lsa_hdr). */ ls_length -= sizeof(struct lsa_hdr); switch (GET_U_1(lsap->ls_hdr.ls_type)) { case LS_TYPE_ROUTER: ND_PRINT("\n\t Router LSA Options: [%s]", bittok2str(ospf_rla_flag_values, "none", GET_U_1(lsap->lsa_un.un_rla.rla_flags))); rla_count = GET_BE_U_2(lsap->lsa_un.un_rla.rla_count); ND_TCHECK_SIZE(lsap->lsa_un.un_rla.rla_link); rlp = lsap->lsa_un.un_rla.rla_link; for (u_int i = rla_count; i != 0; i--) { ND_TCHECK_SIZE(rlp); switch (GET_U_1(rlp->un_tos.link.link_type)) { case RLA_TYPE_VIRTUAL: ND_PRINT("\n\t Virtual Link: Neighbor Router-ID: %s, Interface Address: %s", GET_IPADDR_STRING(rlp->link_id), GET_IPADDR_STRING(rlp->link_data)); break; case RLA_TYPE_ROUTER: ND_PRINT("\n\t Neighbor Router-ID: %s, Interface Address: %s", GET_IPADDR_STRING(rlp->link_id), GET_IPADDR_STRING(rlp->link_data)); break; case RLA_TYPE_TRANSIT: ND_PRINT("\n\t Neighbor Network-ID: %s, Interface Address: %s", GET_IPADDR_STRING(rlp->link_id), GET_IPADDR_STRING(rlp->link_data)); break; case RLA_TYPE_STUB: ND_PRINT("\n\t Stub Network: %s, Mask: %s", GET_IPADDR_STRING(rlp->link_id), GET_IPADDR_STRING(rlp->link_data)); break; default: ND_PRINT("\n\t Unknown Router Link Type (%u)", GET_U_1(rlp->un_tos.link.link_type)); return (ls_end); } ospf_print_tos_metrics(ndo, &rlp->un_tos); rlp = (const struct rlalink *)((const u_char *)(rlp + 1) + (GET_U_1(rlp->un_tos.link.link_tos_count) * sizeof(union un_tos))); } break; case LS_TYPE_NETWORK: ND_PRINT("\n\t Mask %s\n\t Connected Routers:", GET_IPADDR_STRING(lsap->lsa_un.un_nla.nla_mask)); ap = lsap->lsa_un.un_nla.nla_router; while ((const u_char *)ap < ls_end) { ND_PRINT("\n\t %s", GET_IPADDR_STRING(ap)); ++ap; } break; case LS_TYPE_SUM_IP: ND_TCHECK_4(lsap->lsa_un.un_nla.nla_mask); ND_PRINT("\n\t Mask %s", GET_IPADDR_STRING(lsap->lsa_un.un_sla.sla_mask)); ND_TCHECK_SIZE(lsap->lsa_un.un_sla.sla_tosmetric); lp = (const uint8_t *)lsap->lsa_un.un_sla.sla_tosmetric; while (lp < ls_end) { uint32_t ul; ul = GET_BE_U_4(lp); topology = (ul & SLA_MASK_TOS) >> SLA_SHIFT_TOS; ND_PRINT("\n\t\ttopology %s (%u) metric %u", tok2str(ospf_topology_values, "Unknown", topology), topology, ul & SLA_MASK_METRIC); lp += 4; } break; case LS_TYPE_SUM_ABR: ND_TCHECK_SIZE(lsap->lsa_un.un_sla.sla_tosmetric); lp = (const uint8_t *)lsap->lsa_un.un_sla.sla_tosmetric; while (lp < ls_end) { uint32_t ul; ul = GET_BE_U_4(lp); topology = (ul & SLA_MASK_TOS) >> SLA_SHIFT_TOS; ND_PRINT("\n\t\ttopology %s (%u) metric %u", tok2str(ospf_topology_values, "Unknown", topology), topology, ul & SLA_MASK_METRIC); lp += 4; } break; case LS_TYPE_ASE: case LS_TYPE_NSSA: /* fall through - those LSAs share the same format */ ND_TCHECK_4(lsap->lsa_un.un_nla.nla_mask); ND_PRINT("\n\t Mask %s", GET_IPADDR_STRING(lsap->lsa_un.un_asla.asla_mask)); ND_TCHECK_SIZE(lsap->lsa_un.un_sla.sla_tosmetric); almp = lsap->lsa_un.un_asla.asla_metric; while ((const u_char *)almp < ls_end) { uint32_t ul; ul = GET_BE_U_4(almp->asla_tosmetric); topology = ((ul & ASLA_MASK_TOS) >> ASLA_SHIFT_TOS); ND_PRINT("\n\t\ttopology %s (%u), type %u, metric", tok2str(ospf_topology_values, "Unknown", topology), topology, (ul & ASLA_FLAG_EXTERNAL) ? 