/* * Program to generate cryptographic keys for ntp clients and servers * * This program generates password encrypted data files for use with the * Autokey security protocol and Network Time Protocol Version 4. Files * are prefixed with a header giving the name and date of creation * followed by a type-specific descriptive label and PEM-encoded data * structure compatible with programs of the OpenSSL library. * * All file names are like "ntpkey__.", where * is the file type, the generating host name and * the generation time in NTP seconds. The NTP programs * expect generic names such as "ntpkey__whimsy.udel.edu" with the * association maintained by soft links. Following is a list of file * types; the first line is the file name and the second link name. * * ntpkey_MD5key_. * MD5 (128-bit) keys used to compute message digests in symmetric * key cryptography * * ntpkey_RSAhost_. * ntpkey_host_ * RSA private/public host key pair used for public key signatures * * ntpkey_RSAsign_. * ntpkey_sign_ * RSA private/public sign key pair used for public key signatures * * ntpkey_DSAsign_. * ntpkey_sign_ * DSA Private/public sign key pair used for public key signatures * * Available digest/signature schemes * * RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160 * DSA: DSA-SHA, DSA-SHA1 * * ntpkey_XXXcert_. * ntpkey_cert_ * X509v3 certificate using RSA or DSA public keys and signatures. * XXX is a code identifying the message digest and signature * encryption algorithm * * Identity schemes. The key type par is used for the challenge; the key * type key is used for the response. * * ntpkey_IFFkey_. * ntpkey_iffkey_ * Schnorr (IFF) identity parameters and keys * * ntpkey_GQkey_., * ntpkey_gqkey_ * Guillou-Quisquater (GQ) identity parameters and keys * * ntpkey_MVkeyX_., * ntpkey_mvkey_ * Mu-Varadharajan (MV) identity parameters and keys * * Note: Once in a while because of some statistical fluke this program * fails to generate and verify some cryptographic data, as indicated by * exit status -1. In this case simply run the program again. If the * program does complete with exit code 0, the data are correct as * verified. * * These cryptographic routines are characterized by the prime modulus * size in bits. The default value of 512 bits is a compromise between * cryptographic strength and computing time and is ordinarily * considered adequate for this application. The routines have been * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message * digest and signature encryption schemes work with sizes less than 512 * bits. The computing time for sizes greater than 2048 bits is * prohibitive on all but the fastest processors. An UltraSPARC Blade * 1000 took something over nine minutes to generate and verify the * values with size 2048. An old SPARC IPC would take a week. * * The OpenSSL library used by this program expects a random seed file. * As described in the OpenSSL documentation, the file name defaults to * first the RANDFILE environment variable in the user's home directory * and then .rnd in the user's home directory. */ #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include #include #include "ntp.h" #include "ntp_random.h" #include "ntp_stdlib.h" #include "ntp_assert.h" #include "ntp_libopts.h" #include "ntp_unixtime.h" #include "ntp-keygen-opts.h" #ifdef OPENSSL #include "openssl/asn1.h" #include "openssl/bn.h" #include "openssl/crypto.h" #include "openssl/evp.h" #include "openssl/err.h" #include "openssl/rand.h" #include "openssl/opensslv.h" #include "openssl/pem.h" #include "openssl/x509.h" #include "openssl/x509v3.h" #include #include "libssl_compat.h" #endif /* OPENSSL */ #include #define _UC(str) ((char *)(intptr_t)(str)) /* * Cryptodefines */ #define MD5KEYS 10 /* number of keys generated of each type */ #define MD5SIZE 20 /* maximum key size */ #ifdef AUTOKEY #define PLEN 512 /* default prime modulus size (bits) */ #define ILEN 512 /* default identity modulus size (bits) */ #define MVMAX 100 /* max MV parameters */ /* * Strings used in X509v3 extension fields */ #define KEY_USAGE "digitalSignature,keyCertSign" #define BASIC_CONSTRAINTS "critical,CA:TRUE" #define EXT_KEY_PRIVATE "private" #define EXT_KEY_TRUST "trustRoot" #endif /* AUTOKEY */ /* * Prototypes */ FILE *fheader (const char *, const char *, const char *); int gen_md5 (const char *); void followlink (char *, size_t); #ifdef AUTOKEY EVP_PKEY *gen_rsa (const char *); EVP_PKEY *gen_dsa (const char *); EVP_PKEY *gen_iffkey (const char *); EVP_PKEY *gen_gqkey (const char *); EVP_PKEY *gen_mvkey (const char *, EVP_PKEY **); void gen_mvserv (char *, EVP_PKEY **); int x509 (EVP_PKEY *, const EVP_MD *, char *, const char *, char *); void cb (int, int, void *); EVP_PKEY *genkey (const char *, const char *); EVP_PKEY *readkey (char *, char *, u_int *, EVP_PKEY **); void writekey (char *, char *, u_int *, EVP_PKEY **); u_long asn2ntp (ASN1_TIME *); static DSA* genDsaParams(int, char*); static RSA* genRsaKeyPair(int, char*); #endif /* AUTOKEY */ /* * Program variables */ extern char *optarg; /* command line argument */ char const *progname; u_int lifetime = DAYSPERYEAR; /* certificate lifetime (days) */ int nkeys; /* MV keys */ time_t epoch; /* Unix epoch (seconds) since 1970 */ u_int fstamp; /* NTP filestamp */ char hostbuf[MAXHOSTNAME + 1]; char *hostname = NULL; /* host, used in cert filenames */ char *groupname = NULL; /* group name */ char certnamebuf[2 * sizeof(hostbuf)]; char *certname = NULL; /* certificate subject/issuer name */ char *passwd1 = NULL; /* input private key password */ char *passwd2 = NULL; /* output private key password */ char filename[MAXFILENAME + 1]; /* file name */ #ifdef AUTOKEY u_int modulus = PLEN; /* prime modulus size (bits) */ u_int modulus2 = ILEN; /* identity modulus size (bits) */ long d0, d1, d2, d3; /* callback counters */ const EVP_CIPHER * cipher = NULL; #endif /* AUTOKEY */ #ifdef SYS_WINNT BOOL init_randfile(); /* * Don't try to follow symbolic links on Windows. Assume link == file. */ int readlink( char * link, char * file, int len ) { return (int)strlen(file); /* assume no overflow possible */ } /* * Don't try to create symbolic links on Windows, that is supported on * Vista and later only. Instead, if CreateHardLink is available (XP * and later), hardlink the linkname to the original filename. On * earlier systems, user must rename file to match expected link for * ntpd to find it. To allow building a ntp-keygen.exe which loads on * Windows pre-XP, runtime link to CreateHardLinkA(). */ int symlink( char * filename, char* linkname ) { typedef BOOL (WINAPI *PCREATEHARDLINKA)( __in LPCSTR lpFileName, __in LPCSTR lpExistingFileName, __reserved LPSECURITY_ATTRIBUTES lpSA ); static PCREATEHARDLINKA pCreateHardLinkA; static int tried; HMODULE hDll; FARPROC pfn; int link_created; int saved_errno; if (!tried) { tried = TRUE; hDll = LoadLibrary("kernel32"); pfn = GetProcAddress(hDll, "CreateHardLinkA"); pCreateHardLinkA = (PCREATEHARDLINKA)pfn; } if (NULL == pCreateHardLinkA) { errno = ENOSYS; return -1; } link_created = (*pCreateHardLinkA)(linkname, filename, NULL); if (link_created) return 0; saved_errno = GetLastError(); /* yes we play loose */ mfprintf(stderr, "Create hard link %s to %s failed: %m\n", linkname, filename); errno = saved_errno; return -1; } void InitWin32Sockets() { WORD wVersionRequested; WSADATA wsaData; wVersionRequested = MAKEWORD(2,0); if (WSAStartup(wVersionRequested, &wsaData)) { fprintf(stderr, "No useable winsock.dll\n"); exit(1); } } #endif /* SYS_WINNT */ /* * followlink() - replace filename with its target if symlink. * * readlink() does not null-terminate the result. */ void followlink( char * fname, size_t bufsiz ) { ssize_t