/* * Program to generate cryptographic keys for NTP clients and servers * * This program generates files "ntpkey__.", * where is the file type, is the generating host and * is the NTP seconds in decimal format. The NTP programs * expect generic names such as "ntpkey__whimsy.udel.edu" with the * association maintained by soft links. * * Files are prefixed with a header giving the name and date of creation * followed by a type-specific descriptive label and PEM-encoded data * string compatible with programs of the OpenSSL library. * * Note that private keys can be password encrypted as per OpenSSL * conventions. * * The file types include * * ntpkey_MD5key_. * MD5 (128-bit) keys used to compute message digests in symmetric * key cryptography * * ntpkey_RSAkey_. * ntpkey_host_ (RSA) link * RSA private/public host key pair used for public key signatures * and data encryption * * ntpkey_DSAkey_. * ntpkey_sign_ (RSA or DSA) link * DSA private/public sign key pair used for public key signatures, * but not data encryption * * ntpkey_IFFpar_. * ntpkey_iff_ (IFF server/client) link * ntpkey_iffkey_ (IFF client) link * Schnorr (IFF) server/client identity parameters * * ntpkey_IFFkey_. * Schnorr (IFF) client identity parameters * * ntpkey_GQpar_., * ntpkey_gq_ (GQ) link * Guillou-Quisquater (GQ) identity parameters * * ntpkey_MVpar_., * Mu-Varadharajan (MV) server identity parameters * * ntpkey_MVkeyX_., * ntpkey_mv_ (MV server) link * ntpkey_mvkey_ (MV client) link * Mu-Varadharajan (MV) client identity parameters * * ntpkey_XXXcert_. * ntpkey_cert_ (RSA or DSA) link * X509v3 certificate using RSA or DSA public keys and signatures. * XXX is a code identifying the message digest and signature * encryption algorithm * * Available digest/signature schemes * * RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160 * DSA: DSA-SHA, DSA-SHA1 * * Note: Once in a while because of some statistical fluke this program * fails to generate and verify some cryptographic data, as indicated by * exit status -1. In this case simply run the program again. If the * program does complete with return code 0, the data are correct as * verified. * * These cryptographic routines are characterized by the prime modulus * size in bits. The default value of 512 bits is a compromise between * cryptographic strength and computing time and is ordinarily * considered adequate for this application. The routines have been * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message * digest and signature encryption schemes work with sizes less than 512 * bits. The computing time for sizes greater than 2048 bits is * prohibitive on all but the fastest processors. An UltraSPARC Blade * 1000 took something over nine minutes to generate and verify the * values with size 2048. An old SPARC IPC would take a week. * * The OpenSSL library used by this program expects a random seed file. * As described in the OpenSSL documentation, the file name defaults to * first the RANDFILE environment variable in the user's home directory * and then .rnd in the user's home directory. */ #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include #if HAVE_SYS_TYPES_H # include #endif #include "ntp_types.h" #include "l_stdlib.h" #ifdef SYS_WINNT extern int ntp_getopt P((int, char **, const char *)); #define getopt ntp_getopt #define optarg ntp_optarg #endif #ifdef OPENSSL #include "openssl/bn.h" #include "openssl/evp.h" #include "openssl/err.h" #include "openssl/rand.h" #include "openssl/pem.h" #include "openssl/x509v3.h" #include #endif /* OPENSSL */ /* * Cryptodefines */ #define MD5KEYS 16 /* number of MD5 keys generated */ #define JAN_1970 ULONG_CONST(2208988800) /* NTP seconds */ #define YEAR ((long)60*60*24*365) /* one year in seconds */ #define MAXFILENAME 256 /* max file name length */ #define MAXHOSTNAME 256 /* max host name length */ #ifdef OPENSSL #define PLEN 512 /* default prime modulus size (bits) */ /* * Strings used in X509v3 extension fields */ #define KEY_USAGE "digitalSignature,keyCertSign" #define BASIC_CONSTRAINTS "critical,CA:TRUE" #define EXT_KEY_PRIVATE "private" #define EXT_KEY_TRUST "trustRoot" #endif /* OPENSSL */ /* * Prototypes */ FILE *fheader P((const char *, const char *)); void fslink P((const char *, const char *)); int gen_md5 P((char *)); #ifdef OPENSSL EVP_PKEY *gen_rsa P((char *)); EVP_PKEY *gen_dsa P((char *)); EVP_PKEY *gen_iff P((char *)); EVP_PKEY *gen_gqpar P((char *)); EVP_PKEY *gen_gqkey P((char *, EVP_PKEY *)); EVP_PKEY *gen_mv P((char *)); int x509 P((EVP_PKEY *, const EVP_MD *, char *, char *)); void cb P((int, int, void *)); EVP_PKEY *genkey P((char *, char *)); u_long asn2ntp P((ASN1_TIME *)); #endif /* OPENSSL */ /* * Program variables */ extern char *optarg; /* command line argument */ int debug = 0; /* debug, not de bug */ int rval; /* return status */ #ifdef OPENSSL u_int modulus = PLEN; /* prime modulus size (bits) */ #endif int nkeys = 0; /* MV keys */ time_t epoch; /* Unix epoch (seconds) since 1970 */ char *hostname; /* host name (subject name) */ char *trustname; /* trusted host name (issuer name) */ char filename[MAXFILENAME + 1]; /* file name */ char *passwd1 = NULL; /* input private key password */ char *passwd2 = NULL; /* output private key password */ #ifdef OPENSSL long d0, d1, d2, d3; /* callback counters */ #endif /* OPENSSL */ #ifdef SYS_WINNT BOOL init_randfile(); /* * Don't try to follow symbolic links */ int readlink(char * link, char * file, int len) { return (-1); } /* * Don't try to create a symbolic link for now. * Just move the file to the name you need. */ int symlink(char *filename, char *linkname) { DeleteFile(linkname); MoveFile(filename, linkname); return 0; } void InitWin32Sockets() { WORD wVersionRequested; WSADATA wsaData; wVersionRequested = MAKEWORD(2,0); if (WSAStartup(wVersionRequested, &wsaData)) { fprintf(stderr, "No useable winsock.dll"); exit(1); } } #endif /* SYS_WINNT */ /* * Main program */ int main( int argc, /* command line options */ char **argv ) { struct timeval tv; /* initialization vector */ #ifdef OPENSSL X509 *cert = NULL; /* X509 certificate */ EVP_PKEY *pkey_host = NULL; /* host key */ EVP_PKEY *pkey_sign = NULL; /* sign key */ EVP_PKEY *pkey_iff = NULL; /* IFF parameters */ EVP_PKEY *pkey_gq = NULL; /* GQ parameters */ EVP_PKEY *pkey_mv = NULL; /* MV