/* * refclock_nmea.c - clock driver for an NMEA GPS CLOCK * Michael Petry Jun 20, 1994 * based on refclock_heathn.c * * Updated to add support for Accord GPS Clock * Venu Gopal Dec 05, 2007 * neo.venu@gmail.com, venugopal_d@pgad.gov.in * * Updated to process 'time1' fudge factor * Venu Gopal May 05, 2008 * * Converted to common PPSAPI code, separate PPS fudge time1 * from serial timecode fudge time2. * Dave Hart July 1, 2009 * hart@ntp.org, davehart@davehart.com */ #ifdef HAVE_CONFIG_H #include #endif #include "ntp_types.h" #if defined(REFCLOCK) && defined(CLOCK_NMEA) #define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */ #include #include #include #ifdef HAVE_SYS_SOCKET_H #include #endif #include "ntpd.h" #include "ntp_io.h" #include "ntp_unixtime.h" #include "ntp_refclock.h" #include "ntp_stdlib.h" #include "ntp_calgps.h" #include "timespecops.h" #ifdef HAVE_PPSAPI # include "ppsapi_timepps.h" # include "refclock_atom.h" #endif /* HAVE_PPSAPI */ /* * This driver supports NMEA-compatible GPS receivers * * Prototype was refclock_trak.c, Thanks a lot. * * The receiver used spits out the NMEA sentences for boat navigation. * And you thought it was an information superhighway. Try a raging river * filled with rapids and whirlpools that rip away your data and warp time. * * If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in. * On startup if initialization of the PPSAPI fails, it will fall back * to the "normal" timestamps. * * The PPSAPI part of the driver understands fudge flag2 and flag3. If * flag2 is set, it will use the clear edge of the pulse. If flag3 is * set, kernel hardpps is enabled. * * GPS sentences other than RMC (the default) may be enabled by setting * the relevent bits of 'mode' in the server configuration line * server 127.127.20.x mode X * * bit 0 - enables RMC (1) * bit 1 - enables GGA (2) * bit 2 - enables GLL (4) * bit 3 - enables ZDA (8) - Standard Time & Date * bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time * very close to standard ZDA * * Multiple sentences may be selected except when ZDG/ZDA is selected. * * bit 4/5/6 - selects the baudrate for serial port : * 0 for 4800 (default) * 1 for 9600 * 2 for 19200 * 3 for 38400 * 4 for 57600 * 5 for 115200 */ #define NMEA_MESSAGE_MASK 0x0000FF0FU #define NMEA_BAUDRATE_MASK 0x00000070U #define NMEA_BAUDRATE_SHIFT 4 #define NMEA_DELAYMEAS_MASK 0x00000080U #define NMEA_EXTLOG_MASK 0x00010000U #define NMEA_QUIETPPS_MASK 0x00020000U #define NMEA_DATETRUST_MASK 0x00040000U #define NMEA_PROTO_IDLEN 4 /* tag name must be at least 4 chars */ #define NMEA_PROTO_MINLEN 6 /* min chars in sentence, excluding CS */ #define NMEA_PROTO_MAXLEN 80 /* max chars in sentence, excluding CS */ #define NMEA_PROTO_FIELDS 32 /* not official; limit on fields per record */ /* * We check the timecode format and decode its contents. We only care * about a few of them, the most important being the $GPRMC format: * * $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC * * mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA * $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21 * $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F * $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77 * * Defining GPZDA to support Standard Time & Date * sentence. The sentence has the following format * * $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS * * Apart from the familiar fields, * 'TH' Time zone Hours * 'TM' Time zone Minutes * * Defining GPZDG to support Accord GPS Clock's custom NMEA * sentence. The