/* * Copyright (c) 2005 Topspin Communications. All rights reserved. * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include "ibverbs.h" #ifndef NRESOLVE_NEIGH #include #include #include "neigh.h" #endif /* Hack to avoid GCC's -Wmissing-prototypes and the similar error from sparse with these prototypes. Symbol versionining requires the goofy names, the prototype must match the version in verbs.h. */ int __ibv_query_device(struct ibv_context *context, struct ibv_device_attr *device_attr); int __ibv_query_port(struct ibv_context *context, uint8_t port_num, struct ibv_port_attr *port_attr); int __ibv_query_gid(struct ibv_context *context, uint8_t port_num, int index, union ibv_gid *gid); int __ibv_query_pkey(struct ibv_context *context, uint8_t port_num, int index, __be16 *pkey); struct ibv_pd *__ibv_alloc_pd(struct ibv_context *context); int __ibv_dealloc_pd(struct ibv_pd *pd); struct ibv_mr *__ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, int access); int __ibv_rereg_mr(struct ibv_mr *mr, int flags, struct ibv_pd *pd, void *addr, size_t length, int access); int __ibv_dereg_mr(struct ibv_mr *mr); struct ibv_cq *__ibv_create_cq(struct ibv_context *context, int cqe, void *cq_context, struct ibv_comp_channel *channel, int comp_vector); int __ibv_resize_cq(struct ibv_cq *cq, int cqe); int __ibv_destroy_cq(struct ibv_cq *cq); int __ibv_get_cq_event(struct ibv_comp_channel *channel, struct ibv_cq **cq, void **cq_context); void __ibv_ack_cq_events(struct ibv_cq *cq, unsigned int nevents); struct ibv_srq *__ibv_create_srq(struct ibv_pd *pd, struct ibv_srq_init_attr *srq_init_attr); int __ibv_modify_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr, int srq_attr_mask); int __ibv_query_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr); int __ibv_destroy_srq(struct ibv_srq *srq); struct ibv_qp *__ibv_create_qp(struct ibv_pd *pd, struct ibv_qp_init_attr *qp_init_attr); int __ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, int attr_mask, struct ibv_qp_init_attr *init_attr); int __ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, int attr_mask); int __ibv_destroy_qp(struct ibv_qp *qp); struct ibv_ah *__ibv_create_ah(struct ibv_pd *pd, struct ibv_ah_attr *attr); int __ibv_destroy_ah(struct ibv_ah *ah); int __ibv_attach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid); int __ibv_detach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid); int __attribute__((const)) ibv_rate_to_mult(enum ibv_rate rate) { switch (rate) { case IBV_RATE_2_5_GBPS: return 1; case IBV_RATE_5_GBPS: return 2; case IBV_RATE_10_GBPS: return 4; case IBV_RATE_20_GBPS: return 8; case IBV_RATE_30_GBPS: return 12; case IBV_RATE_40_GBPS: return 16; case IBV_RATE_60_GBPS: return 24; case IBV_RATE_80_GBPS: return 32; case IBV_RATE_120_GBPS: return 48; case IBV_RATE_28_GBPS: return 11; case IBV_RATE_50_GBPS: return 20; case IBV_RATE_400_GBPS: return 160; case IBV_RATE_600_GBPS: return 240; default: return -1; } } enum ibv_rate __attribute__((const)) mult_to_ibv_rate(int mult) { switch (mult) { case 1: return IBV_RATE_2_5_GBPS; case 2: return IBV_RATE_5_GBPS; case 4: return IBV_RATE_10_GBPS; case 8: return IBV_RATE_20_GBPS; case 12: return IBV_RATE_30_GBPS; case 16: return IBV_RATE_40_GBPS; case 24: return IBV_RATE_60_GBPS; case 32: return IBV_RATE_80_GBPS; case 48: return IBV_RATE_120_GBPS; case 11: return IBV_RATE_28_GBPS; case 20: return IBV_RATE_50_GBPS; case 160: return IBV_RATE_400_GBPS; case 240: return IBV_RATE_600_GBPS; default: return IBV_RATE_MAX; } } int __attribute__((const)) ibv_rate_to_mbps(enum ibv_rate rate) { switch (rate) { case IBV_RATE_2_5_GBPS: return 2500; case IBV_RATE_5_GBPS: return 5000; case IBV_RATE_10_GBPS: return 10000; case IBV_RATE_20_GBPS: return 20000; case IBV_RATE_30_GBPS: return 30000; case IBV_RATE_40_GBPS: return 40000; case IBV_RATE_60_GBPS: return 60000; case IBV_RATE_80_GBPS: return 80000; case IBV_RATE_120_GBPS: return 120000; case IBV_RATE_14_GBPS: return 14062; case IBV_RATE_56_GBPS: return 56250; case IBV_RATE_112_GBPS: return 112500; case IBV_RATE_168_GBPS: return 168750; case IBV_RATE_25_GBPS: return 25781; case IBV_RATE_100_GBPS: return 103125; case IBV_RATE_200_GBPS: return 206250; case IBV_RATE_300_GBPS: return 309375; case IBV_RATE_28_GBPS: return 28125; case IBV_RATE_50_GBPS: return 53125; case IBV_RATE_400_GBPS: return 425000; case IBV_RATE_600_GBPS: return 637500; default: return -1; } } enum ibv_rate __attribute__((const)) mbps_to_ibv_rate(int mbps) { switch (mbps) { case 2500: return IBV_RATE_2_5_GBPS; case 5000: return IBV_RATE_5_GBPS; case 10000: return IBV_RATE_10_GBPS; case 20000: return IBV_RATE_20_GBPS; case 30000: return IBV_RATE_30_GBPS; case 40000: return IBV_RATE_40_GBPS; case 60000: return IBV_RATE_60_GBPS; case 80000: return IBV_RATE_80_GBPS; case 120000: return IBV_RATE_120_GBPS; case 14062: return IBV_RATE_14_GBPS; case 56250: return IBV_RATE_56_GBPS; case 112500: return IBV_RATE_112_GBPS; case 168750: return IBV_RATE_168_GBPS; case 25781: return IBV_RATE_25_GBPS; case 103125: return IBV_RATE_100_GBPS; case 206250: return IBV_RATE_200_GBPS; case 309375: return IBV_RATE_300_GBPS; case 28125: return IBV_RATE_28_GBPS; case 53125: return IBV_RATE_50_GBPS; case 425000: return IBV_RATE_400_GBPS; case 637500: return IBV_RATE_600_GBPS; default: return IBV_RATE_MAX; } } int __ibv_query_device(struct ibv_context *context, struct ibv_device_attr *device_attr) { return context->ops.query_device(context, device_attr); } default_symver(__ibv_query_device, ibv_query_device); int __ibv_query_port(struct ibv_context *context, uint8_t port_num, struct ibv_port_attr *port_attr) { return context->ops.query_port(context, port_num, port_attr); } default_symver(__ibv_query_port, ibv_query_port); int __ibv_query_gid(struct ibv_context *context, uint8_t port_num, int index, union ibv_gid *gid) { char name[24]; char attr[41]; uint16_t val; int i; snprintf(name, sizeof name, "ports/%d/gids/%d", port_num, index); if (ibv_read_sysfs_file(context->device->ibdev_path, name, attr, sizeof attr) < 0) return -1; for (i = 0; i < 8; ++i) { if (sscanf(attr + i * 5, "%hx", &val) != 1) return -1; gid->raw[i * 2 ] = val >> 8; gid->raw[i * 2 + 1] = val & 0xff; } return 0; } default_symver(__ibv_query_gid, ibv_query_gid); int __ibv_query_pkey(struct ibv_context *context, uint8_t port_num, int index, __be16 *pkey) { char name[24]; char attr[8]; uint16_t val; snprintf(name, sizeof name, "ports/%d/pkeys/%d", port_num, index); if (ibv_read_sysfs_file(context->device->ibdev_path, name, attr, sizeof attr) < 0) return -1; if (sscanf(attr, "%hx", &val) != 1) return -1; *pkey = htobe16(val); return 0; } default_symver(__ibv_query_pkey, ibv_query_pkey); struct ibv_pd *__ibv_alloc_pd(struct ibv_context *context) { struct ibv_pd *pd; pd = context->ops.alloc_pd(context); if (pd) pd->context = context; return pd; } default_symver(__ibv_alloc_pd, ibv_alloc_pd); int __ibv_dealloc_pd(struct ibv_pd *pd) { return pd->context->ops.dealloc_pd(pd); } default_symver(__ibv_dealloc_pd, ibv_dealloc_pd); struct ibv_mr *__ibv_reg_mr(struct ibv_pd *pd, void *addr, size_t length, int access) { struct ibv_mr *mr; if (ibv_dontfork_range(addr, length)) return NULL; mr = pd->context->ops.reg_mr(pd, addr, length, access); if (mr) { mr->context = pd->context; mr->pd = pd; mr->addr = addr; mr->length = length; } else ibv_dofork_range(addr, length); return mr; } default_symver(__ibv_reg_mr, ibv_reg_mr); int __ibv_rereg_mr(struct ibv_mr *mr, int flags, struct ibv_pd *pd, void *addr, size_t length, int access) { int dofork_onfail = 0; int err; void *old_addr; size_t old_len; if (flags & ~IBV_REREG_MR_FLAGS_SUPPORTED) { errno = EINVAL; return IBV_REREG_MR_ERR_INPUT; } if ((flags & IBV_REREG_MR_CHANGE_TRANSLATION) && (!length || !addr)) { errno = EINVAL; return IBV_REREG_MR_ERR_INPUT; } if (access && !(flags & IBV_REREG_MR_CHANGE_ACCESS)) { errno = EINVAL; return IBV_REREG_MR_ERR_INPUT; } if (!mr->context->ops.rereg_mr) { errno = ENOSYS; return IBV_REREG_MR_ERR_INPUT; } if (flags & IBV_REREG_MR_CHANGE_TRANSLATION) { err = ibv_dontfork_range(addr, length); if (err) return IBV_REREG_MR_ERR_DONT_FORK_NEW; dofork_onfail = 1; } old_addr = mr->addr; old_len = mr->length; err = mr->context->ops.rereg_mr(mr, flags, pd, addr, length, access); if (!err) { if (flags & IBV_REREG_MR_CHANGE_PD) mr->pd = pd; if (flags & IBV_REREG_MR_CHANGE_TRANSLATION) { mr->addr = addr; mr->length = length; err = ibv_dofork_range(old_addr, old_len); if (err) return IBV_REREG_MR_ERR_DO_FORK_OLD; } } else { err = IBV_REREG_MR_ERR_CMD; if (dofork_onfail) { if (ibv_dofork_range(addr, length)) err = IBV_REREG_MR_ERR_CMD_AND_DO_FORK_NEW; } } return err; } default_symver(__ibv_rereg_mr, ibv_rereg_mr); int __ibv_dereg_mr(struct ibv_mr *mr) { int ret; void *addr = mr->addr; size_t length = mr->length; ret = mr->context->ops.dereg_mr(mr); if (!ret) ibv_dofork_range(addr, length); return ret; } default_symver(__ibv_dereg_mr, ibv_dereg_mr); static struct ibv_comp_channel *ibv_create_comp_channel_v2(struct ibv_context *context) { struct ibv_abi_compat_v2 *t = context->abi_compat; static int warned; if (!pthread_mutex_trylock(&t->in_use)) return &t->channel; if (!warned) { fprintf(stderr, PFX "Warning: kernel's ABI version %d limits capacity.\n" " Only one completion channel can be created per context.\n", abi_ver); ++warned; } return NULL; } struct ibv_comp_channel *ibv_create_comp_channel(struct ibv_context *context) { struct ibv_comp_channel *channel; struct ibv_create_comp_channel cmd; struct ibv_create_comp_channel_resp resp; if (abi_ver <= 2) return ibv_create_comp_channel_v2(context); channel = malloc(sizeof *channel); if (!channel) return NULL; IBV_INIT_CMD_RESP(&cmd, sizeof cmd, CREATE_COMP_CHANNEL, &resp, sizeof resp); if (write(context->cmd_fd, &cmd, sizeof cmd) != sizeof cmd) { free(channel); return NULL; } (void) VALGRIND_MAKE_MEM_DEFINED(&resp, sizeof resp); channel->context = context; channel->fd = resp.fd; channel->refcnt = 0; return channel; } static int ibv_destroy_comp_channel_v2(struct ibv_comp_channel *channel) { struct ibv_abi_compat_v2 *t = (struct ibv_abi_compat_v2 *) channel; pthread_mutex_unlock(&t->in_use); return 