parameters */ #endif int md5key = 0; /* generate MD5 keys */ #ifdef OPENSSL int hostkey = 0; /* generate RSA keys */ int iffkey = 0; /* generate IFF parameters */ int gqpar = 0; /* generate GQ parameters */ int gqkey = 0; /* update GQ keys */ int mvpar = 0; /* generate MV parameters */ int mvkey = 0; /* update MV keys */ char *sign = NULL; /* sign key */ EVP_PKEY *pkey = NULL; /* temp key */ const EVP_MD *ectx; /* EVP digest */ char pathbuf[MAXFILENAME + 1]; const char *scheme = NULL; /* digest/signature scheme */ char *exten = NULL; /* private extension */ char *grpkey = NULL; /* identity extension */ int nid; /* X509 digest/signature scheme */ FILE *fstr = NULL; /* file handle */ int iffsw = 0; /* IFF key switch */ #endif /* OPENSSL */ char hostbuf[MAXHOSTNAME + 1]; u_int temp; #ifdef SYS_WINNT /* Initialize before OpenSSL checks */ InitWin32Sockets(); if(!init_randfile()) fprintf(stderr, "Unable to initialize .rnd file\n"); #endif #ifdef OPENSSL if (SSLeay() != OPENSSL_VERSION_NUMBER) { fprintf(stderr, "OpenSSL version mismatch. Built against %lx, you have %lx\n", OPENSSL_VERSION_NUMBER, SSLeay()); return (-1); } else { fprintf(stderr, "Using OpenSSL version %lx\n", SSLeay()); } #endif /* OPENSSL */ /* * Process options, initialize host name and timestamp. */ gethostname(hostbuf, MAXHOSTNAME); hostname = hostbuf; #ifdef OPENSSL trustname = hostbuf; passwd1 = hostbuf; #endif #ifndef SYS_WINNT gettimeofday(&tv, 0); #else gettimeofday(&tv); #endif epoch = tv.tv_sec; rval = 0; while ((temp = getopt(argc, argv, #ifdef OPENSSL "c:deGgHIi:Mm:nPp:q:S:s:TV:v:" #else "dM" #endif )) != -1) { switch(temp) { #ifdef OPENSSL /* * -c select public certificate type */ case 'c': scheme = optarg; continue; #endif /* * -d debug */ case 'd': debug++; continue; #ifdef OPENSSL /* * -e write identity keys */ case 'e': iffsw++; continue; #endif #ifdef OPENSSL /* * -G generate GQ parameters and keys */ case 'G': gqpar++; continue; #endif #ifdef OPENSSL /* * -g update GQ keys */ case 'g': gqkey++; continue; #endif #ifdef OPENSSL /* * -H generate host key (RSA) */ case 'H': hostkey++; continue; #endif #ifdef OPENSSL /* * -I generate IFF parameters */ case 'I': iffkey++; continue; #endif #ifdef OPENSSL /* * -i set issuer name */ case 'i': trustname = optarg; continue; #endif /* * -M generate MD5 keys */ case 'M': md5key++; continue; #ifdef OPENSSL /* * -m select modulus (256-2048) */ case 'm': if (sscanf(optarg, "%d", &modulus) != 1) fprintf(stderr, "invalid option -m %s\n", optarg); continue; #endif #ifdef OPENSSL /* * -P generate PC private certificate */ case 'P': exten = EXT_KEY_PRIVATE; continue; #endif #ifdef OPENSSL /* * -p output private key password */ case 'p': passwd2 = optarg; continue; #endif #ifdef OPENSSL /* * -q input private key password */ case 'q': passwd1 = optarg; continue; #endif #ifdef OPENSSL /* * -S generate sign key (RSA or DSA) */ case 'S': sign = optarg; continue; #endif #ifdef OPENSSL /* * -s set subject name */ case 's': hostname = optarg; continue; #endif #ifdef OPENSSL /* * -T trusted certificate (TC scheme) */ case 'T': exten = EXT_KEY_TRUST; continue; #endif #ifdef OPENSSL /* * -V generate MV parameters */ case 'V': mvpar++; if (sscanf(optarg, "%d", &nkeys) != 1) fprintf(stderr, "invalid option -V %s\n", optarg); continue; #endif #ifdef OPENSSL /* * -v update MV keys */ case 'v': mvkey++; if (sscanf(optarg, "%d", &nkeys) != 1) fprintf(stderr, "invalid option -v %s\n", optarg); continue; #endif /* * None of the above. */ default: fprintf(stderr, "Option ignored\n"); continue; } } if (passwd1 != NULL && passwd2 == NULL) passwd2 = passwd1; #ifdef OPENSSL /* * Seed random number generator and grow weeds. */ ERR_load_crypto_strings(); OpenSSL_add_all_algorithms(); if (RAND_file_name(pathbuf, MAXFILENAME) == NULL) { fprintf(stderr, "RAND_file_name %s\n", ERR_error_string(ERR_get_error(), NULL)); return (-1); } temp = RAND_load_file(pathbuf, -1); if (temp == 0) { fprintf(stderr, "RAND_load_file %s not found or empty\n", pathbuf); return (-1); } fprintf(stderr, "Random seed file %s %u bytes\n", pathbuf, temp); RAND_add(&epoch, sizeof(epoch), 4.0); #endif /* * Generate new parameters and keys as requested. These replace * any values already generated. */ if (md5key) gen_md5("MD5"); #ifdef OPENSSL if (hostkey) pkey_host = genkey("RSA", "host"); if (sign != NULL) pkey_sign = genkey(sign, "sign"); if (iffkey) pkey_iff = gen_iff("iff"); if (gqpar) pkey_gq = gen_gqpar("gq"); if (mvpar) pkey_mv = gen_mv("mv"); /* * If there is no new host key, look for an existing one. If not * found, create it. */ while (pkey_host == NULL && rval == 0 && !iffsw) { sprintf(filename, "ntpkey_host_%s", hostname); if ((fstr = fopen(filename, "r")) != NULL) { pkey_host = PEM_read_PrivateKey(fstr, NULL, NULL, passwd1); fclose(fstr); readlink(filename, filename, sizeof(filename)); if (pkey_host == NULL) { fprintf(stderr, "Host key\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; } else { fprintf(stderr, "Using host key %s\n", filename); } break; } else if ((pkey_host = genkey("RSA", "host")) == NULL) { rval = -1; break; } } /* * If there is no new sign key, look for an existing one. If not * found, use the host key instead. */ pkey = pkey_sign; while (pkey_sign == NULL && rval == 0 && !iffsw) { sprintf(filename, "ntpkey_sign_%s", hostname); if ((fstr = fopen(filename, "r")) != NULL) { pkey_sign = PEM_read_PrivateKey(fstr, NULL, NULL, passwd1); fclose(fstr); readlink(filename, filename, sizeof(filename)); if (pkey_sign == NULL) { fprintf(stderr, "Sign key\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; } else { fprintf(stderr, "Using sign key %s\n", filename); } break; } else { pkey = pkey_host; fprintf(stderr, "Using host key as sign key\n"); break; } } /* * If there is no new IFF file, look for an existing one. */ if (pkey_iff == NULL && rval == 0) { sprintf(filename, "ntpkey_iff_%s", hostname); if ((fstr = fopen(filename, "r")) != NULL) { pkey_iff = PEM_read_PrivateKey(fstr, NULL, NULL, passwd1); fclose(fstr); readlink(filename, filename, sizeof(filename)); if (pkey_iff == NULL) { fprintf(stderr, "IFF parameters\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; } else { fprintf(stderr, "Using IFF parameters %s\n", filename); } } } /* * If there is no new GQ file, look for an existing one. */ if (pkey_gq == NULL && rval == 0 && !iffsw) { sprintf(filename, "ntpkey_gq_%s", hostname); if ((fstr = fopen(filename, "r")) != NULL) { pkey_gq = PEM_read_PrivateKey(fstr, NULL, NULL, passwd1); fclose(fstr); readlink(filename, filename, sizeof(filename)); if (pkey_gq == NULL) { fprintf(stderr, "GQ parameters\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; } else { fprintf(stderr, "Using GQ parameters %s\n", filename); } } } /* * If there is a GQ parameter file, create GQ private/public * keys and extract the public key for the certificate. */ if (pkey_gq != NULL && rval == 0) { gen_gqkey("gq", pkey_gq); grpkey = BN_bn2hex(pkey_gq->pkey.rsa->q); } /* * Generate a X509v3 certificate. */ while (scheme == NULL && rval == 0 && !iffsw) { sprintf(filename, "ntpkey_cert_%s", hostname); if ((fstr = fopen(filename, "r")) != NULL) { cert = PEM_read_X509(fstr, NULL, NULL, NULL); fclose(fstr); readlink(filename, filename, sizeof(filename)); if (cert == NULL) { fprintf(stderr, "Cert \n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; } else { nid = OBJ_obj2nid( cert->cert_info->signature->algorithm); scheme = OBJ_nid2sn(nid); fprintf(stderr, "Using scheme %s from %s\n", scheme, filename); break; } } scheme = "RSA-MD5"; } if (pkey != NULL && rval == 0 && !iffsw) { ectx = EVP_get_digestbyname(scheme); if (ectx == NULL) { fprintf(stderr, "Invalid digest/signature combination %s\n", scheme); rval = -1; } else { x509(pkey, ectx, grpkey, exten); } } /* * Write the IFF client parameters and keys as a DSA private key * encoded in PEM. Note the private key is obscured. */ if (pkey_iff != NULL && rval == 0 && iffsw) { DSA *dsa; char *sptr; sptr = strrchr(filename, '.'); sprintf(filename, "ntpkey_IFFkey_%s.%s", trustname, ++sptr); fprintf(stderr, "Writing new IFF key %s\n", filename); fprintf(stdout, "# %s\n# %s", filename, ctime(&epoch)); dsa = pkey_iff->pkey.dsa; BN_copy(dsa->priv_key, BN_value_one()); pkey = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey, dsa); PEM_write_PrivateKey(stdout, pkey, passwd2 ? EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2); fclose(stdout); if (debug) DSA_print_fp(stdout, dsa, 0); } /* * Return the marbles. */ if (grpkey != NULL) OPENSSL_free(grpkey); if (pkey_host != NULL) EVP_PKEY_free(pkey_host); if (pkey_sign != NULL) EVP_PKEY_free(pkey_sign); if (pkey_iff != NULL) EVP_PKEY_free(pkey_iff); if (pkey_gq != NULL) EVP_PKEY_free(pkey_gq); if (pkey_mv != NULL) EVP_PKEY_free(pkey_mv); #endif /* OPENSSL */ return (rval); } #if 0 /* * Generate random MD5 key with password. */ int gen_md5( char *id /* file name id */ ) { BIGNUM *key; BIGNUM *keyid; FILE *str; u_char bin[16]; fprintf(stderr, "Generating MD5 keys...\n"); str = fheader("MD5key", hostname); keyid = BN_new(); key = BN_new(); BN_rand(keyid, 16, -1, 0); BN_rand(key, 128, -1, 0); BN_bn2bin(key, bin); PEM_write_fp(str, MD5, NULL, bin); fclose(str); fslink(id, hostname); return (1); } #else /* * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4 */ int gen_md5( char *id /* file name id */ ) { u_char md5key[16]; /* MD5 key */ FILE *str; u_int temp = 0; /* Initialize to prevent warnings during compile */ int i, j; fprintf(stderr, "Generating MD5 keys...\n"); str = fheader("MD5key", hostname); srandom(epoch); for (i = 1; i <= MD5KEYS; i++) { for (j = 0; j < 16; j++) { while (1) { temp = random() & 0xff; if (temp == '#') continue; if (temp > 0x20 && temp < 0x7f) break; } md5key[j] = (u_char)temp; } md5key[15] = '\0'; fprintf(str, "%2d MD5 %16s # MD5 key\n", i, md5key); } fclose(str); fslink(id, hostname); return (1); } #endif /* OPENSSL */ #ifdef OPENSSL /* * Generate RSA public/private key pair */ EVP_PKEY * /* public/private key pair */ gen_rsa( char *id /* file name id */ ) { EVP_PKEY *pkey; /* private key */ RSA *rsa; /* RSA parameters and key pair */ FILE *str; fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus); rsa = RSA_generate_key(modulus, 3, cb, "RSA"); fprintf(stderr, "\n"); if (rsa == NULL) { fprintf(stderr, "RSA generate keys fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; return (NULL); } /* * For signature encryption it is not necessary that the RSA * parameters be strictly groomed and once in a while the * modulus turns out to be non-prime. Just for grins, we check * the primality. */ if (!RSA_check_key(rsa)) { fprintf(stderr, "Invalid RSA key\n%s\n", ERR_error_string(ERR_get_error(), NULL)); RSA_free(rsa); rval = -1; return (NULL); } /* * Write the RSA parameters and keys as a RSA private key * encoded in PEM. */ str = fheader("RSAkey", hostname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_RSA(pkey, rsa); PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2); fclose(str); if (debug) RSA_print_fp(stdout, rsa, 0); fslink(id, hostname); return (pkey); } /* * Generate DSA public/private key pair */ EVP_PKEY * /* public/private key pair */ gen_dsa( char *id /* file name id */ ) { EVP_PKEY *pkey; /* private key */ DSA *dsa; /* DSA parameters */ u_char seed[20]; /* seed for parameters */ FILE *str; /* * Generate DSA parameters. */ fprintf(stderr, "Generating DSA parameters (%d bits)...\n", modulus); RAND_bytes(seed, sizeof(seed)); dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL, NULL, cb, "DSA"); fprintf(stderr, "\n"); if (dsa == NULL) { fprintf(stderr, "DSA generate parameters fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; return (NULL); } /* * Generate DSA keys. */ fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus); if (!DSA_generate_key(dsa)) { fprintf(stderr, "DSA generate keys fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); DSA_free(dsa); rval = -1; return (NULL); } /* * Write the DSA parameters and keys as a DSA private key * encoded in PEM. */ str = fheader("DSAkey", hostname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey, dsa); PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2); fclose(str); if (debug) DSA_print_fp(stdout, dsa, 0); fslink(id, hostname); return (pkey); } /* * Generate Schnorr (IFF) parameters and keys * * The Schnorr (IFF)identity scheme is intended for use when * certificates are generated by some other trusted certificate * authority and the parameters cannot be conveyed in the certificate * itself. For this purpose, new generations of IFF values must be * securely transmitted to all members of the