len; char * target; REQUIRE(bufsiz > 0 && bufsiz <= SSIZE_MAX); target = emalloc(bufsiz); len = readlink(fname, target, bufsiz); if (len < 0) { fname[0] = '\0'; return; } if ((size_t)len > bufsiz - 1) len = bufsiz - 1; memcpy(fname, target, len); fname[len] = '\0'; free(target); } /* * Main program */ int main( int argc, /* command line options */ char **argv ) { struct timeval tv; /* initialization vector */ int md5key = 0; /* generate MD5 keys */ int optct; /* option count */ #ifdef AUTOKEY X509 *cert = NULL; /* X509 certificate */ EVP_PKEY *pkey_host = NULL; /* host key */ EVP_PKEY *pkey_sign = NULL; /* sign key */ EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */ EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */ EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */ EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */ int hostkey = 0; /* generate RSA keys */ int iffkey = 0; /* generate IFF keys */ int gqkey = 0; /* generate GQ keys */ int mvkey = 0; /* update MV keys */ int mvpar = 0; /* generate MV parameters */ char *sign = NULL; /* sign key */ EVP_PKEY *pkey = NULL; /* temp key */ const EVP_MD *ectx; /* EVP digest */ char pathbuf[MAXFILENAME + 1]; const char *scheme = NULL; /* digest/signature scheme */ const char *ciphername = NULL; /* to encrypt priv. key */ const char *exten = NULL; /* private extension */ char *grpkey = NULL; /* identity extension */ int nid; /* X509 digest/signature scheme */ FILE *fstr = NULL; /* file handle */ char groupbuf[MAXHOSTNAME + 1]; u_int temp; BIO * bp; int i, cnt; char * ptr; #endif /* AUTOKEY */ #ifdef OPENSSL const char *sslvtext; int sslvmatch; #endif /* OPENSSL */ progname = argv[0]; #ifdef SYS_WINNT /* Initialize before OpenSSL checks */ InitWin32Sockets(); if (!init_randfile()) fprintf(stderr, "Unable to initialize .rnd file\n"); ssl_applink(); #endif #ifdef OPENSSL ssl_check_version(); #endif /* OPENSSL */ ntp_crypto_srandom(); /* * Process options, initialize host name and timestamp. * gethostname() won't null-terminate if hostname is exactly the * length provided for the buffer. */ gethostname(hostbuf, sizeof(hostbuf) - 1); hostbuf[COUNTOF(hostbuf) - 1] = '\0'; hostname = hostbuf; groupname = hostbuf; passwd1 = hostbuf; passwd2 = NULL; GETTIMEOFDAY(&tv, NULL); epoch = tv.tv_sec; fstamp = (u_int)(epoch + JAN_1970); optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv); argc -= optct; // Just in case we care later. argv += optct; // Just in case we care later. #ifdef OPENSSL sslvtext = OpenSSL_version(OPENSSL_VERSION); sslvmatch = OpenSSL_version_num() == OPENSSL_VERSION_NUMBER; if (sslvmatch) fprintf(stderr, "Using OpenSSL version %s\n", sslvtext); else fprintf(stderr, "Built against OpenSSL %s, using version %s\n", OPENSSL_VERSION_TEXT, sslvtext); #endif /* OPENSSL */ debug = OPT_VALUE_SET_DEBUG_LEVEL; if (HAVE_OPT( MD5KEY )) md5key++; #ifdef AUTOKEY if (HAVE_OPT( PASSWORD )) passwd1 = estrdup(OPT_ARG( PASSWORD )); if (HAVE_OPT( EXPORT_PASSWD )) passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD )); if (HAVE_OPT( HOST_KEY )) hostkey++; if (HAVE_OPT( SIGN_KEY )) sign = estrdup(OPT_ARG( SIGN_KEY )); if (HAVE_OPT( GQ_PARAMS )) gqkey++; if (HAVE_OPT( IFFKEY )) iffkey++; if (HAVE_OPT( MV_PARAMS )) { mvkey++; nkeys = OPT_VALUE_MV_PARAMS; } if (HAVE_OPT( MV_KEYS )) { mvpar++; nkeys = OPT_VALUE_MV_KEYS; } if (HAVE_OPT( IMBITS )) modulus2 = OPT_VALUE_IMBITS; if (HAVE_OPT( MODULUS )) modulus = OPT_VALUE_MODULUS; if (HAVE_OPT( CERTIFICATE )) scheme = OPT_ARG( CERTIFICATE ); if (HAVE_OPT( CIPHER )) ciphername = OPT_ARG( CIPHER ); if (HAVE_OPT( SUBJECT_NAME )) hostname = estrdup(OPT_ARG( SUBJECT_NAME )); if (HAVE_OPT( IDENT )) groupname = estrdup(OPT_ARG( IDENT )); if (HAVE_OPT( LIFETIME )) lifetime = OPT_VALUE_LIFETIME; if (HAVE_OPT( PVT_CERT )) exten = EXT_KEY_PRIVATE; if (HAVE_OPT( TRUSTED_CERT )) exten = EXT_KEY_TRUST; /* * Remove the group name from the hostname variable used * in host and sign certificate file names. */ if (hostname != hostbuf) ptr = strchr(hostname, '@'); else ptr = NULL; if (ptr != NULL) { *ptr = '\0'; groupname = estrdup(ptr + 1); /* -s @group is equivalent to -i group, host unch. */ if (ptr == hostname) hostname = hostbuf; } /* * Derive host certificate issuer/subject names from host name * and optional group. If no groupname is provided, the issuer * and subject is the hostname with no '@group', and the * groupname variable is pointed to hostname for use in IFF, GQ, * and MV parameters file names. */ if (groupname == hostbuf) { certname = hostname; } else { snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s", hostname, groupname); certname = certnamebuf; } /* * Seed random number generator and grow weeds. */ #if OPENSSL_VERSION_NUMBER < 0x10100000L ERR_load_crypto_strings(); OpenSSL_add_all_algorithms(); #endif /* OPENSSL_VERSION_NUMBER */ if (!RAND_status()) { if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) { fprintf(stderr, "RAND_file_name %s\n", ERR_error_string(ERR_get_error(), NULL)); exit (-1); } temp = RAND_load_file(pathbuf, -1); if (temp == 0) { fprintf(stderr, "RAND_load_file %s not found or empty\n", pathbuf); exit (-1); } fprintf(stderr, "Random seed file %s %u bytes\n", pathbuf, temp); RAND_add(&epoch, sizeof(epoch), 4.0); } #endif /* AUTOKEY */ /* * Create new unencrypted MD5 keys file if requested. If this * option is selected, ignore all other options. */ if (md5key) { gen_md5("md5"); exit (0); } #ifdef AUTOKEY /* * Load previous certificate if available. */ snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname); if ((fstr = fopen(filename, "r")) != NULL) { cert = PEM_read_X509(fstr, NULL, NULL, NULL); fclose(fstr); } if (cert != NULL) { /* * Extract subject name. */ X509_NAME_oneline(X509_get_subject_name(cert), groupbuf, MAXFILENAME); /* * Extract digest/signature scheme. */ if (scheme == NULL) { nid = X509_get_signature_nid(cert); scheme = OBJ_nid2sn(nid); } /* * If a key_usage extension field is present, determine * whether this is a trusted or private certificate. */ if (exten == NULL) { ptr = strstr(groupbuf, "CN="); cnt = X509_get_ext_count(cert); for (i = 0; i < cnt; i++) { X509_EXTENSION *ext; ASN1_OBJECT *obj; ext = X509_get_ext(cert, i); obj = X509_EXTENSION_get_object(ext); if (OBJ_obj2nid(obj) == NID_ext_key_usage) { bp = BIO_new(BIO_s_mem()); X509V3_EXT_print(bp, ext, 0, 0); BIO_gets(bp, pathbuf, MAXFILENAME); BIO_free(bp); if (strcmp(pathbuf, "Trust Root") == 0) exten = EXT_KEY_TRUST; else if (strcmp(pathbuf, "Private") == 0) exten = EXT_KEY_PRIVATE; certname = estrdup(ptr + 3); } } } } if (scheme == NULL) scheme = "RSA-MD5"; if (ciphername == NULL) ciphername = "des-ede3-cbc"; cipher = EVP_get_cipherbyname(ciphername); if (cipher == NULL) { fprintf(stderr, "Unknown cipher %s\n", ciphername); exit(-1); } fprintf(stderr, "Using host %s group %s\n", hostname, groupname); /* * Create a new encrypted RSA host key file if requested; * otherwise, look for an existing host key file. If not found, * create a new encrypted RSA host key file. If that fails, go * no further. */ if (hostkey) pkey_host = genkey("RSA", "host"); if (pkey_host == NULL) { snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname); pkey_host = readkey(filename, passwd1, &fstamp, NULL); if (pkey_host != NULL) { followlink(filename, sizeof(filename)); fprintf(stderr, "Using host key %s\n", filename); } else { pkey_host = genkey("RSA", "host"); } } if (pkey_host == NULL) { fprintf(stderr, "Generating host key fails\n"); exit(-1); } /* * Create new encrypted RSA or DSA sign keys file if requested; * otherwise, look for an existing sign key file. If not found, * use the host key instead. */ if (sign != NULL) pkey_sign = genkey(sign, "sign"); if (pkey_sign == NULL) { snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname); pkey_sign = readkey(filename, passwd1, &fstamp, NULL); if (pkey_sign != NULL) { followlink(filename, sizeof(filename)); fprintf(stderr, "Using sign key %s\n", filename); } else { pkey_sign = pkey_host; fprintf(stderr, "Using host key as sign key\n"); } } /* * Create new encrypted GQ server keys file if requested; * otherwise, look for an exisiting file. If found, fetch the * public key for the certificate. */ if (gqkey) pkey_gqkey = gen_gqkey("gqkey"); if (pkey_gqkey == NULL) { snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s", groupname); pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL); if (pkey_gqkey != NULL) { followlink(filename, sizeof(filename)); fprintf(stderr, "Using GQ parameters %s\n", filename); } } if (pkey_gqkey != NULL) { RSA *rsa; const BIGNUM *q; rsa = EVP_PKEY_get0_RSA(pkey_gqkey); RSA_get0_factors(rsa, NULL, &q); grpkey = BN_bn2hex(q); } /* * Write the nonencrypted GQ client parameters to the stdout * stream. The parameter file is the server key file with the * private key obscured. */ if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) { RSA *rsa; snprintf(filename, sizeof(filename), "ntpkey_gqpar_%s.%u", groupname, fstamp); fprintf(stderr, "Writing GQ parameters %s to stdout\n", filename); fprintf(stdout, "# %s\n# %s\n", filename, ctime(&epoch)); /* XXX: This modifies the private key and should probably use a * copy of it instead. */ rsa = EVP_PKEY_get0_RSA(pkey_gqkey); RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one())); pkey = EVP_PKEY_new(); EVP_PKEY_assign_RSA(pkey, rsa); PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0, NULL, NULL); fflush(stdout); if (debug) RSA_print_fp(stderr, rsa, 0); } /* * Write the encrypted GQ server keys to the stdout stream. */ if (pkey_gqkey != NULL && passwd2 != NULL) { RSA *rsa; snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s.%u", groupname, fstamp); fprintf(stderr, "Writing GQ keys %s to stdout\n", filename); fprintf(stdout, "# %s\n# %s\n", filename, ctime(&epoch)); rsa = EVP_PKEY_get0_RSA(pkey_gqkey); pkey = EVP_PKEY_new(); EVP_PKEY_assign_RSA(pkey, rsa); PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0, NULL, passwd2); fflush(stdout); if (debug) RSA_print_fp(stderr, rsa, 0); } /* * Create new encrypted IFF server keys file if requested; * otherwise, look for existing file. */ if (iffkey) pkey_iffkey = gen_iffkey("iffkey"); if (pkey_iffkey == NULL) { snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s", groupname); pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL); if (pkey_iffkey != NULL) { followlink(filename, sizeof(filename)); fprintf(stderr, "Using IFF keys %s\n", filename); } } /* * Write the nonencrypted IFF client parameters to the stdout * stream. The parameter file is the server key file with the * private key obscured. */ if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) { DSA *dsa; snprintf(filename, sizeof(filename), "ntpkey_iffpar_%s.%u", groupname, fstamp); fprintf(stderr, "Writing IFF parameters %s to stdout\n", filename); fprintf(stdout, "# %s\n# %s\n", filename, ctime(&epoch)); /* XXX: This modifies the private key and should probably use a * copy of it instead. */ dsa = EVP_PKEY_get0_DSA(pkey_iffkey); DSA_set0_key(dsa, NULL, BN_dup(BN_value_one())); pkey = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey, dsa); PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0, NULL, NULL); fflush(stdout); if (debug) DSA_print_fp(stderr, dsa, 0); } /* * Write the encrypted IFF server keys to the stdout stream. */ if (pkey_iffkey != NULL && passwd2 != NULL) { DSA *dsa; snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s.%u", groupname, fstamp); fprintf(stderr, "Writing IFF keys %s to stdout\n", filename); fprintf(stdout, "# %s\n# %s\n", filename, ctime(&epoch)); dsa = EVP_PKEY_get0_DSA(pkey_iffkey); pkey = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey, dsa); PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0, NULL, passwd2); fflush(stdout); if (debug) DSA_print_fp(stderr, dsa, 0); } /* * Create new encrypted MV trusted-authority keys file if * requested; otherwise, look for existing keys file. */ if (mvkey) pkey_mvkey = gen_mvkey("mv", pkey_mvpar); if (pkey_mvkey == NULL) { snprintf(filename, sizeof(filename), "ntpkey_mvta_%s", groupname); pkey_mvkey = readkey(filename, passwd1, &fstamp, pkey_mvpar); if (pkey_mvkey != NULL) { followlink(filename, sizeof(filename)); fprintf(stderr, "Using MV keys %s\n", filename); } } /* * Write the nonencrypted MV client parameters to the stdout * stream. For the moment, we always use the client parameters * associated with client key 1. */ if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) { snprintf(filename, sizeof(filename), "ntpkey_mvpar_%s.%u", groupname, fstamp); fprintf(stderr, "Writing MV parameters %s to stdout\n", filename); fprintf(stdout, "# %s\n# %s\n", filename, ctime(&epoch)); pkey = pkey_mvpar[2]; PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0, NULL, NULL); fflush(stdout); if (debug) DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0); } /* * Write the encrypted MV server keys to the stdout stream. */ if (pkey_mvkey != NULL && passwd2 != NULL) { snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s.%u", groupname, fstamp); fprintf(stderr, "Writing MV keys %s to stdout\n", filename); fprintf(stdout, "# %s\n# %s\n", filename, ctime(&epoch)); pkey = pkey_mvpar[1]; PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0, NULL, passwd2); fflush(stdout); if (debug) DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0); } /* * Decode the digest/signature scheme and create the * certificate. Do this every time we run the program. */ ectx = EVP_get_digestbyname(scheme); if (ectx == NULL) { fprintf(stderr, "Invalid digest/signature combination %s\n", scheme); exit (-1); } x509(pkey_sign, ectx, grpkey, exten, certname); #endif /* AUTOKEY */ exit(0); } /* * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also, * if OpenSSL is around, generate random SHA1 keys compatible with * symmetric key cryptography. */ int gen_md5( const char *id /* file name id */ ) { u_char md5key[MD5SIZE + 1]; /* MD5 key */ FILE *str; int i, j; #ifdef OPENSSL u_char keystr[MD5SIZE]; u_char hexstr[2 * MD5SIZE + 1]; u_char hex[] = "0123456789abcdef"; #endif /* OPENSSL */ str = fheader("MD5key", id, groupname); for (i = 1; i <= MD5KEYS; i++) { for (j = 0; j < MD5SIZE; j++) { u_char temp; while (1) { int rc; rc = ntp_crypto_random_buf( &temp, sizeof(temp)); if (-1 == rc) { fprintf(stderr, "ntp_crypto_random_buf() failed.