0; } int ibv_destroy_comp_channel(struct ibv_comp_channel *channel) { struct ibv_context *context; int ret; context = channel->context; pthread_mutex_lock(&context->mutex); if (channel->refcnt) { ret = EBUSY; goto out; } if (abi_ver <= 2) { ret = ibv_destroy_comp_channel_v2(channel); goto out; } close(channel->fd); free(channel); ret = 0; out: pthread_mutex_unlock(&context->mutex); return ret; } struct ibv_cq *__ibv_create_cq(struct ibv_context *context, int cqe, void *cq_context, struct ibv_comp_channel *channel, int comp_vector) { struct ibv_cq *cq; int err = 0; cq = context->ops.create_cq(context, cqe, channel, comp_vector); if (!cq) return NULL; err = verbs_init_cq(cq, context, channel, cq_context); if (err) goto err; return cq; err: context->ops.destroy_cq(cq); return NULL; } default_symver(__ibv_create_cq, ibv_create_cq); int __ibv_resize_cq(struct ibv_cq *cq, int cqe) { if (!cq->context->ops.resize_cq) return ENOSYS; return cq->context->ops.resize_cq(cq, cqe); } default_symver(__ibv_resize_cq, ibv_resize_cq); int __ibv_destroy_cq(struct ibv_cq *cq) { struct ibv_comp_channel *channel = cq->channel; int ret; ret = cq->context->ops.destroy_cq(cq); if (channel) { if (!ret) { pthread_mutex_lock(&channel->context->mutex); --channel->refcnt; pthread_mutex_unlock(&channel->context->mutex); } } return ret; } default_symver(__ibv_destroy_cq, ibv_destroy_cq); int __ibv_get_cq_event(struct ibv_comp_channel *channel, struct ibv_cq **cq, void **cq_context) { struct ibv_comp_event ev; if (read(channel->fd, &ev, sizeof ev) != sizeof ev) return -1; *cq = (struct ibv_cq *) (uintptr_t) ev.cq_handle; *cq_context = (*cq)->cq_context; if ((*cq)->context->ops.cq_event) (*cq)->context->ops.cq_event(*cq); return 0; } default_symver(__ibv_get_cq_event, ibv_get_cq_event); void __ibv_ack_cq_events(struct ibv_cq *cq, unsigned int nevents) { pthread_mutex_lock(&cq->mutex); cq->comp_events_completed += nevents; pthread_cond_signal(&cq->cond); pthread_mutex_unlock(&cq->mutex); } default_symver(__ibv_ack_cq_events, ibv_ack_cq_events); struct ibv_srq *__ibv_create_srq(struct ibv_pd *pd, struct ibv_srq_init_attr *srq_init_attr) { struct ibv_srq *srq; if (!pd->context->ops.create_srq) return NULL; srq = pd->context->ops.create_srq(pd, srq_init_attr); if (!srq) return NULL; srq->context = pd->context; srq->srq_context = srq_init_attr->srq_context; srq->pd = pd; srq->events_completed = 0; if (pthread_mutex_init(&srq->mutex, NULL)) goto err; if (pthread_cond_init(&srq->cond, NULL)) goto err_mutex; return srq; err_mutex: pthread_mutex_destroy(&srq->mutex); err: pd->context->ops.destroy_srq(srq); return NULL; } default_symver(__ibv_create_srq, ibv_create_srq); int __ibv_modify_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr, int srq_attr_mask) { return srq->context->ops.modify_srq(srq, srq_attr, srq_attr_mask); } default_symver(__ibv_modify_srq, ibv_modify_srq); int __ibv_query_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr) { return srq->context->ops.query_srq(srq, srq_attr); } default_symver(__ibv_query_srq, ibv_query_srq); int __ibv_destroy_srq(struct ibv_srq *srq) { pthread_cond_destroy(&srq->cond); pthread_mutex_destroy(&srq->mutex); return srq->context->ops.destroy_srq(srq); } default_symver(__ibv_destroy_srq, ibv_destroy_srq); struct ibv_qp *__ibv_create_qp(struct ibv_pd *pd, struct ibv_qp_init_attr *qp_init_attr) { struct ibv_qp *qp = pd->context->ops.create_qp(pd, qp_init_attr); if (qp) { qp->context = pd->context; qp->qp_context = qp_init_attr->qp_context; qp->pd = pd; qp->send_cq = qp_init_attr->send_cq; qp->recv_cq = qp_init_attr->recv_cq; qp->srq = qp_init_attr->srq; qp->qp_type = qp_init_attr->qp_type; qp->state = IBV_QPS_RESET; qp->events_completed = 0; pthread_mutex_init(&qp->mutex, NULL); pthread_cond_init(&qp->cond, NULL); } return qp; } default_symver(__ibv_create_qp, ibv_create_qp); int __ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, int attr_mask, struct ibv_qp_init_attr *init_attr) { int ret; ret = qp->context->ops.query_qp(qp, attr, attr_mask, init_attr); if (ret) return ret; if (attr_mask & IBV_QP_STATE) qp->state = attr->qp_state; return 0; } default_symver(__ibv_query_qp, ibv_query_qp); int __ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, int attr_mask) { int ret; ret = qp->context->ops.modify_qp(qp, attr, attr_mask); if (ret) return ret; if (attr_mask & IBV_QP_STATE) qp->state = attr->qp_state; return 0; } default_symver(__ibv_modify_qp, ibv_modify_qp); int __ibv_destroy_qp(struct ibv_qp *qp) { return qp->context->ops.destroy_qp(qp); } default_symver(__ibv_destroy_qp, ibv_destroy_qp); struct ibv_ah *__ibv_create_ah(struct ibv_pd *pd, struct ibv_ah_attr *attr) { struct ibv_ah *ah = pd->context->ops.create_ah(pd, attr); if (ah) { ah->context = pd->context; ah->pd = pd; } return ah; } default_symver(__ibv_create_ah, ibv_create_ah); /* GID types as appear in sysfs, no change is expected as of ABI * compatibility. */ #define V1_TYPE "IB/RoCE v1" #define V2_TYPE "RoCE v2" int ibv_query_gid_type(struct ibv_context *context, uint8_t port_num, unsigned int index, enum ibv_gid_type *type) { char name[32]; char buff[11]; snprintf(name, sizeof(name), "ports/%d/gid_attrs/types/%d", port_num, index); /* Reset errno so that we can rely on its value upon any error flow in * ibv_read_sysfs_file. */ errno = 0; if (ibv_read_sysfs_file(context->device->ibdev_path, name, buff, sizeof(buff)) <= 0) { char *dir_path; DIR *dir; if (errno == EINVAL) { /* In IB, this file doesn't exist and the kernel sets * errno to -EINVAL. */ *type = IBV_GID_TYPE_IB_ROCE_V1; return 0; } if (asprintf(&dir_path, "%s/%s/%d/%s/", context->device->ibdev_path, "ports", port_num, "gid_attrs") < 0) return -1; dir = opendir(dir_path); free(dir_path); if (!dir) { if (errno == ENOENT) /* Assuming that if gid_attrs doesn't exist, * we have an old kernel and all GIDs are * IB/RoCE v1 */ *type = IBV_GID_TYPE_IB_ROCE_V1; else return -1; } else { closedir(dir); errno = EFAULT; return -1; } } else { if (!strcmp(buff, V1_TYPE)) { *type = IBV_GID_TYPE_IB_ROCE_V1; } else if (!strcmp(buff, V2_TYPE)) { *type = IBV_GID_TYPE_ROCE_V2; } else { errno = ENOTSUP; return -1; } } return 0; } static int ibv_find_gid_index(struct ibv_context *context, uint8_t port_num, union ibv_gid *gid, enum ibv_gid_type gid_type) { enum ibv_gid_type sgid_type = 0; union ibv_gid sgid; int i = 0, ret; do { ret = ibv_query_gid(context, port_num, i, &sgid); if (!ret) { ret = ibv_query_gid_type(context, port_num, i, &sgid_type); } i++; } while (!ret && (memcmp(&sgid, gid, sizeof(*gid)) || (gid_type != sgid_type))); return ret ? ret : i - 1; } static inline void map_ipv4_addr_to_ipv6(__be32 ipv4, struct in6_addr *ipv6) { ipv6->s6_addr32[0] = 0; ipv6->s6_addr32[1] = 0; ipv6->s6_addr32[2] = htobe32(0x0000FFFF); ipv6->s6_addr32[3] = ipv4; } static