2 : 1); if ((ul & ASLA_MASK_METRIC) == 0xffffff) ND_PRINT(" infinite"); else ND_PRINT(" %u", (ul & ASLA_MASK_METRIC)); if (GET_IPV4_TO_NETWORK_ORDER(almp->asla_forward) != 0) { ND_PRINT(", forward %s", GET_IPADDR_STRING(almp->asla_forward)); } if (GET_IPV4_TO_NETWORK_ORDER(almp->asla_tag) != 0) { ND_PRINT(", tag %s", GET_IPADDR_STRING(almp->asla_tag)); } ++almp; } break; case LS_TYPE_GROUP: /* Multicast extensions as of 23 July 1991 */ mcp = lsap->lsa_un.un_mcla; while ((const u_char *)mcp < ls_end) { switch (GET_BE_U_4(mcp->mcla_vtype)) { case MCLA_VERTEX_ROUTER: ND_PRINT("\n\t Router Router-ID %s", GET_IPADDR_STRING(mcp->mcla_vid)); break; case MCLA_VERTEX_NETWORK: ND_PRINT("\n\t Network Designated Router %s", GET_IPADDR_STRING(mcp->mcla_vid)); break; default: ND_PRINT("\n\t unknown VertexType (%u)", GET_BE_U_4(mcp->mcla_vtype)); break; } ++mcp; } break; case LS_TYPE_OPAQUE_LL: /* fall through */ case LS_TYPE_OPAQUE_AL: case LS_TYPE_OPAQUE_DW: switch (GET_U_1(lsap->ls_hdr.un_lsa_id.opaque_field.opaque_type)) { case LS_OPAQUE_TYPE_RI: tptr = (const uint8_t *)(lsap->lsa_un.un_ri_tlv); u_int ls_length_remaining = ls_length; while (ls_length_remaining != 0) { ND_TCHECK_4(tptr); if (ls_length_remaining < 4) { ND_PRINT("\n\t Remaining LS length %u < 4", ls_length_remaining); return(ls_end); } tlv_type = GET_BE_U_2(tptr); tlv_length = GET_BE_U_2(tptr + 2); tptr+=4; ls_length_remaining-=4; ND_PRINT("\n\t %s TLV (%u), length: %u, value: ", tok2str(lsa_opaque_ri_tlv_values,"unknown",tlv_type), tlv_type, tlv_length); if (tlv_length > ls_length_remaining) { ND_PRINT("\n\t Bogus length %u > remaining LS length %u", tlv_length, ls_length_remaining); return(ls_end); } ND_TCHECK_LEN(tptr, tlv_length); switch(tlv_type) { case LS_OPAQUE_RI_TLV_CAP: if (tlv_length != 4) { ND_PRINT("\n\t Bogus length %u != 4", tlv_length); return(ls_end); } ND_PRINT("Capabilities: %s", bittok2str(lsa_opaque_ri_tlv_cap_values, "Unknown", GET_BE_U_4(tptr))); break; default: if (ndo->ndo_vflag <= 1) { if (!print_unknown_data(ndo, tptr, "\n\t ", tlv_length)) return(ls_end); } break; } /* in OSPF everything has to be 32-bit aligned, including TLVs */ if (tlv_length % 4) { tlv_length += (4 - (tlv_length % 4)); } tptr+=tlv_length; ls_length_remaining-=tlv_length; } break; case LS_OPAQUE_TYPE_GRACE: if (ospf_grace_lsa_print(ndo, (const u_char *)(lsap->lsa_un.un_grace_tlv), ls_length) == -1) { return(ls_end); } break; case LS_OPAQUE_TYPE_TE: if (ospf_te_lsa_print(ndo, (const u_char *)(lsap->lsa_un.un_te_lsa_tlv), ls_length) == -1) { return(ls_end); } break; default: if (ndo->ndo_vflag <= 1) { if (!print_unknown_data(ndo, (const uint8_t *)lsap->lsa_un.un_unknown, "\n\t ", ls_length)) return(ls_end); } break; } } /* do we want to see an additionally hexdump ? */ if (ndo->ndo_vflag> 1) if (!print_unknown_data(ndo, (const uint8_t *)lsap->lsa_un.un_unknown, "\n\t ", ls_length)) { return(ls_end); } return (ls_end); trunc: return (NULL); } static void ospf_decode_lls(netdissect_options *ndo, const struct ospfhdr *op, u_int length) { const u_char *dptr; const u_char *dataend; u_int length2; uint16_t lls_type, lls_len; uint32_t lls_flags; switch (GET_U_1(op->ospf_type)) { case OSPF_TYPE_HELLO: if (!(GET_U_1(op->ospf_hello.hello_options) & OSPF_OPTION_L)) return; break; case OSPF_TYPE_DD: if (!