\n"); exit (-1); } if (temp == '#') continue; if (temp > 0x20 && temp < 0x7f) break; } md5key[j] = temp; } md5key[j] = '\0'; fprintf(str, "%2d MD5 %s # MD5 key\n", i, md5key); } #ifdef OPENSSL for (i = 1; i <= MD5KEYS; i++) { RAND_bytes(keystr, 20); for (j = 0; j < MD5SIZE; j++) { hexstr[2 * j] = hex[keystr[j] >> 4]; hexstr[2 * j + 1] = hex[keystr[j] & 0xf]; } hexstr[2 * MD5SIZE] = '\0'; fprintf(str, "%2d SHA1 %s # SHA1 key\n", i + MD5KEYS, hexstr); } #endif /* OPENSSL */ fclose(str); return (1); } #ifdef AUTOKEY /* * readkey - load cryptographic parameters and keys * * This routine loads a PEM-encoded file of given name and password and * extracts the filestamp from the file name. It returns a pointer to * the first key if valid, NULL if not. */ EVP_PKEY * /* public/private key pair */ readkey( char *cp, /* file name */ char *passwd, /* password */ u_int *estamp, /* file stamp */ EVP_PKEY **evpars /* parameter list pointer */ ) { FILE *str; /* file handle */ EVP_PKEY *pkey = NULL; /* public/private key */ u_int gstamp; /* filestamp */ char linkname[MAXFILENAME]; /* filestamp buffer) */ EVP_PKEY *parkey; char *ptr; int i; /* * Open the key file. */ str = fopen(cp, "r"); if (str == NULL) return (NULL); /* * Read the filestamp, which is contained in the first line. */ if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) { fprintf(stderr, "Empty key file %s\n", cp); fclose(str); return (NULL); } if ((ptr = strrchr(ptr, '.')) == NULL) { fprintf(stderr, "No filestamp found in %s\n", cp); fclose(str); return (NULL); } if (sscanf(++ptr, "%u", &gstamp) != 1) { fprintf(stderr, "Invalid filestamp found in %s\n", cp); fclose(str); return (NULL); } /* * Read and decrypt PEM-encoded private keys. The first one * found is returned. If others are expected, add them to the * parameter list. */ for (i = 0; i <= MVMAX - 1;) { parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd); if (evpars != NULL) { evpars[i++] = parkey; evpars[i] = NULL; } if (parkey == NULL) break; if (pkey == NULL) pkey = parkey; if (debug) { if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA) DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey), 0); else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA) RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey), 0); } } fclose(str); if (pkey == NULL) { fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n", cp, passwd, ERR_error_string(ERR_get_error(), NULL)); exit (-1); } *estamp = gstamp; return (pkey); } /* * Generate RSA public/private key pair */ EVP_PKEY * /* public/private key pair */ gen_rsa( const char *id /* file name id */ ) { EVP_PKEY *pkey; /* private key */ RSA *rsa; /* RSA parameters and key pair */ FILE *str; fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus); rsa = genRsaKeyPair(modulus, _UC("RSA")); fprintf(stderr, "\n"); if (rsa == NULL) { fprintf(stderr, "RSA generate keys fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); return (NULL); } /* * For signature encryption it is not necessary that the RSA * parameters be strictly groomed and once in a while the * modulus turns out to be non-prime. Just for grins, we check * the primality. */ if (!RSA_check_key(rsa)) { fprintf(stderr, "Invalid RSA key\n%s\n", ERR_error_string(ERR_get_error(), NULL)); RSA_free(rsa); return (NULL); } /* * Write the RSA parameters and keys as a RSA private key * encoded in PEM. */ if (strcmp(id, "sign") == 0) str = fheader("RSAsign", id, hostname); else str = fheader("RSAhost", id, hostname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_RSA(pkey, rsa); PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, passwd1); fclose(str); if (debug) RSA_print_fp(stderr, rsa, 0); return (pkey); } /* * Generate DSA public/private key pair */ EVP_PKEY * /* public/private key pair */ gen_dsa( const char *id /* file name id */ ) { EVP_PKEY *pkey; /* private key */ DSA *dsa; /* DSA parameters */ FILE *str; /* * Generate DSA parameters. */ fprintf(stderr, "Generating DSA parameters (%d bits)...\n", modulus); dsa = genDsaParams(modulus, _UC("DSA")); fprintf(stderr, "\n"); if (dsa == NULL) { fprintf(stderr, "DSA generate parameters fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); return (NULL); } /* * Generate DSA keys. */ fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus); if (!DSA_generate_key(dsa)) { fprintf(stderr, "DSA generate keys fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); DSA_free(dsa); return (NULL); } /* * Write the DSA parameters and keys as a DSA private key * encoded in PEM. */ str = fheader("DSAsign", id, hostname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey, dsa); PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, passwd1); fclose(str); if (debug) DSA_print_fp(stderr, dsa, 0); return (pkey); } /* *********************************************************************** * * * The following routines implement the Schnorr (IFF) identity scheme * * * *********************************************************************** * * The Schnorr (IFF) identity scheme is intended for use when * certificates are generated by some other trusted certificate * authority and the certificate cannot be used to convey public * parameters. There are two kinds of files: encrypted server files that * contain private and public values and nonencrypted client files that * contain only public values. New generations of server files must be * securely transmitted to all servers of the group; client files can be * distributed by any means. The scheme is self contained and * independent of new generations of host keys, sign keys and * certificates. * * The IFF values hide in a DSA cuckoo structure which uses the same * parameters. The values are used by an identity scheme based on DSA * cryptography and described in Stimson p. 285. The p is a 512-bit * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a * private random group key b (0 < b < q) and public key v = g^b, then * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients. * Alice challenges Bob to confirm identity using the protocol described * below. * * How it works * * The scheme goes like this. Both Alice and Bob have the public primes * p, q and generator g. The TA gives private key b to Bob and public * key v to Alice. * * Alice rolls new random challenge r (o < r < q) and sends to Bob in * the IFF request message. Bob rolls new random k (0 < k < q), then * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x)) * to Alice in the response message. Besides making the response * shorter, the hash makes it effectivey impossible for an intruder to * solve for b by observing a number of these messages. * * Alice receives the response and computes g^y v^r mod p. After a bit * of algebra, this simplifies to g^k. If the hash of this result * matches hash(x), Alice knows that Bob has the group key b. The signed * response binds this knowledge to Bob's private key and the public key * previously received in his certificate. */ /* * Generate Schnorr (IFF) keys. */ EVP_PKEY * /* DSA cuckoo nest */ gen_iffkey( const char *id /* file name id */ ) { EVP_PKEY *pkey; /* private key */ DSA *dsa; /* DSA parameters */ BN_CTX *ctx; /* BN working space */ BIGNUM *b, *r, *k, *u, *v, *w; /* BN temp */ FILE *str; u_int temp; const BIGNUM *p, *q, *g; BIGNUM *pub_key, *priv_key; /* * Generate DSA parameters for use as IFF parameters. */ fprintf(stderr, "Generating IFF keys (%d bits)...\n", modulus2); dsa = genDsaParams(modulus2, _UC("IFF")); fprintf(stderr, "\n"); if (dsa == NULL) { fprintf(stderr, "DSA generate parameters fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); return (NULL); } DSA_get0_pqg(dsa, &p, &q, &g); /* * Generate the private and public keys. The DSA parameters and * private key are distributed to the servers, while all except * the private key are distributed to the clients. */ b = BN_new(); r = BN_new(); k = BN_new(); u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new(); BN_rand(b, BN_num_bits(q), -1, 0); /* a */ BN_mod(b, b, q, ctx); BN_sub(v, q, b); BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */ BN_mod_exp(u, g, b, p, ctx); /* g^b mod p */ BN_mod_mul(u, u, v, p, ctx); temp = BN_is_one(u); fprintf(stderr, "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ? "yes" : "no"); if (!temp) { BN_free(b); BN_free(r); BN_free(k); BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); return (NULL); } pub_key = BN_dup(v); priv_key = BN_dup(b); DSA_set0_key(dsa, pub_key, priv_key); /* * Here is a trial round of the protocol. First, Alice rolls * random nonce r mod q and sends it to Bob. She needs only * q from parameters. */ BN_rand(r, BN_num_bits(q), -1, 0); /* r */ BN_mod(r, r, q, ctx); /* * Bob rolls random nonce k mod q, computes y = k + b r mod q * and x = g^k mod p, then sends (y, x) to Alice. He needs * p, q and b from parameters and r from Alice. */ BN_rand(k, BN_num_bits(q), -1, 0); /* k, 0 < k < q */ BN_mod(k, k, q, ctx); BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */ BN_add(v, v, k); BN_mod(v, v, q, ctx); /* y = k + b r mod q */ BN_mod_exp(u, g, k, p, ctx); /* x = g^k mod p */ /* * Alice verifies x = g^y v^r to confirm that Bob has group key * b. She needs p, q, g from parameters, (y, x) from Bob and the * original r. We omit the detail here thatt only the hash of y * is sent. */ BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */ BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */ BN_mod_mul(v, w, v, p, ctx); /* product mod p */ temp = BN_cmp(u, v); fprintf(stderr, "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp == 0 ? "yes" : "no"); BN_free(b); BN_free(r); BN_free(k); BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx); if (temp != 0) { DSA_free(dsa); return (NULL); } /* * Write the IFF keys as an encrypted DSA private key encoded in * PEM. * * p modulus p * q modulus q * g generator g * priv_key b * public_key v * kinv not used * r not used */ str = fheader("IFFkey", id, groupname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey, dsa); PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, passwd1); fclose(str); if (debug) DSA_print_fp(stderr, dsa, 0); return (pkey); } /* *********************************************************************** * * * The following routines implement the Guillou-Quisquater (GQ) * * identity scheme * * * *********************************************************************** * * The Guillou-Quisquater (GQ) identity scheme is intended for use when * the certificate can be used to convey public parameters. The scheme * uses a X509v3 certificate extension field do convey the public key of * a private key known only to servers. There are two kinds of files: * encrypted server files that contain private and public values and * nonencrypted client files that contain only public values. New * generations of server files must be securely transmitted to all * servers of the group; client files can be distributed by any means. * The scheme is self contained and independent of new generations of * host keys and sign keys. The scheme is self contained and independent * of new generations of host keys and sign keys. * * The GQ parameters hide in a RSA cuckoo structure which uses the same * parameters. The values are used by an identity scheme based on RSA * cryptography and described in Stimson p. 300 (with errors). The 512- * bit public modulus is n = p q, where p and q are secret large primes. * The TA rolls private random group key b as RSA exponent. These values * are known to all group members. * * When rolling new certificates, a server recomputes the private and * public keys. The private key u is a random roll, while the public key * is the inverse obscured by the group key v = (u^-1)^b. These values * replace the private and public keys normally generated by the RSA * scheme. Alice challenges Bob to confirm identity using the protocol * described below. * * How it works * * The scheme goes like this. Both Alice and Bob have the same modulus n * and some random b as the group key. These values are computed and * distributed in advance via secret means, although only the group key * b is truly secret. Each has a private random private key u and public * key (u^-1)^b, although not necessarily the same ones. Bob and Alice * can regenerate the key pair from time to time without affecting * operations. The public key is conveyed on the certificate in an * extension field; the private key is never revealed. * * Alice rolls new random challenge r and sends to Bob in the GQ * request message. Bob rolls new random k, then computes y = k u^r mod * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response * message. Besides making the response shorter, the hash makes it * effectivey impossible for an intruder to solve for b by observing * a number of these messages. * * Alice receives the response and computes y^b v^r mod n. After a bit * of algebra, this simplifies to k^b. If the hash of this result * matches hash(x), Alice knows that Bob has the group key b. The signed * response binds this knowledge to Bob's private key and the public key * previously received in his certificate. */ /* * Generate Guillou-Quisquater (GQ) parameters file. */ EVP_PKEY * /* RSA cuckoo nest */ gen_gqkey( const char *id /* file name id */ ) { EVP_PKEY *pkey; /* private key */ RSA *rsa; /* RSA parameters */ BN_CTX *ctx; /* BN working space */ BIGNUM *u, *v, *g, *k, *r, *y; /* BN temps */ FILE *str; u_int temp; BIGNUM *b; const BIGNUM *n; /* * Generate RSA parameters for use as GQ parameters. */ fprintf(stderr, "Generating GQ parameters (%d bits)...\n", modulus2); rsa = genRsaKeyPair(modulus2, _UC("GQ")); fprintf(stderr, "\n"); if (rsa == NULL) { fprintf(stderr, "RSA generate keys fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); return (NULL); } RSA_get0_key(rsa, &n, NULL, NULL); u = BN_new(); v = BN_new(); g = BN_new(); k = BN_new(); r = BN_new(); y = BN_new(); b = BN_new(); /* * Generate the group key b, which is saved in the e member of * the RSA structure. The group key is transmitted to each group * member encrypted by the member private key. */ ctx = BN_CTX_new(); BN_rand(b, BN_num_bits(n), -1, 0); /* b */ BN_mod(b, b, n, ctx); /* * When generating his certificate, Bob rolls random private key * u, then computes inverse v = u^-1. */ BN_rand(u, BN_num_bits(n), -1, 0); /* u */ BN_mod(u, u, n, ctx); BN_mod_inverse(v, u, n, ctx); /* u^-1 mod n */ BN_mod_mul(k, v, u, n, ctx); /* * Bob computes public key v = (u^-1)^b, which is saved in an * extension field on his certificate. We check that u^b v = * 1 mod n. */ BN_mod_exp(v, v, b, n, ctx); BN_mod_exp(g, u, b, n, ctx); /* u^b */ BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */ temp = BN_is_one(g); fprintf(stderr, "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" : "no"); if (!temp) { BN_free(u); BN_free(v); BN_free(g); BN_free(k); BN_free(r); BN_free(y); BN_CTX_free(ctx); RSA_free(rsa); return (NULL); } /* setting 'u' and 'v' into a RSA object takes over ownership. * Since we use these values again, we have to pass in dupes, * or we'll corrupt the program! */ RSA_set0_factors(rsa, BN_dup(u), BN_dup(v)); /* * Here is a trial run of the protocol. First, Alice rolls * random nonce r mod n and sends it to Bob. She needs only n * from parameters. */ BN_rand(r, BN_num_bits(n), -1, 0); /* r */ BN_mod(r, r, n, ctx); /* * Bob rolls random nonce k mod n, computes y = k u^r mod n and * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b * from parameters and r from Alice. */ BN_rand(k, BN_num_bits(n), -1, 0); /* k */ BN_mod(k, k, n, ctx); BN_mod_exp(y, u, r, n, ctx); /* u^r mod n */ BN_mod_mul(y, k, y, n, ctx); /* y = k u^r mod n */ BN_mod_exp(g, k, b, n, ctx); /* g = k^b mod n */ /* * Alice verifies g = v^r y^b mod n to confirm that Bob has * private key u. She needs n, g from parameters, public key v = * (u^-1)^b from the certificate, (y, g) from Bob and the * original r. We omit the detaul here that only the hash of g * is sent. */ BN_mod_exp(v, v, r, n, ctx); /* v^r mod n */ BN_mod_exp(y, y, b, n, ctx); /* y^b mod n */ BN_mod_mul(y, v, y, n, ctx); /* v^r y^b mod n */ temp = BN_cmp(y, g); fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ? "yes" : "no"); BN_CTX_free(ctx); BN_free(u); BN_free(v); BN_free(g); BN_free(k); BN_free(r); BN_free(y); if (temp != 0) { RSA_free(rsa); return (NULL); } /* * Write the GQ parameter file as an encrypted RSA private key * encoded in PEM. * * n modulus n * e group key b * d not used * p private key u * q public key (u^-1)^b * dmp1 not used * dmq1 not used * iqmp not used */ RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one())); RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()), BN_dup(BN_value_one())); str = fheader("GQkey", id, groupname); pkey = EVP_PKEY_new(); EVP_PKEY_assign_RSA(pkey, rsa); PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, passwd1); fclose(str); if (debug) RSA_print_fp(stderr, rsa, 0); return (pkey); } /* *********************************************************************** * * * The following routines implement the Mu-Varadharajan (MV) identity * * scheme * * * *********************************************************************** * * The Mu-Varadharajan (MV) cryptosystem was originally intended when * servers broadcast messages to clients, but clients never send * messages to servers. There is one encryption key for the server and a * separate decryption key for each client. It operated something like a * pay-per-view satellite broadcasting system where the session key is * encrypted by the broadcaster and the decryption keys are held in a * tamperproof set-top box. * * The MV parameters and private encryption key hide in a DSA cuckoo * structure which uses the same parameters, but generated in a * different way. The values are used in an encryption scheme similar to * El Gamal cryptography and a polynomial formed from the expansion of * product terms (x - x[j]), as described in Mu, Y., and V. * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001, * 223-231. The paper has significant errors and serious omissions. * * Let q be the product of n distinct primes s1[j] (j = 1...n), where * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so * that q and each s1[j] divide p - 1 and p has M = n * m + 1 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1) * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then * project into Zp* as exponents of g. Sometimes we have to compute an * inverse b^-1 of random b in Zq, but for that purpose we require * gcd(b, q) = 1. We expect M to be in the 500-bit range and n * relatively small, like 30. These are the parameters of the scheme and * they are expensive to compute. * * We set up an instance of the scheme as follows. A set of random * values x[j] mod q (j = 1...n), are generated as the zeros of a * polynomial of order n. The product terms (x - x[j]) are expanded to * form coefficients a[i] mod q (i = 0...n) in powers of x. These are * used as exponents of the generator g mod p to generate the private * encryption key A. The pair (gbar, ghat) of public server keys and the * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used * to construct the decryption keys. The devil is in the details. * * This routine generates a private server encryption file including the * private encryption key E and partial decryption keys gbar and ghat. * It then generates public client decryption files including the public * keys xbar[j] and xhat[j] for each client j. The partial decryption * files are used to compute the inverse of E. These values are suitably * blinded so secrets are not revealed. * * The distinguishing characteristic of this scheme is the capability to * revoke keys. Included in the calculation of E, gbar and ghat is the * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is * subsequently removed from the product and E, gbar and ghat * recomputed, the jth client will no longer be able to compute E^-1 and * thus unable to decrypt the messageblock. * * How it works * * The scheme goes like this. Bob has the server values (p, E, q, * gbar, ghat) and Alice has the client values (p, xbar, xhat). * * Alice rolls new random nonce r mod p and sends to Bob in the MV * request message. Bob rolls random nonce k mod q, encrypts y = r E^k * mod p and sends (y, gbar^k, ghat^k) to Alice. * * Alice receives the response and computes the inverse (E^k)^-1 from * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then * decrypts y and verifies it matches the original r. The signed * response binds this knowledge to Bob's private key and the public key * previously received in his certificate. */ EVP_PKEY * /* DSA cuckoo nest */ gen_mvkey( const char *id, /* file name id */ EVP_PKEY **evpars /* parameter list pointer */ ) { EVP_PKEY *pkey, *pkey1; /* private keys */ DSA *dsa, *dsa2, *sdsa; /* DSA parameters */ BN_CTX *ctx; /* BN working space */ BIGNUM *a[MVMAX]; /* polynomial coefficient vector */ BIGNUM *gs[MVMAX]; /* public key vector */ BIGNUM *s1[MVMAX]; /* private enabling keys */ BIGNUM *x[MVMAX]; /* polynomial zeros vector */ BIGNUM *xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */ BIGNUM *b; /* group key */ BIGNUM *b1; /* inverse group key */ BIGNUM *s; /* enabling key */ BIGNUM *biga; /* master encryption key */ BIGNUM *bige; /* session encryption key */ BIGNUM *gbar, *ghat; /* public key */ BIGNUM *u, *v, *w; /* BN scratch */ BIGNUM *p, *q, *g, *priv_key, *pub_key; int i, j, n; FILE *str; u_int temp; /* * Generate MV parameters. * * The object is to generate a multiplicative group Zp* modulo a * prime p and a subset Zq mod q, where q is the product of n * distinct primes s1[j] (j = 1...n) and q divides p - 1. We * first generate n m-bit primes, where the product n m is in * the order of 512 bits. One or more of these may have to be * replaced later. As a practical matter, it is tough to find * more than 31 distinct primes for 512 bits or 61 primes for * 1024 bits. The latter can take several hundred iterations * and several minutes on a Sun Blade 1000. */ n = nkeys; fprintf(stderr, "Generating MV parameters for %d keys (%d bits)...\n", n, modulus2 / n); ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new(); b = BN_new(); b1 = BN_new(); dsa = DSA_new(); p = BN_new(); q = BN_new(); g = BN_new(); priv_key = BN_new(); pub_key = BN_new(); temp = 0; for (j = 1; j <= n; j++) { s1[j] = BN_new(); while (1) { BN_generate_prime_ex(s1[j], modulus2 / n, 0, NULL, NULL, NULL); for (i = 1; i < j; i++) { if (BN_cmp(s1[i], s1[j]) == 0) break; } if (i == j) break; temp++; } } fprintf(stderr, "Birthday keys regenerated %d\n", temp); /* * Compute the modulus q as the product of the primes. Compute * the modulus p as 2 * q + 1 and test p for primality. If p * is composite, replace one of the primes with a new distinct * one and try again. Note that q will hardly be a secret since * we have to reveal p to servers, but not clients. However, * factoring q to find the primes should be adequately hard, as * this is the same problem considered hard in RSA. Question: is * it as hard to find n small prime factors totalling n bits as * it is to find two large prime factors totalling n bits? * Remember, the bad guy doesn't know n. */ temp = 0; while (1) { BN_one(q); for (j = 1; j <= n; j++) BN_mul(q, q, s1[j], ctx); BN_copy(p, q); BN_add(p, p, p); BN_add_word(p, 1); if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL)) break; temp++; j = temp % n + 1; while (1) { BN_generate_prime_ex(u, modulus2 / n, 0, NULL, NULL, NULL); for (i = 1; i <= n; i++) { if (BN_cmp(u, s1[i]) == 0) break; } if (i > n) break; } BN_copy(s1[j], u); } fprintf(stderr, "Defective keys regenerated %d\n", temp); /* * Compute the generator g using a random roll such that * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not * q. This may take several iterations. */ BN_copy(v, p); BN_sub_word(v, 1); while (1) { BN_rand(g, BN_num_bits(p) - 1, 0, 0); BN_mod(g, g, p, ctx); BN_gcd(u, g, v, ctx); if (!BN_is_one(u)) continue; BN_mod_exp(u, g, q, p, ctx); if (BN_is_one(u)) break; } DSA_set0_pqg(dsa, p, q, g); /* * Setup is now complete. Roll random polynomial roots x[j] * (j = 1...n) for all j. While it may not be strictly * necessary, Make