inline __sum16 ipv4_calc_hdr_csum(uint16_t *data, unsigned int num_hwords) { unsigned int i = 0; uint32_t sum = 0; for (i = 0; i < num_hwords; i++) sum += *(data++); sum = (sum & 0xffff) + (sum >> 16); return (__sum16)~sum; } static inline int get_grh_header_version(struct ibv_grh *grh) { int ip6h_version = (be32toh(grh->version_tclass_flow) >> 28) & 0xf; struct ip *ip4h = (struct ip *)((void *)grh + 20); struct ip ip4h_checked; if (ip6h_version != 6) { if (ip4h->ip_v == 4) return 4; errno = EPROTONOSUPPORT; return -1; } /* version may be 6 or 4 */ if (ip4h->ip_hl != 5) /* IPv4 header length must be 5 for RoCE v2. */ return 6; /* * Verify checksum. * We can't write on scattered buffers so we have to copy to temp * buffer. */ memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); /* Need to set the checksum field (check) to 0 before re-calculating * the checksum. */ ip4h_checked.ip_sum = 0; ip4h_checked.ip_sum = ipv4_calc_hdr_csum((uint16_t *)&ip4h_checked, 10); /* if IPv4 header checksum is OK, believe it */ if (ip4h->ip_sum == ip4h_checked.ip_sum) return 4; return 6; } static inline void set_ah_attr_generic_fields(struct ibv_ah_attr *ah_attr, struct ibv_wc *wc, struct ibv_grh *grh, uint8_t port_num) { uint32_t flow_class; flow_class = be32toh(grh->version_tclass_flow); ah_attr->grh.flow_label = flow_class & 0xFFFFF; ah_attr->dlid = wc->slid; ah_attr->sl = wc->sl; ah_attr->src_path_bits = wc->dlid_path_bits; ah_attr->port_num = port_num; } static inline int set_ah_attr_by_ipv4(struct ibv_context *context, struct ibv_ah_attr *ah_attr, struct ip *ip4h, uint8_t port_num) { union ibv_gid sgid; int ret; /* No point searching multicast GIDs in GID table */ if (IN_CLASSD(be32toh(ip4h->ip_dst.s_addr))) { errno = EINVAL; return -1; } map_ipv4_addr_to_ipv6(ip4h->ip_dst.s_addr, (struct in6_addr *)&sgid); ret = ibv_find_gid_index(context, port_num, &sgid, IBV_GID_TYPE_ROCE_V2); if (ret < 0) return ret; map_ipv4_addr_to_ipv6(ip4h->ip_src.s_addr, (struct in6_addr *)&ah_attr->grh.dgid); ah_attr->grh.sgid_index = (uint8_t) ret; ah_attr->grh.hop_limit = ip4h->ip_ttl; ah_attr->grh.traffic_class = ip4h->ip_tos; return 0; } #define IB_NEXT_HDR 0x1b static inline int set_ah_attr_by_ipv6(struct ibv_context *context, struct ibv_ah_attr *ah_attr, struct ibv_grh *grh, uint8_t port_num) { uint32_t flow_class; uint32_t sgid_type; int ret; /* No point searching multicast GIDs in GID table */ if (grh->dgid.raw[0] == 0xFF) { errno = EINVAL; return -1; } ah_attr->grh.dgid = grh->sgid; if (grh->next_hdr == IPPROTO_UDP) { sgid_type = IBV_GID_TYPE_ROCE_V2; } else if (grh->next_hdr == IB_NEXT_HDR) { sgid_type = IBV_GID_TYPE_IB_ROCE_V1; } else { errno = EPROTONOSUPPORT; return -1; } ret = ibv_find_gid_index(context, port_num, &grh->dgid, sgid_type); if (ret < 0) return ret; ah_attr->grh.sgid_index = (uint8_t) ret; flow_class = be32toh(grh->version_tclass_flow); ah_attr->grh.hop_limit = grh->hop_limit; ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF; return 0; } int ibv_init_ah_from_wc(struct ibv_context *context, uint8_t port_num, struct ibv_wc *wc, struct ibv_grh *grh, struct ibv_ah_attr *ah_attr) { int version; int ret = 0; memset(ah_attr, 0, sizeof *ah_attr); set_ah_attr_generic_fields(ah_attr, wc, grh, port_num); if (wc->wc_flags & IBV_WC_GRH) { ah_attr->is_global = 1; version = get_grh_header_version(grh); if (version == 4) ret = set_ah_attr_by_ipv4(context, ah_attr, (struct ip *)((void *)grh + 20), port_num); else if (version == 6) ret = set_ah_attr_by_ipv6(context, ah_attr, grh, port_num); else ret = -1; } return ret; } struct ibv_ah *ibv_create_ah_from_wc(struct ibv_pd *pd, struct ibv_wc *wc, struct ibv_grh *grh, uint8_t port_num) { struct ibv_ah_attr ah_attr; int ret; ret = ibv_init_ah_from_wc(pd->context, port_num, wc, grh, &ah_attr); if (ret) return NULL; return ibv_create_ah(pd, &ah_attr); } int __ibv_destroy_ah(struct ibv_ah *ah) { return ah->context->ops.destroy_ah(ah); } default_symver(__ibv_destroy_ah, ibv_destroy_ah); int __ibv_attach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid) { return qp->context->ops.attach_mcast(qp, gid, lid); } default_symver(__ibv_attach_mcast, ibv_attach_mcast); int __ibv_detach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16_t lid) { return qp->context->ops.detach_mcast(qp, gid, lid); } default_symver(__ibv_detach_mcast, ibv_detach_mcast); static inline int ipv6_addr_v4mapped(const struct in6_addr *a) { return IN6_IS_ADDR_V4MAPPED(a) || /* IPv4 encoded multicast addresses */ (a->s6_addr32[0] == htobe32(0xff0e0000) && ((a->s6_addr32[1] | (a->s6_addr32[2] ^ htobe32(0x0000ffff))) == 0UL)); } struct peer_address { void *address; uint32_t size; }; static inline int create_peer_from_gid(int family, void *raw_gid, struct peer_address *peer_address) { switch (family) { case AF_INET: peer_address->address = raw_gid + 12; peer_address->size = 4; break; case AF_INET6: peer_address->address = raw_gid; peer_address->size = 16; break; default: return -1; } return 0; } #define NEIGH_GET_DEFAULT_TIMEOUT_MS 3000 int ibv_resolve_eth_l2_from_gid(struct ibv_context *context, struct ibv_ah_attr *attr, uint8_t eth_mac[ETHERNET_LL_SIZE], uint16_t *vid) { #ifndef NRESOLVE_NEIGH int dst_family; int src_family; int oif; struct get_neigh_handler neigh_handler; union ibv_gid sgid; int ether_len; struct peer_address src; struct peer_address dst; uint16_t ret_vid; int ret = -EINVAL; int err; err = ibv_query_gid(context, attr->port_num, attr->grh.sgid_index, &sgid); if (err) return err; err = neigh_init_resources(&neigh_handler, NEIGH_GET_DEFAULT_TIMEOUT_MS); if (err) return err; dst_family = ipv6_addr_v4mapped((struct in6_addr *)attr->grh.dgid.raw) ? AF_INET : AF_INET6; src_family = ipv6_addr_v4mapped((struct in6_addr *)sgid.raw) ? AF_INET : AF_INET6; if (create_peer_from_gid(dst_family, attr->grh.dgid.raw, &dst)) goto free_resources; if (create_peer_from_gid(src_family, &sgid.raw, &src)) goto free_resources; if (neigh_set_dst(&neigh_handler, dst_family, dst.address, dst.size)) goto free_resources; if (neigh_set_src(&neigh_handler, src_family, src.address, src.size)) goto free_resources; oif = neigh_get_oif_from_src(&neigh_handler); if (oif > 0) neigh_set_oif(&neigh_handler, oif); else goto free_resources; ret = -EHOSTUNREACH; /* blocking call */ if (process_get_neigh(&neigh_handler)) goto free_resources; ret_vid = neigh_get_vlan_id_from_dev(&neigh_handler); if (ret_vid <= 0xfff) neigh_set_vlan_id(&neigh_handler, ret_vid); /* We are using only Ethernet here */ ether_len = neigh_get_ll(&neigh_handler, eth_mac, sizeof(uint8_t) * ETHERNET_LL_SIZE); if (ether_len <= 0) goto free_resources; *vid = ret_vid; ret = 0; free_resources: neigh_free_resources(&neigh_handler); return ret; #else return -ENOSYS; #endif }