group before use. There * are two kinds of files: server/client files that include private and * public parameters and client files that include only public * parameters. The scheme is self contained and independent of new * generations of host keys, sign keys and certificates. * * The IFF values hide in a DSA cuckoo structure which uses the same * parameters. The values are used by an identity scheme based on DSA * cryptography and described in Stimson p. 285. The p is a 512-bit * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a * private random group key b (0 < b < q), then computes public * v = g^(q - a). All values except the group key are known to all group * members; the group key is known to the group servers, but not the * group clients. Alice challenges Bob to confirm identity using the * protocol described below. */ EVP_PKEY * /* DSA cuckoo nest */ gen_iff( char *id /* file name id */ ) { EVP_PKEY *pkey; /* private key */ DSA *dsa; /* DSA parameters */ u_char seed[20]; /* seed for parameters */ BN_CTX *ctx; /* BN working space */ BIGNUM *b, *r, *k, *u, *v, *w; /* BN temp */ FILE *str; u_int temp; /* * Generate DSA parameters for use as IFF parameters. */ fprintf(stderr, "Generating IFF parameters (%d bits)...\n", modulus); RAND_bytes(seed, sizeof(seed)); dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL, NULL, cb, "IFF"); fprintf(stderr, "\n"); if (dsa == NULL) { fprintf(stderr, "DSA generate parameters fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; return (NULL);; } /* * Generate the private and public keys. The DSA parameters and * these keys are distributed to all members of the group. */ fprintf(stderr, "Generating IFF keys (%d bits)...\n", modulus); b = BN_new(); r = BN_new(); k = BN_new(); u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new(); BN_rand(b, BN_num_bits(dsa->q), -1, 0); /* a */ BN_mod(b, b, dsa->q, ctx); BN_sub(v, dsa->q, b); BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^(q - b) mod p */ BN_mod_exp(u, dsa->g, b, dsa->p, ctx); /* g^b mod p */ BN_mod_mul(u, u, v, dsa->p, ctx); temp = BN_is_one(u); fprintf(stderr, "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ? "yes" : "no"); if (!temp) { BN_free(b); BN_free(r); BN_free(k); BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); rval = -1; return (NULL); } dsa->priv_key = BN_dup(b); /* private key */ dsa->pub_key = BN_dup(v); /* public key */ /* * Here is a trial round of the protocol. First, Alice rolls * random r (0 < r < q) and sends it to Bob. She needs only * modulus q. */ BN_rand(r, BN_num_bits(dsa->q), -1, 0); /* r */ BN_mod(r, r, dsa->q, ctx); /* * Bob rolls random k (0 < k < q), computes y = k + b r mod q * and x = g^k mod p, then sends (y, x) to Alice. He needs * moduli p, q and the group key b. */ BN_rand(k, BN_num_bits(dsa->q), -1, 0); /* k, 0 < k < q */ BN_mod(k, k, dsa->q, ctx); BN_mod_mul(v, dsa->priv_key, r, dsa->q, ctx); /* b r mod q */ BN_add(v, v, k); BN_mod(v, v, dsa->q, ctx); /* y = k + b r mod q */ BN_mod_exp(u, dsa->g, k, dsa->p, ctx); /* x = g^k mod p */ /* * Alice computes g^y v^r and verifies the result is equal to x. * She needs modulus p, generator g, and the public key v, as * well as her original r. */ BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^y mod p */ BN_mod_exp(w, dsa->pub_key, r, dsa->p, ctx); /* v^r */ BN_mod_mul(v, w, v, dsa->p, ctx); /* product mod p */ temp = BN_cmp(u, v); fprintf(stderr, "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp == 0 ? "yes" : "no"); BN_free(b); BN_free(r); BN_free(k); BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); if (temp != 0) { DSA_free(dsa); rval = -1; return (NULL); } /* * Write the IFF server parameters and keys as a DSA private key * encoded in PEM. * * p modulus p * q modulus q * g generator g * priv_key b * public_key v */ str = fheader("IFFpar", trustname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey, dsa); PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2); fclose(str); if (debug) DSA_print_fp(stdout, dsa, 0); fslink(id, trustname); return (pkey); } /* * Generate Guillou-Quisquater (GQ) parameters and keys * * The Guillou-Quisquater (GQ) identity scheme is intended for use when * the parameters, keys and certificates are generated by this program. * The scheme uses a certificate extension field do convey the public * key of a particular group identified by a group key known only to * members of the group. The scheme is self contained and independent of * new generations of host keys and sign keys. * * The GQ parameters hide in a RSA cuckoo structure which uses the same * parameters. The values are used by an identity scheme based on RSA * cryptography and described in Stimson p. 300 (with errors). The 512- * bit public modulus is n = p q, where p and q are secret large primes. * The TA rolls private random group key b as RSA exponent. These values * are known to all group members. * * When rolling new certificates, a member recomputes the private and * public keys. The private key u is a random roll, while the public key * is the inverse obscured by the group key v = (u^-1)^b. These values * replace the private and public keys normally generated by the RSA * scheme. Alice challenges Bob to confirm identity using the protocol * described below. */ EVP_PKEY * /* RSA cuckoo nest */ gen_gqpar( char *id /* file name id */ ) { EVP_PKEY *pkey; /* private key */ RSA *rsa; /* GQ parameters */ BN_CTX *ctx; /* BN working space */ FILE *str; /* * Generate RSA parameters for use as GQ parameters. */ fprintf(stderr, "Generating GQ parameters (%d bits)...