(GET_U_1(op->ospf_db.db_options) & OSPF_OPTION_L)) return; break; default: return; } /* dig deeper if LLS data is available; see RFC4813 */ length2 = GET_BE_U_2(op->ospf_len); dptr = (const u_char *)op + length2; dataend = (const u_char *)op + length; if (GET_BE_U_2(op->ospf_authtype) == OSPF_AUTH_MD5) { dptr = dptr + GET_U_1(op->ospf_authdata + 3); length2 += GET_U_1(op->ospf_authdata + 3); } if (length2 >= length) { ND_PRINT("\n\t[LLS truncated]"); return; } ND_PRINT("\n\t LLS: checksum: 0x%04x", (u_int) GET_BE_U_2(dptr)); dptr += 2; length2 = GET_BE_U_2(dptr); ND_PRINT(", length: %u", length2); dptr += 2; while (dptr < dataend) { lls_type = GET_BE_U_2(dptr); ND_PRINT("\n\t %s (%u)", tok2str(ospf_lls_tlv_values,"Unknown TLV",lls_type), lls_type); dptr += 2; lls_len = GET_BE_U_2(dptr); ND_PRINT(", length: %u", lls_len); dptr += 2; switch (lls_type) { case OSPF_LLS_EO: if (lls_len != 4) { ND_PRINT(" [should be 4]"); lls_len = 4; } lls_flags = GET_BE_U_4(dptr); ND_PRINT("\n\t Options: 0x%08x [%s]", lls_flags, bittok2str(ospf_lls_eo_options, "?", lls_flags)); break; case OSPF_LLS_MD5: if (lls_len != 20) { ND_PRINT(" [should be 20]"); lls_len = 20; } ND_PRINT("\n\t Sequence number: 0x%08x", GET_BE_U_4(dptr)); break; } dptr += lls_len; } } static int ospf_decode_v2(netdissect_options *ndo, const struct ospfhdr *op, const u_char *dataend) { const nd_ipv4 *ap; const struct lsr *lsrp; const struct lsa_hdr *lshp; const struct lsa *lsap; uint32_t lsa_count,lsa_count_max; switch (GET_U_1(op->ospf_type)) { case OSPF_TYPE_HELLO: ND_PRINT("\n\tOptions [%s]", bittok2str(ospf_option_values,"none",GET_U_1(op->ospf_hello.hello_options))); ND_PRINT("\n\t Hello Timer %us, Dead Timer %us, Mask %s, Priority %u", GET_BE_U_2(op->ospf_hello.hello_helloint), GET_BE_U_4(op->ospf_hello.hello_deadint), GET_IPADDR_STRING(op->ospf_hello.hello_mask), GET_U_1(op->ospf_hello.hello_priority)); if (GET_IPV4_TO_NETWORK_ORDER(op->ospf_hello.hello_dr) != 0) ND_PRINT("\n\t Designated Router %s", GET_IPADDR_STRING(op->ospf_hello.hello_dr)); if (GET_IPV4_TO_NETWORK_ORDER(op->ospf_hello.hello_bdr) != 0) ND_PRINT(", Backup Designated Router %s", GET_IPADDR_STRING(op->ospf_hello.hello_bdr)); ap = op->ospf_hello.hello_neighbor; if ((const u_char *)ap < dataend) ND_PRINT("\n\t Neighbor List:"); while ((const u_char *)ap < dataend) { ND_PRINT("\n\t %s", GET_IPADDR_STRING(ap)); ++ap; } break; /* HELLO */ case OSPF_TYPE_DD: ND_PRINT("\n\tOptions [%s]", bittok2str(ospf_option_values, "none", GET_U_1(op->ospf_db.db_options))); ND_PRINT(", DD Flags [%s]", bittok2str(ospf_dd_flag_values, "none", GET_U_1(op->ospf_db.db_flags))); if (GET_BE_U_2(op->ospf_db.db_ifmtu)) { ND_PRINT(", MTU: %u", GET_BE_U_2(op->ospf_db.db_ifmtu)); } ND_PRINT(", Sequence: 0x%08x", GET_BE_U_4(op->ospf_db.db_seq)); /* Print all the LS adv's */ lshp = op->ospf_db.db_lshdr; while (((const u_char *)lshp < dataend) && ospf_print_lshdr(ndo, lshp) != -1) { ++lshp; } break; case OSPF_TYPE_LS_REQ: lsrp = op->ospf_lsr; while ((const u_char *)lsrp < dataend) { ND_TCHECK_SIZE(lsrp); ND_PRINT("\n\t Advertising Router: %s, %s LSA (%u)", GET_IPADDR_STRING(lsrp->ls_router), tok2str(lsa_values,"unknown",GET_BE_U_4(lsrp->ls_type)), GET_BE_U_4(lsrp->ls_type)); switch (GET_BE_U_4(lsrp->ls_type)) { /* the LSA header for opaque LSAs was slightly changed */ case LS_TYPE_OPAQUE_LL: case