sentence has the following format * * $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS * * It contains the GPS timestamp valid for next PPS pulse. * Apart from the familiar fields, * 'AA.BB' denotes the signal strength( should be < 05.00 ) * 'V' denotes the GPS sync status : * '0' indicates INVALID time, * '1' indicates accuracy of +/-20 ms * '2' indicates accuracy of +/-100 ns * * Defining PGRMF for Garmin GPS Fix Data * $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP * WN -- GPS week number (weeks since 1980-01-06, mod 1024) * WS -- GPS seconds in week * LS -- GPS leap seconds, accumulated ( UTC + LS == GPS ) * FIX -- Fix type: 0=nofix, 1=2D, 2=3D * DATE/TIME are standard date/time strings in UTC time scale * * The GPS time can be used to get the full century for the truncated * date spec. */ /* * Definitions */ #define DEVICE "/dev/gps%d" /* GPS serial device */ #define PPSDEV "/dev/gpspps%d" /* PPSAPI device override */ #define SPEED232 B4800 /* uart speed (4800 bps) */ #define PRECISION (-9) /* precision assumed (about 2 ms) */ #define PPS_PRECISION (-20) /* precision assumed (about 1 us) */ #define DATE_HOLD 16 /* seconds to hold on provided GPS date */ #define DATE_HLIM 4 /* when do we take ANY date format */ #define REFID "GPS\0" /* reference id */ #define DESCRIPTION "NMEA GPS Clock" /* who we are */ #ifndef O_NOCTTY #define M_NOCTTY 0 #else #define M_NOCTTY O_NOCTTY #endif #ifndef O_NONBLOCK #define M_NONBLOCK 0 #else #define M_NONBLOCK O_NONBLOCK #endif #define PPSOPENMODE (O_RDWR | M_NOCTTY | M_NONBLOCK) /* NMEA sentence array indexes for those we use */ #define NMEA_GPRMC 0 /* recommended min. nav. */ #define NMEA_GPGGA 1 /* fix and quality */ #define NMEA_GPGLL 2 /* geo. lat/long */ #define NMEA_GPZDA 3 /* date/time */ /* * $GPZDG is a proprietary sentence that violates the spec, by not * using $P and an assigned company identifier to prefix the sentence * identifier. When used with this driver, the system needs to be * isolated from other NTP networks, as it operates in GPS time, not * UTC as is much more common. GPS time is >15 seconds different from * UTC due to not respecting leap seconds since 1970 or so. Other * than the different timebase, $GPZDG is similar to $GPZDA. */ #define NMEA_GPZDG 4 #define NMEA_PGRMF 5 #define NMEA_PUBX04 6 #define NMEA_ARRAY_SIZE (NMEA_PUBX04 + 1) /* * Sentence selection mode bits */ #define USE_GPRMC 0x00000001u #define USE_GPGGA 0x00000002u #define USE_GPGLL 0x00000004u #define USE_GPZDA 0x00000008u #define USE_PGRMF 0x00000100u #define USE_PUBX04 0x00000200u /* mapping from sentence index to controlling mode bit */ static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] = { USE_GPRMC, USE_GPGGA, USE_GPGLL, USE_GPZDA, USE_GPZDA, USE_PGRMF, USE_PUBX04 }; /* date formats we support */ enum date_fmt { DATE_1_DDMMYY, /* use 1 field with 2-digit year */ DATE_3_DDMMYYYY /* use 3 fields with 4-digit year */ }; /* date type */ enum date_type { DTYP_NONE, DTYP_Y2D, /* 2-digit year */ DTYP_W10B, /* 10-bit week in GPS epoch */ DTYP_Y4D, /* 4-digit (full) year */ DTYP_WEXT /* extended week in GPS epoch */ }; /* results for 'field_init()' * * Note: If a checksum is present, the checksum test must pass OK or the * sentence is tagged invalid. */ #define CHECK_EMPTY -1 /* no data */ #define CHECK_INVALID 0 /* not a valid NMEA sentence */ #define CHECK_VALID 1 /* valid but without checksum */ #define CHECK_CSVALID 2 /* valid with checksum OK */ /* * Unit control structure */ struct refclock_atom; typedef struct refclock_atom