\n", modulus); rsa = RSA_generate_key(modulus, 3, cb, "GQ"); fprintf(stderr, "\n"); if (rsa == NULL) { fprintf(stderr, "RSA generate keys fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; return (NULL); } /* * Generate the group key b, which is saved in the e member of * the RSA structure. These values are distributed to all * members of the group, but shielded from all other groups. We * don't use all the parameters, but set the unused ones to a * small number to minimize the file size. */ ctx = BN_CTX_new(); BN_rand(rsa->e, BN_num_bits(rsa->n), -1, 0); /* b */ BN_mod(rsa->e, rsa->e, rsa->n, ctx); BN_copy(rsa->d, BN_value_one()); BN_copy(rsa->p, BN_value_one()); BN_copy(rsa->q, BN_value_one()); BN_copy(rsa->dmp1, BN_value_one()); BN_copy(rsa->dmq1, BN_value_one()); BN_copy(rsa->iqmp, BN_value_one()); /* * Write the GQ parameters as a RSA private key encoded in PEM. * The public and private keys are filled in later. * * n modulus n * e group key b * (remaining values are not used) */ str = fheader("GQpar", trustname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_RSA(pkey, rsa); PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2); fclose(str); if (debug) RSA_print_fp(stdout, rsa, 0); fslink(id, trustname); return (pkey); } /* * Update Guillou-Quisquater (GQ) parameters */ EVP_PKEY * /* RSA cuckoo nest */ gen_gqkey( char *id, /* file name id */ EVP_PKEY *gqpar /* GQ parameters */ ) { EVP_PKEY *pkey; /* private key */ RSA *rsa; /* RSA parameters */ BN_CTX *ctx; /* BN working space */ BIGNUM *u, *v, *g, *k, *r, *y; /* BN temps */ FILE *str; u_int temp; /* * Generate GQ keys. Note that the group key b is the e member * of * the GQ parameters. */ fprintf(stderr, "Updating GQ keys (%d bits)...\n", modulus); ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); g = BN_new(); k = BN_new(); r = BN_new(); y = BN_new(); /* * When generating his certificate, Bob rolls random private key * u. */ rsa = gqpar->pkey.rsa; BN_rand(u, BN_num_bits(rsa->n), -1, 0); /* u */ BN_mod(u, u, rsa->n, ctx); BN_mod_inverse(v, u, rsa->n, ctx); /* u^-1 mod n */ BN_mod_mul(k, v, u, rsa->n, ctx); /* * Bob computes public key v = (u^-1)^b, which is saved in an * extension field on his certificate. We check that u^b v = * 1 mod n. */ BN_mod_exp(v, v, rsa->e, rsa->n, ctx); BN_mod_exp(g, u, rsa->e, rsa->n, ctx); /* u^b */ BN_mod_mul(g, g, v, rsa->n, ctx); /* u^b (u^-1)^b */ temp = BN_is_one(g); fprintf(stderr, "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" : "no"); if (!temp) { BN_free(u); BN_free(v); BN_free(g); BN_free(k); BN_free(r); BN_free(y); BN_CTX_free(ctx); RSA_free(rsa); rval = -1; return (NULL); } BN_copy(rsa->p, u); /* private key */ BN_copy(rsa->q, v); /* public key */ /* * Here is a trial run of the protocol. First, Alice rolls * random r (0 < r < n) and sends it to Bob. She needs only * modulus n from the parameters. */ BN_rand(r, BN_num_bits(rsa->n), -1, 0); /* r */ BN_mod(r, r, rsa->n, ctx); /* * Bob rolls random k (0 < k < n), computes y = k u^r mod n and * g = k^b mod n, then sends (y, g) to Alice. He needs modulus n * from the parameters and his private key u. */ BN_rand(k, BN_num_bits(rsa->n), -1, 0); /* k */ BN_mod(k, k, rsa->n, ctx); BN_mod_exp(y, rsa->p, r, rsa->n, ctx); /* u^r mod n */ BN_mod_mul(y, k, y, rsa->n, ctx); /* y = k u^r mod n */ BN_mod_exp(g, k, rsa->e, rsa->n, ctx); /* g = k^b mod n */ /* * Alice computes v^r y^b mod n and verifies the result is equal * to g. She needs modulus n, generator g and group key b from * the parameters and Bob's public key v = (u^-1)^b from his * certificate. */ BN_mod_exp(v, rsa->q, r, rsa->n, ctx); /* v^r mod n */ BN_mod_exp(y, y, rsa->e, rsa->n, ctx); /* y^b mod n */ BN_mod_mul(y, v, y, rsa->n, ctx); /* v^r y^b mod n */ temp = BN_cmp(y, g); fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ? "yes" : "no"); BN_CTX_free(ctx); BN_free(u); BN_free(v); BN_free(g); BN_free(k); BN_free(r); BN_free(y); if (temp != 0) { RSA_free(rsa); rval = -1; return (NULL); } /* * Write the GQ parameters and keys as a RSA private key encoded * in PEM. * * n modulus n * e group key b * p private key u * q public key (u^-1)^b * (remaining values are not used) */ str = fheader("GQpar", trustname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_RSA(pkey, rsa); PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2); fclose(str); if (debug) RSA_print_fp(stdout, rsa, 0); fslink(id, trustname); return (pkey); } /* * Generate Mu-Varadharajan (MV) parameters and keys * * The Mu-Varadharajan (MV) cryptosystem is useful when servers * broadcast messages to clients, but clients never send messages to * servers. There is one encryption key for the server and a separate * decryption key for each client. It operates something like a * pay-per-view satellite broadcasting system where the session key is * encrypted by the broadcaster and the decryption keys are held in a * tamperproof set-top box. We don't use it this way, but read on. * * The MV parameters and private encryption key hide in a DSA cuckoo * structure which uses the same parameters, but generated in a * different way. The values are used in an encryption scheme similar to * El Gamal cryptography and a polynomial formed from the expansion of * product terms (x - x[j]), as described in Mu, Y., and V. * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, * 223-231. The paper has significant errors and serious omissions. * * Let q be the product of n distinct primes s'[j] (j = 1...n), where * each s'[j] has m significant bits. Let p be a prime p = 2 * q + 1, so * that q and each s'[j] divide p - 1 and p has M = n * m + 1 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then * project into Zp* as exponents of g. Sometimes we have to compute an * inverse b^-1 of random b in Zq, but for that purpose we require * gcd(b, q) = 1. We expect M to be in the 500-bit range and n * relatively small, like 30. Associated with each s'[j] is an element * s[j] such that s[j] s'[j] = s'[j] mod q. We find s[j] as the quotient * (q + s'[j]) / s'[j]. These are the parameters of the scheme and they * are expensive to compute. * * We set up an instance of the scheme as follows. A set of random * values x[j] mod q (j = 1...n), are generated as the zeros of a * polynomial of order n. The product terms (x - x[j]) are expanded to * form coefficients a[i] mod q (i = 0...n) in powers of x. These are * used as exponents of the generator g mod p to generate the private * encryption key A. The pair (gbar, ghat) of public server keys and the * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used * to construct the decryption keys. The devil is in the details. * * This routine generates a private encryption file including the * private encryption key E and public key (gbar, ghat). It then * generates decryption files including the private key (xbar[j], * xhat[j]) for each client. E is a permutation that encrypts a block * y = E x. The jth client computes the inverse permutation E^-1 = * gbar^xhat[j] ghat^xbar[j] and decrypts the block x = E^-1 y. * * The distinguishing characteristic of this scheme is the capability to * revoke keys. Included in the calculation of E, gbar and ghat is the * product s = prod(s'[j]) (j = 1...n) above. If the factor s'[j] is * subsequently removed from the product and E, gbar and ghat * recomputed, the jth client will no longer be able to compute E^-1 and * thus unable to decrypt the block. */ EVP_PKEY * /* DSA cuckoo nest */ gen_mv( char *id /* file name id */ ) { EVP_PKEY *pkey, *pkey1; /* private key */ DSA *dsa; /* DSA parameters */ DSA *sdsa; /* DSA parameters */ BN_CTX *ctx; /* BN working space */ BIGNUM **x; /* polynomial zeros vector */ BIGNUM **a; /* polynomial coefficient vector */ BIGNUM **g; /* public key vector */ BIGNUM **s, **s1; /* private enabling keys */ BIGNUM **xbar, **xhat; /* private keys vector */ BIGNUM *b; /* group key */ BIGNUM *b1; /* inverse group key */ BIGNUM *ss; /* enabling key */ BIGNUM *biga; /* master encryption key */ BIGNUM *bige; /* session encryption key */ BIGNUM *gbar, *ghat; /* public key */ BIGNUM *u, *v, *w; /* BN scratch */ int i, j, n; FILE *str; u_int temp; char ident[20]; /* * Generate MV parameters. * * The object is to generate a multiplicative group Zp* modulo a * prime p and a subset Zq mod q, where q is the product of n * distinct primes s'[j] (j = 1...n) and q divides p - 1. We * first generate n distinct primes, which may have to be * regenerated later. As a practical matter, it is tough to find * more than 31 distinct primes for modulus 512 or 61 primes for * modulus 1024. The latter can take several hundred iterations * and several minutes on a Sun Blade 1000. */ n = nkeys; fprintf(stderr, "Generating MV parameters for %d keys (%d bits)...\n", n, modulus / n); ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new(); b = BN_new(); b1 = BN_new(); dsa = DSA_new(); dsa->p = BN_new(); dsa->q = BN_new(); dsa->g = BN_new(); s = malloc((n + 1) * sizeof(BIGNUM)); s1 = malloc((n + 1) * sizeof(BIGNUM)); for (j = 1; j <= n; j++) s1[j] = BN_new(); temp = 0; for (j = 1; j <= n; j++) { while (1) { fprintf(stderr, "Birthdays %d\r", temp); BN_generate_prime(s1[j], modulus / n, 0, NULL, NULL, NULL, NULL); for (i = 1; i < j; i++) { if (BN_cmp(s1[i], s1[j]) == 0) break; } if (i == j) break; temp++; } } fprintf(stderr, "Birthday keys rejected %d\n", temp); /* * Compute the modulus q as the product of the primes. Compute * the modulus p as 2 * q + 1 and test p for primality. If p * is composite, replace one of the primes with a new distinct * one and try again. Note that q will hardly be a secret since * we have to reveal p to servers and clients. However, * factoring q to find the primes should be adequately hard, as * this is the same problem considered hard in RSA. Question: is * it as hard to find n small prime factors totalling n bits as * it is to find two large prime factors totalling n bits? * Remember, the bad guy doesn't know n. */ temp = 0; while (1) { fprintf(stderr, "Duplicate keys rejected %d\r", ++temp); BN_one(dsa->q); for (j = 1; j <= n; j++) BN_mul(dsa->q, dsa->q, s1[j], ctx); BN_copy(dsa->p, dsa->q); BN_add(dsa->p, dsa->p, dsa->p); BN_add_word(dsa->p, 1); if (BN_is_prime(dsa->p, BN_prime_checks, NULL, ctx, NULL)) break; j = temp % n + 1; while (1) { BN_generate_prime(u, modulus / n, 0, 0, NULL, NULL, NULL); for (i = 1; i <= n; i++) { if (BN_cmp(u, s1[i]) == 0) break; } if (i > n) break; } BN_copy(s1[j], u); } fprintf(stderr, "Duplicate keys rejected %d\n", temp); /* * Compute the generator g using a random roll such that * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not * q. */ BN_copy(v, dsa->p); BN_sub_word(v, 1); while (1) { BN_rand(dsa->g, BN_num_bits(dsa->p) - 1, 0, 0); BN_mod(dsa->g, dsa->g, dsa->p, ctx); BN_gcd(u, dsa->g, v, ctx); if (!BN_is_one(u)) continue; BN_mod_exp(u, dsa->g, dsa->q, dsa->p, ctx); if (BN_is_one(u)) break; } /* * Compute s[j] such that s[j] * s'[j] = s'[j] for all j. The * easy way to do this is to compute q + s'[j] and divide the * result by s'[j]. Exercise for the student: prove the * remainder is always zero. */ for (j = 1; j <= n; j++) { s[j] = BN_new(); BN_add(s[j], dsa->q, s1[j]); BN_div(s[j], u, s[j], s1[j], ctx); } /* * Setup is now complete. Roll random polynomial roots x[j] * (0 < x[j] < q) for all j. While it may not be strictly * necessary, Make sure each root has no factors in common with * q. */ fprintf(stderr, "Generating polynomial coefficients for %d roots (%d bits)\n", n, BN_num_bits(dsa->q)); x = malloc((n + 1) * sizeof(BIGNUM)); for (j = 1; j <= n; j++) { x[j] = BN_new(); while (1) { BN_rand(x[j], BN_num_bits(dsa->q), 0, 0); BN_mod(x[j], x[j], dsa->q, ctx); BN_gcd(u, x[j], dsa->q, ctx); if (BN_is_one(u)) break; } } /* * Generate polynomial coefficients a[i] (i = 0...n) from the * expansion of root products (x - x[j]) mod q for all j. The * method is a present from Charlie Boncelet. */ a = malloc((n + 1) * sizeof(BIGNUM)); for (i = 0; i <= n; i++) { a[i] = BN_new(); BN_one(a[i]); } for (j = 1; j <= n; j++) { BN_zero(w); for (i = 0; i < j; i++) { BN_copy(u, dsa->q); BN_mod_mul(v, a[i], x[j], dsa->q, ctx); BN_sub(u, u, v); BN_add(u, u, w); BN_copy(w, a[i]); BN_mod(a[i], u, dsa->q, ctx); } } /* * Generate g[i] = g^a[i] mod p for all i and the generator g. */ fprintf(stderr, "Generating g[i] parameters\n"); g = malloc((n + 1) * sizeof(BIGNUM)); for (i = 0; i <= n; i++) { g[i] = BN_new(); BN_mod_exp(g[i], dsa->g, a[i], dsa->p, ctx); } /* * Verify prod(g[i]^(a[i] x[j]^i)) = 1 for all i, j; otherwise, * exit. Note the a[i] x[j]^i exponent is computed mod q, but * the g[i] is computed mod p. also note the expression given in * the paper is incorrect. */ temp = 1; for (j = 1; j <= n; j++) { BN_one(u); for (i = 0; i <= n; i++) { BN_set_word(v, i); BN_mod_exp(v, x[j], v, dsa->q, ctx); BN_mod_mul(v, v, a[i], dsa->q, ctx); BN_mod_exp(v, dsa->g, v, dsa->p, ctx); BN_mod_mul(u, u, v, dsa->p, ctx); } if (!BN_is_one(u)) temp = 0; } fprintf(stderr, "Confirm prod(g[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ? "yes" : "no"); if (!temp) { rval = -1; return (NULL); } /* * Make private encryption key A. Keep it around for awhile, * since it is expensive to compute. */ biga = BN_new(); BN_one(biga); for (j = 1; j <= n; j++) { for (i = 0; i < n; i++) { BN_set_word(v, i); BN_mod_exp(v, x[j], v, dsa->q, ctx); BN_mod_exp(v, g[i], v, dsa->p, ctx); BN_mod_mul(biga, biga, v, dsa->p, ctx); } } /* * Roll private random group key b mod q (0 < b < q), where * gcd(b, q) = 1 to guarantee b^1 exists, then compute b^-1 * mod q. If b is changed, the client keys must be recomputed. */ while (1) { BN_rand(b, BN_num_bits(dsa->q), 0, 0); BN_mod(b, b, dsa->q, ctx); BN_gcd(u, b, dsa->q, ctx); if (BN_is_one(u)) break; } BN_mod_inverse(b1, b, dsa->q, ctx); /* * Make private client keys (xbar[j], xhat[j]) for all j. Note * that the keys for the jth client involve s[j], but not s'[j] * or the product s = prod(s'[j]) mod q, which is the enabling * key. */ xbar = malloc((n + 1) * sizeof(BIGNUM)); xhat = malloc((n + 1) * sizeof(BIGNUM)); for (j = 1; j <= n; j++) { xbar[j] = BN_new(); xhat[j] = BN_new(); BN_zero(xbar[j]); BN_set_word(v, n); for (i = 1; i <= n; i++) { if (i == j) continue; BN_mod_exp(u, x[i], v, dsa->q, ctx); BN_add(xbar[j], xbar[j], u); } BN_mod_mul(xbar[j], xbar[j], b1, dsa->q, ctx); BN_mod_exp(xhat[j], x[j], v, dsa->q, ctx); BN_mod_mul(xhat[j], xhat[j], s[j], dsa->q, ctx); } /* * The enabling key is initially q by construction. We can * revoke client j by dividing q by s'[j]. The quotient becomes * the enabling key s. Note we always have to revoke one key; * otherwise, the plaintext and cryptotext would be identical. */ ss = BN_new(); BN_copy(ss, dsa->q); BN_div(ss, u, dsa->q, s1[n], ctx); /* * Make private server encryption key E = A^s and public server * keys gbar = g^s mod p and ghat = g^(s b) mod p. The (gbar, * ghat) is the public key provided to the server, which uses it * to compute the session encryption key and public key included * in its messages. These values must be regenerated if the * enabling key is changed. */ bige = BN_new(); gbar = BN_new(); ghat = BN_new(); BN_mod_exp(bige, biga, ss, dsa->p, ctx); BN_mod_exp(gbar, dsa->g, ss, dsa->p, ctx); BN_mod_mul(v, ss, b, dsa->q, ctx); BN_mod_exp(ghat, dsa->g, v, dsa->p, ctx); /* * We produce the key media in three steps. The first step is to * generate the private values that do not depend on the * enabling key. These include the server values p, q, g, b, A * and the client values s'[j], xbar[j] and xhat[j] for each j. * The p, xbar[j] and xhat[j] values are encoded in private * files which are distributed to respective clients. The p, q, * g, A and s'[j] values (will be) written to a secret file to * be read back later. * * The secret file (will be) read back at some later time to * enable/disable individual keys and generate/regenerate the * enabling key s. The p, q, E, gbar and ghat values are written * to a secret file to be read back later by the server. * * The server reads the secret file and rolls the session key * k, which is used only once, then computes E^k, gbar^k and * ghat^k. The E^k is the session encryption key. The encrypted * data, gbar^k and ghat^k are transmtted to clients in an * extension field. The client receives the message and computes * x = (gbar^k)^xbar[j] (ghat^k)^xhat[j], finds the session * encryption key E^k as the inverse x^-1 and decrypts the data. */ BN_copy(dsa->g, bige); dsa->priv_key = BN_dup(gbar); dsa->pub_key = BN_dup(ghat); /* * Write the MV server parameters and keys as a DSA private key * encoded in PEM. * * p modulus p * q modulus q (used only to generate k) * g E mod p * priv_key gbar mod p * pub_key ghat mod p */ str = fheader("MVpar", trustname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey, dsa); PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2); fclose(str); if (debug) DSA_print_fp(stdout, dsa, 0); fslink(id, trustname); /* * Write the parameters and private key (xbar[j], xhat[j]) for * all j as a DSA private key encoded in PEM. It is used only by * the designated recipient(s) who pay a suitably outrageous fee * for its use. */ sdsa = DSA_new(); sdsa->p = BN_dup(dsa->p); sdsa->q = BN_dup(BN_value_one()); sdsa->g = BN_dup(BN_value_one()); sdsa->priv_key = BN_new(); sdsa->pub_key = BN_new(); for (j = 1; j <= n; j++) { BN_copy(sdsa->priv_key, xbar[j]); BN_copy(sdsa->pub_key, xhat[j]); BN_mod_exp(v, dsa->priv_key, sdsa->pub_key, dsa->p, ctx); BN_mod_exp(u, dsa->pub_key, sdsa->priv_key, dsa->p, ctx); BN_mod_mul(u, u, v, dsa->p, ctx); BN_mod_mul(u, u, dsa->g, dsa->p, ctx); BN_free(xbar[j]); BN_free(xhat[j]); BN_free(x[j]); BN_free(s[j]); BN_free(s1[j]); if (!BN_is_one(u)) { fprintf(stderr, "Revoke key %d\n", j); continue; } /* * Write the client parameters as a DSA private key * encoded in PEM. We don't make links for these. * * p modulus p * priv_key xbar[j] mod q * pub_key xhat[j] mod q * (remaining values are not used) */ sprintf(ident, "MVkey%d", j); str = fheader(ident, trustname); pkey1 = EVP_PKEY_new(); EVP_PKEY_set1_DSA(pkey1, sdsa); PEM_write_PrivateKey(str, pkey1, passwd2 ? EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2); fclose(str); fprintf(stderr, "ntpkey_%s_%s.%lu\n", ident, trustname, epoch + JAN_1970); if (debug) DSA_print_fp(stdout, sdsa, 0); EVP_PKEY_free(pkey1); } /* * Free the countries. */ for (i = 0; i <= n; i++) { BN_free(a[i]); BN_free(g[i]); } BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); BN_free(b); BN_free(b1); BN_free(biga); BN_free(bige); BN_free(ss); BN_free(gbar); BN_free(ghat); DSA_free(sdsa); /* * Free the world. */ free(x); free(a); free(g); free(s); free(s1); free(xbar); free(xhat); return (pkey); } /* * Generate X509v3 scertificate. * * The certificate consists of the version number, serial number, * validity interval, issuer name, subject name and public key. For a * self-signed certificate, the issuer name is the same as the subject * name and these items are signed using the subject private key. The * validity interval extends from the current time to the same time one * year hence. For NTP purposes, it is convenient to use the NTP seconds * of the current time as the serial number. */ int x509 ( EVP_PKEY *pkey, /* generic signature algorithm */ const EVP_MD *md, /* generic digest algorithm */ char *gqpub, /* identity extension (hex string) */ char *exten /* private cert extension */ ) { X509 *cert; /* X509 certificate */ X509_NAME *subj; /* distinguished (common) name */ X509_EXTENSION *ex; /* X509v3 extension */ FILE *str; /* file handle */ ASN1_INTEGER *serial; /* serial number */ const char *id; /* digest/signature