sure each root has no factors in common with * q. */ fprintf(stderr, "Generating polynomial coefficients for %d roots (%d bits)\n", n, BN_num_bits(q)); for (j = 1; j <= n; j++) { x[j] = BN_new(); while (1) { BN_rand(x[j], BN_num_bits(q), 0, 0); BN_mod(x[j], x[j], q, ctx); BN_gcd(u, x[j], q, ctx); if (BN_is_one(u)) break; } } /* * Generate polynomial coefficients a[i] (i = 0...n) from the * expansion of root products (x - x[j]) mod q for all j. The * method is a present from Charlie Boncelet. */ for (i = 0; i <= n; i++) { a[i] = BN_new(); BN_one(a[i]); } for (j = 1; j <= n; j++) { BN_zero(w); for (i = 0; i < j; i++) { BN_copy(u, q); BN_mod_mul(v, a[i], x[j], q, ctx); BN_sub(u, u, v); BN_add(u, u, w); BN_copy(w, a[i]); BN_mod(a[i], u, q, ctx); } } /* * Generate gs[i] = g^a[i] mod p for all i and the generator g. */ for (i = 0; i <= n; i++) { gs[i] = BN_new(); BN_mod_exp(gs[i], g, a[i], p, ctx); } /* * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the * a[i] x[j]^i exponent is computed mod q, but the gs[i] is * computed mod p. also note the expression given in the paper * is incorrect. */ temp = 1; for (j = 1; j <= n; j++) { BN_one(u); for (i = 0; i <= n; i++) { BN_set_word(v, i); BN_mod_exp(v, x[j], v, q, ctx); BN_mod_mul(v, v, a[i], q, ctx); BN_mod_exp(v, g, v, p, ctx); BN_mod_mul(u, u, v, p, ctx); } if (!BN_is_one(u)) temp = 0; } fprintf(stderr, "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ? "yes" : "no"); if (!temp) { return (NULL); } /* * Make private encryption key A. Keep it around for awhile, * since it is expensive to compute. */ biga = BN_new(); BN_one(biga); for (j = 1; j <= n; j++) { for (i = 0; i < n; i++) { BN_set_word(v, i); BN_mod_exp(v, x[j], v, q, ctx); BN_mod_exp(v, gs[i], v, p, ctx); BN_mod_mul(biga, biga, v, p, ctx); } } /* * Roll private random group key b mod q (0 < b < q), where * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1 * mod q. If b is changed, the client keys must be recomputed. */ while (1) { BN_rand(b, BN_num_bits(q), 0, 0); BN_mod(b, b, q, ctx); BN_gcd(u, b, q, ctx); if (BN_is_one(u)) break; } BN_mod_inverse(b1, b, q, ctx); /* * Make private client keys (xbar[j], xhat[j]) for all j. Note * that the keys for the jth client do not s1[j] or the product * s1[j]) (j = 1...n) which is q by construction. * * Compute the factor w such that w s1[j] = s1[j] for all j. The * easy way to do this is to compute (q + s1[j]) / s1[j]. * Exercise for the student: prove the remainder is always zero. */ for (j = 1; j <= n; j++) { xbar[j] = BN_new(); xhat[j] = BN_new(); BN_add(w, q, s1[j]); BN_div(w, u, w, s1[j], ctx); BN_zero(xbar[j]); BN_set_word(v, n); for (i = 1; i <= n; i++) { if (i == j) continue; BN_mod_exp(u, x[i], v, q, ctx); BN_add(xbar[j], xbar[j], u); } BN_mod_mul(xbar[j], xbar[j], b1, q, ctx); BN_mod_exp(xhat[j], x[j], v, q, ctx); BN_mod_mul(xhat[j], xhat[j], w, q, ctx); } /* * We revoke client j by dividing q by s1[j]. The quotient * becomes the enabling key s. Note we always have to revoke * one key; otherwise, the plaintext and cryptotext would be * identical. For the present there are no provisions to revoke * additional keys, so we sail on with only token revocations. */ s = BN_new(); BN_copy(s, q); BN_div(s, u, s, s1[n], ctx); /* * For each combination of clients to be revoked, make private * encryption key E = A^s and partial decryption keys gbar = g^s * and ghat = g^(s b), all mod p. The servers use these keys to * compute the session encryption key and partial decryption * keys. These values must be regenerated if the enabling key is * changed. */ bige = BN_new(); gbar = BN_new(); ghat = BN_new(); BN_mod_exp(bige, biga, s, p, ctx); BN_mod_exp(gbar, g, s, p, ctx); BN_mod_mul(v, s, b, q, ctx); BN_mod_exp(ghat, g, v, p, ctx); /* * Notes: We produce the key media in three steps. The first * step is to generate the system parameters p, q, g, b, A and * the enabling keys s1[j]. Associated with each s1[j] are * parameters xbar[j] and xhat[j]. All of these parameters are * retained in a data structure protecteted by the trusted-agent * password. The p, xbar[j] and xhat[j] paremeters are * distributed to the j clients. When the client keys are to be * activated, the enabled keys are multipied together to form * the master enabling key s. This and the other parameters are * used to compute the server encryption key E and the partial * decryption keys gbar and ghat. * * In the identity exchange the client rolls random r and sends * it to the server. The server rolls random k, which is used * only once, then computes the session key E^k and partial * decryption keys gbar^k and ghat^k. The server sends the * encrypted r along with gbar^k and ghat^k to the client. The * client completes the decryption and verifies it matches r. */ /* * Write the MV trusted-agent parameters and keys as a DSA * private key encoded in PEM. * * p modulus p * q modulus q * g generator g * priv_key A mod p * pub_key b mod q * (remaining values are not used) */ i = 0; str = fheader("MVta", "mvta", groupname); fprintf(stderr, "Generating MV trusted-authority keys\n"); BN_copy(priv_key, biga); BN_copy(pub_key, b); DSA_set0_key(dsa, pub_key, priv_key); pkey = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey, dsa); PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL, passwd1); evpars[i++] = pkey; if (debug) DSA_print_fp(stderr, dsa, 0); /* * Append the MV server parameters and keys as a DSA key encoded * in PEM. * * p modulus p * q modulus q (used only when generating k) * g bige * priv_key gbar * pub_key ghat * (remaining values are not used) */ fprintf(stderr, "Generating MV server keys\n"); dsa2 = DSA_new(); DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige)); DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar)); pkey1 = EVP_PKEY_new(); EVP_PKEY_assign_DSA(pkey1, dsa2); PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL, passwd1); evpars[i++] = pkey1; if (debug) DSA_print_fp(stderr, dsa2, 0); /* * Append the MV client parameters for each client j as DSA keys * encoded in PEM. * * p modulus p * priv_key xbar[j] mod q * pub_key xhat[j] mod q * (remaining values are not used) */ fprintf(stderr, "Generating %d MV client keys\n", n); for (j = 1; j <= n; j++) { sdsa = DSA_new(); DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()), BN_dup(BN_value_one())); DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j])); pkey1 = EVP_PKEY_new(); EVP_PKEY_set1_DSA(pkey1, sdsa); PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL, passwd1); evpars[i++] = pkey1; if (debug) DSA_print_fp(stderr, sdsa, 0); /* * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E * are inverses of each other. We check that the product * is one for each client except the ones that have been * revoked. */ BN_mod_exp(v, gbar, xhat[j], p, ctx); BN_mod_exp(u, ghat, xbar[j], p, ctx); BN_mod_mul(u, u, v, p, ctx); BN_mod_mul(u, u, bige, p, ctx); if (!BN_is_one(u)) { fprintf(stderr, "Revoke key %d\n", j); continue; } } evpars[i++] = NULL; fclose(str); /* * Free the countries. */ for (i = 0; i <= n; i++) { BN_free(a[i]); BN_free(gs[i]); } for (j = 1; j <= n; j++) { BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]); BN_free(s1[j]); } return (pkey); } /* * Generate X509v3 certificate. * * The certificate consists of the version number, serial number, * validity interval, issuer name, subject name and public key. For a * self-signed certificate, the issuer name is the same as the subject * name and these items are signed using the subject private key. The * validity interval extends from the current time to the same time one * year hence. For NTP purposes, it is convenient to use the NTP seconds * of the current time as the serial number. */ int