LS_TYPE_OPAQUE_AL: case LS_TYPE_OPAQUE_DW: ND_PRINT(", Opaque-Type: %s LSA (%u), Opaque-ID: %u", tok2str(lsa_opaque_values, "unknown",GET_U_1(lsrp->un_ls_stateid.opaque_field.opaque_type)), GET_U_1(lsrp->un_ls_stateid.opaque_field.opaque_type), GET_BE_U_3(lsrp->un_ls_stateid.opaque_field.opaque_id)); break; default: ND_PRINT(", LSA-ID: %s", GET_IPADDR_STRING(lsrp->un_ls_stateid.ls_stateid)); break; } ++lsrp; } break; case OSPF_TYPE_LS_UPDATE: lsap = op->ospf_lsu.lsu_lsa; lsa_count_max = GET_BE_U_4(op->ospf_lsu.lsu_count); ND_PRINT(", %u LSA%s", lsa_count_max, PLURAL_SUFFIX(lsa_count_max)); for (lsa_count=1;lsa_count <= lsa_count_max;lsa_count++) { ND_PRINT("\n\t LSA #%u", lsa_count); lsap = (const struct lsa *)ospf_print_lsa(ndo, lsap); if (lsap == NULL) goto trunc; } break; case OSPF_TYPE_LS_ACK: lshp = op->ospf_lsa.lsa_lshdr; while ((const u_char *)lshp < dataend) { ospf_print_lshdr(ndo, lshp); ++lshp; } break; default: break; } return (0); trunc: return (1); } void ospf_print(netdissect_options *ndo, const u_char *bp, u_int length, const u_char *bp2 _U_) { const struct ospfhdr *op; const u_char *dataend; const char *cp; ndo->ndo_protocol = "ospf2"; op = (const struct ospfhdr *)bp; /* XXX Before we do anything else, strip off the MD5 trailer */ if (GET_BE_U_2(op->ospf_authtype) == OSPF_AUTH_MD5) { length -= OSPF_AUTH_MD5_LEN; ndo->ndo_snapend -= OSPF_AUTH_MD5_LEN; } /* If the type is valid translate it, or just print the type */ /* value. If it's not valid, say so and return */ cp = tok2str(type2str, "unknown LS-type %u", GET_U_1(op->ospf_type)); ND_PRINT("OSPFv%u, %s, length %u", GET_U_1(op->ospf_version), cp, length); if (*cp == 'u') return; if (!ndo->ndo_vflag) { /* non verbose - so lets bail out here */ return; } if (length != GET_BE_U_2(op->ospf_len)) { ND_PRINT(" [len %u]", GET_BE_U_2(op->ospf_len)); } if (length > GET_BE_U_2(op->ospf_len)) { dataend = bp + GET_BE_U_2(op->ospf_len); } else { dataend = bp + length; } ND_PRINT("\n\tRouter-ID %s", GET_IPADDR_STRING(op->ospf_routerid)); if (GET_IPV4_TO_NETWORK_ORDER(op->ospf_areaid) != 0) ND_PRINT(", Area %s", GET_IPADDR_STRING(op->ospf_areaid)); else ND_PRINT(", Backbone Area"); if (ndo->ndo_vflag) { /* Print authentication data (should we really do this?) */ ND_TCHECK_LEN(op->ospf_authdata, sizeof(op->ospf_authdata)); ND_PRINT(", Authentication Type: %s (%u)", tok2str(ospf_authtype_values, "unknown", GET_BE_U_2(op->ospf_authtype)), GET_BE_U_2(op->ospf_authtype)); switch (GET_BE_U_2(op->ospf_authtype)) { case OSPF_AUTH_NONE: break; case OSPF_AUTH_SIMPLE: ND_PRINT("\n\tSimple text password: "); nd_printjnp(ndo, op->ospf_authdata, OSPF_AUTH_SIMPLE_LEN); break; case OSPF_AUTH_MD5: ND_PRINT("\n\tKey-ID: %u, Auth-Length: %u, Crypto Sequence Number: 0x%08x", GET_U_1(op->ospf_authdata + 2), GET_U_1(op->ospf_authdata + 3), GET_BE_U_4((op->ospf_authdata) + 4)); break; default: return; } } /* Do rest according to version. */ switch (GET_U_1(op->ospf_version)) { case 2: /* ospf version 2 */ if (ospf_decode_v2(ndo, op, dataend)) goto trunc; if (length > GET_BE_U_2(op->ospf_len)) ospf_decode_lls(ndo, op, length); break; default: ND_PRINT(" ospf [version %u]", GET_U_1(op->ospf_version)); break; } /* end switch on version */ return; trunc: nd_trunc_longjmp(ndo); }