scheme name */ char pathbuf[MAXFILENAME + 1]; /* * Generate X509 self-signed certificate. * * Set the certificate serial to the NTP seconds for grins. Set * the version to 3. Set the subject name and issuer name to the * subject name in the request. Set the initial validity to the * current time and the final validity one year hence. */ id = OBJ_nid2sn(md->pkey_type); fprintf(stderr, "Generating certificate %s\n", id); cert = X509_new(); X509_set_version(cert, 2L); serial = ASN1_INTEGER_new(); ASN1_INTEGER_set(serial, epoch + JAN_1970); X509_set_serialNumber(cert, serial); ASN1_INTEGER_free(serial); X509_gmtime_adj(X509_get_notBefore(cert), 0L); X509_gmtime_adj(X509_get_notAfter(cert), YEAR); subj = X509_get_subject_name(cert); X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, (unsigned char *) hostname, strlen(hostname), -1, 0); subj = X509_get_issuer_name(cert); X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, (unsigned char *) trustname, strlen(trustname), -1, 0); if (!X509_set_pubkey(cert, pkey)) { fprintf(stderr, "Assign key fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); X509_free(cert); rval = -1; return (0); } /* * Add X509v3 extensions if present. These represent the minimum * set defined in RFC3280 less the certificate_policy extension, * which is seriously obfuscated in OpenSSL. */ /* * The basic_constraints extension CA:TRUE allows servers to * sign client certficitates. */ fprintf(stderr, "%s: %s\n", LN_basic_constraints, BASIC_CONSTRAINTS); ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints, BASIC_CONSTRAINTS); if (!X509_add_ext(cert, ex, -1)) { fprintf(stderr, "Add extension field fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; return (0); } X509_EXTENSION_free(ex); /* * The key_usage extension designates the purposes the key can * be used for. */ fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE); ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, KEY_USAGE); if (!X509_add_ext(cert, ex, -1)) { fprintf(stderr, "Add extension field fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; return (0); } X509_EXTENSION_free(ex); /* * The subject_key_identifier is used for the GQ public key. * This should not be controversial. */ if (gqpub != NULL) { fprintf(stderr, "%s\n", LN_subject_key_identifier); ex = X509V3_EXT_conf_nid(NULL, NULL, NID_subject_key_identifier, gqpub); if (!X509_add_ext(cert, ex, -1)) { fprintf(stderr, "Add extension field fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; return (0); } X509_EXTENSION_free(ex); } /* * The extended key usage extension is used for special purpose * here. The semantics probably do not conform to the designer's * intent and will likely change in future. * * "trustRoot" designates a root authority * "private" designates a private certificate */ if (exten != NULL) { fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten); ex = X509V3_EXT_conf_nid(NULL, NULL, NID_ext_key_usage, exten); if (!X509_add_ext(cert, ex, -1)) { fprintf(stderr, "Add extension field fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); rval = -1; return (0); } X509_EXTENSION_free(ex); } /* * Sign and verify. */ X509_sign(cert, pkey, md); if (!X509_verify(cert, pkey)) { fprintf(stderr, "Verify %s certificate fails\n%s\n", id, ERR_error_string(ERR_get_error(), NULL)); X509_free(cert); rval = -1; return (0); } /* * Write the certificate encoded in PEM. */ sprintf(pathbuf, "%scert", id); str = fheader(pathbuf, hostname); PEM_write_X509(str, cert); fclose(str); if (debug) X509_print_fp(stdout, cert); X509_free(cert); fslink("cert", hostname); return (1); } #if 0 /* asn2ntp is not used */ /* * asn2ntp - convert ASN1_TIME time structure to NTP time */ u_long asn2ntp ( ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */ ) { char *v; /* pointer to ASN1_TIME string */ struct tm tm; /* time decode structure time */ /* * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure. * Note that the YY, MM, DD fields start with one, the HH, MM, * SS fiels start with zero and the Z character should be 'Z' * for UTC. Also note that years less than 50 map to years * greater than 100. Dontcha love ASN.1? */ if (asn1time->length > 13) return (-1); v = (char *)asn1time->data; tm.tm_year = (v[0] - '0') * 10 + v[1] - '0'; if (tm.tm_year < 50) tm.tm_year += 100; tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1; tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0'; tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0'; tm.tm_min = (v[8] - '0') * 10 + v[9] - '0'; tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0'; tm.tm_wday = 0; tm.tm_yday = 0; tm.tm_isdst = 0; return (mktime(&tm) + JAN_1970); } #endif /* * Callback routine */ void cb ( int n1, /* arg 1 */ int n2, /* arg 2 */ void *chr /* arg 3 */ ) { switch (n1) { case 0: d0++; fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2, d0); break; case 1: d1++; fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1, n2, d1); break; case 2: d2++; fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr, n1, n2, d2); break; case 3: d3++; fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r", (char *)chr, n1, n2, d3); break; } } /* * Generate key */ EVP_PKEY * /* public/private key pair */ genkey( char *type, /* key type (RSA or DSA) */ char *id /* file name id */ ) { if (type == NULL) return (NULL); if (strcmp(type, "RSA") == 0) return (gen_rsa(id)); else if (strcmp(type, "DSA") == 0) return (gen_dsa(id)); fprintf(stderr, "Invalid %s key type %s\n", id, type); rval = -1; return (NULL); } #endif /* OPENSSL */ /* * Generate file header */ FILE * fheader ( const char *id, /* file name id */ const char *name /* owner name */ ) { FILE *str; /* file handle */ sprintf(filename, "ntpkey_%s_%s.%lu", id, name, epoch + JAN_1970); if ((str = fopen(filename, "w")) == NULL) { perror("Write"); exit (-1); } fprintf(str, "# %s\n# %s", filename, ctime(&epoch)); return (str); } /* * Generate symbolic links */ void fslink( const char *id, /* file name id */ const char *name /* owner name */ ) { char linkname[MAXFILENAME]; /* link name */ int temp; sprintf(linkname, "ntpkey_%s_%s", id, name); remove(linkname); temp = symlink(filename, linkname); if (temp < 0) perror(id); fprintf(stderr, "Generating new %s file and link\n", id); fprintf(stderr, "%s->%s\n", linkname, filename); }