x509 ( EVP_PKEY *pkey, /* signing key */ const EVP_MD *md, /* signature/digest scheme */ char *gqpub, /* identity extension (hex string) */ const char *exten, /* private cert extension */ char *name /* subject/issuer name */ ) { X509 *cert; /* X509 certificate */ X509_NAME *subj; /* distinguished (common) name */ X509_EXTENSION *ex; /* X509v3 extension */ FILE *str; /* file handle */ ASN1_INTEGER *serial; /* serial number */ const char *id; /* digest/signature scheme name */ char pathbuf[MAXFILENAME + 1]; /* * Generate X509 self-signed certificate. * * Set the certificate serial to the NTP seconds for grins. Set * the version to 3. Set the initial validity to the current * time and the finalvalidity one year hence. */ id = OBJ_nid2sn(EVP_MD_pkey_type(md)); fprintf(stderr, "Generating new certificate %s %s\n", name, id); cert = X509_new(); X509_set_version(cert, 2L); serial = ASN1_INTEGER_new(); ASN1_INTEGER_set(serial, (long)epoch + JAN_1970); X509_set_serialNumber(cert, serial); ASN1_INTEGER_free(serial); X509_time_adj(X509_getm_notBefore(cert), 0L, &epoch); X509_time_adj(X509_getm_notAfter(cert), lifetime * SECSPERDAY, &epoch); subj = X509_get_subject_name(cert); X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, (u_char *)name, -1, -1, 0); subj = X509_get_issuer_name(cert); X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC, (u_char *)name, -1, -1, 0); if (!X509_set_pubkey(cert, pkey)) { fprintf(stderr, "Assign certificate signing key fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); X509_free(cert); return (0); } /* * Add X509v3 extensions if present. These represent the minimum * set defined in RFC3280 less the certificate_policy extension, * which is seriously obfuscated in OpenSSL. */ /* * The basic_constraints extension CA:TRUE allows servers to * sign client certficitates. */ fprintf(stderr, "%s: %s\n", LN_basic_constraints, BASIC_CONSTRAINTS); ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints, _UC(BASIC_CONSTRAINTS)); if (!X509_add_ext(cert, ex, -1)) { fprintf(stderr, "Add extension field fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); return (0); } X509_EXTENSION_free(ex); /* * The key_usage extension designates the purposes the key can * be used for. */ fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE); ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE)); if (!X509_add_ext(cert, ex, -1)) { fprintf(stderr, "Add extension field fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); return (0); } X509_EXTENSION_free(ex); /* * The subject_key_identifier is used for the GQ public key. * This should not be controversial. */ if (gqpub != NULL) { fprintf(stderr, "%s\n", LN_subject_key_identifier); ex = X509V3_EXT_conf_nid(NULL, NULL, NID_subject_key_identifier, gqpub); if (!X509_add_ext(cert, ex, -1)) { fprintf(stderr, "Add extension field fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); return (0); } X509_EXTENSION_free(ex); } /* * The extended key usage extension is used for special purpose * here. The semantics probably do not conform to the designer's * intent and will likely change in future. * * "trustRoot" designates a root authority * "private" designates a private certificate */ if (exten != NULL) { fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten); ex = X509V3_EXT_conf_nid(NULL, NULL, NID_ext_key_usage, _UC(exten)); if (!X509_add_ext(cert, ex, -1)) { fprintf(stderr, "Add extension field fails\n%s\n", ERR_error_string(ERR_get_error(), NULL)); return (0); } X509_EXTENSION_free(ex); } /* * Sign and verify. */ X509_sign(cert, pkey, md); if (X509_verify(cert, pkey) <= 0) { fprintf(stderr, "Verify %s certificate fails\n%s\n", id, ERR_error_string(ERR_get_error(), NULL)); X509_free(cert); return (0); } /* * Write the certificate encoded in PEM. */ snprintf(pathbuf, sizeof(pathbuf), "%scert", id); str = fheader(pathbuf, "cert", hostname); PEM_write_X509(str, cert); fclose(str); if (debug) X509_print_fp(stderr, cert); X509_free(cert); return (1); } #if 0 /* asn2ntp is used only with commercial certificates */ /* * asn2ntp - convert ASN1_TIME time structure to NTP time */ u_long asn2ntp ( ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */ ) { char *v; /* pointer to ASN1_TIME string */ struct tm tm; /* time decode structure time */ /* * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure. * Note that the YY, MM, DD fields start with one, the HH, MM, * SS fiels start with zero and the Z character should be 'Z' * for UTC. Also note that years less than 50 map to years * greater than 100. Dontcha love ASN.1? */ if (asn1time->length > 13) return (-1); v = (char *)asn1time->data; tm.tm_year = (v[0] - '0') * 10 + v[1] - '0'; if (tm.tm_year < 50) tm.tm_year += 100; tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1; tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0'; tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0'; tm.tm_min = (v[8] - '0') * 10 + v[9] - '0'; tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0'; tm.tm_wday = 0; tm.tm_yday = 0; tm.tm_isdst = 0; return (mktime(&tm) + JAN_1970); } #endif /* * Callback routine */ void cb ( int n1, /* arg 1 */ int n2, /* arg 2 */ void *chr /* arg 3 */ ) { switch (n1) { case 0: d0++; fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2, d0); break; case 1: d1++; fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1, n2, d1); break; case 2: d2++; fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr, n1, n2, d2); break; case 3: d3++; fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r", (char *)chr, n1, n2, d3); break; } } /* * Generate key */ EVP_PKEY * /* public/private key pair */ genkey( const char *type, /* key type (RSA or DSA) */ const char *id /* file name id */ ) { if (type == NULL) return (NULL); if (strcmp(type, "RSA") == 0) return (gen_rsa(id)); else if (strcmp(type, "DSA") == 0) return (gen_dsa(id)); fprintf(stderr, "Invalid %s key type %s\n", id, type); return (NULL); } static RSA* genRsaKeyPair( int bits, char * what ) { RSA * rsa = RSA_new(); BN_GENCB * gcb = BN_GENCB_new(); BIGNUM * bne = BN_new(); if (gcb) BN_GENCB_set_old(gcb, cb, what); if (bne) BN_set_word(bne, 65537); if (!(rsa && gcb && bne && RSA_generate_key_ex( rsa, bits, bne, gcb))) { RSA_free(rsa); rsa = NULL; } BN_GENCB_free(gcb); BN_free(bne); return rsa; } static DSA* genDsaParams( int bits, char * what ) { DSA * dsa = DSA_new(); BN_GENCB * gcb = BN_GENCB_new(); u_char seed[20]; if (gcb) BN_GENCB_set_old(gcb, cb, what); RAND_bytes(seed, sizeof(seed)); if (!(dsa && gcb && DSA_generate_parameters_ex( dsa, bits, seed, sizeof(seed), NULL, NULL, gcb))) { DSA_free(dsa); dsa = NULL; } BN_GENCB_free(gcb); return dsa; } #endif /* AUTOKEY */ /* * Generate file header and link */ FILE * fheader ( const char *file, /* file name id */ const char *ulink, /* linkname */ const char *owner /* owner name */ ) { FILE *str; /* file handle */ char linkname[MAXFILENAME]; /* link name */ int temp; #ifdef HAVE_UMASK mode_t orig_umask; #endif snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file, owner, fstamp); #ifdef HAVE_UMASK orig_umask = umask( S_IWGRP | S_IRWXO ); str = fopen(filename, "w"); (void) umask(orig_umask); #else str = fopen(filename, "w"); #endif if (str == NULL) { perror("Write"); exit (-1); } if (strcmp(ulink, "md5") == 0) { strcpy(linkname,"ntp.keys"); } else { snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink, hostname); } (void)remove(linkname); /* The symlink() line below matters */ temp = symlink(filename, linkname); if (temp < 0) perror(file); fprintf(stderr, "Generating new %s file and link\n", ulink); fprintf(stderr, "%s->%s\n", linkname, filename); fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch)); return (str); }