TAtomUnit; typedef struct { # ifdef HAVE_PPSAPI TAtomUnit atom; /* PPSAPI structure */ int ppsapi_fd; /* fd used with PPSAPI */ u_char ppsapi_tried; /* attempt PPSAPI once */ u_char ppsapi_lit; /* time_pps_create() worked */ # endif /* HAVE_PPSAPI */ uint16_t rcvtout; /* one-shot for sample expiration */ u_char ppsapi_gate; /* system is on PPS */ u_char gps_time; /* use GPS time, not UTC */ l_fp last_reftime; /* last processed reference stamp */ TNtpDatum last_gpsdate; /* last processed split date/time */ u_short hold_gpsdate; /* validity ticker for above */ u_short type_gpsdate; /* date info type for above */ /* tally stats, reset each poll cycle */ struct { u_int total; u_int accepted; u_int rejected; /* GPS said not enough signal */ u_int malformed; /* Bad checksum, invalid date or time */ u_int filtered; /* mode bits, not GPZDG, same second */ u_int pps_used; } tally; /* per sentence checksum seen flag */ u_char cksum_type[NMEA_ARRAY_SIZE]; /* line assembly buffer (NMEAD support) */ u_short lb_len; char lb_buf[BMAX]; /* assembly buffer */ } nmea_unit; /* * helper for faster field access */ typedef struct { char *base; /* buffer base */ char *cptr; /* current field ptr */ int blen; /* buffer length */ int cidx; /* current field index */ } nmea_data; /* * Function prototypes */ static int nmea_start (int, struct peer *); static void nmea_shutdown (int, struct peer *); static void nmea_receive (struct recvbuf *); static void nmea_poll (int, struct peer *); static void nmea_procrec (struct peer *, l_fp); #ifdef HAVE_PPSAPI static double tabsdiffd (l_fp, l_fp); static void nmea_control (int, const struct refclockstat *, struct refclockstat *, struct peer *); #define NMEA_CONTROL nmea_control #else #define NMEA_CONTROL noentry #endif /* HAVE_PPSAPI */ static void nmea_timer (int, struct peer *); /* parsing helpers */ static int field_init (nmea_data * data, char * cp, int len); static char * field_parse (nmea_data * data, int fn); static void field_wipe (nmea_data * data, ...); static u_char parse_qual (nmea_data * data, int idx, char tag, int inv); static int parse_time (TCivilDate * jd, l_fp * fofs, nmea_data *, int idx); static int parse_date (TCivilDate * jd, nmea_data *, int idx, enum date_fmt fmt); static int parse_gpsw (TGpsDatum *, nmea_data *, int weekidx, int timeidx, int leapidx); static int nmead_open (const char * device); /* * If we want the driver to output sentences, too: re-enable the send * support functions by defining NMEA_WRITE_SUPPORT to non-zero... */ #if NMEA_WRITE_SUPPORT static void gps_send(int, const char *, struct peer *); # ifdef SYS_WINNT # undef write /* ports/winnt/include/config.h: #define write _write */ extern int async_write(int, const void *, unsigned int); # define write(fd, data, octets) async_write(fd, data, octets) # endif /* SYS_WINNT */ #endif /* NMEA_WRITE_SUPPORT */ /* * ------------------------------------------------------------------- * Transfer vector * ------------------------------------------------------------------- */ struct refclock refclock_nmea = { nmea_start, /* start up driver */ nmea_shutdown, /* shut down driver */ nmea_poll, /* transmit poll message */ NMEA_CONTROL, /* fudge control */ noentry, /* initialize driver */ noentry, /* buginfo */ nmea_timer /* called once per second */ }; /* * ------------------------------------------------------------------- * nmea_start - open the GPS devices and initialize data for processing * * return 0 on error, 1 on success. Even on error the peer structures * must be in a state that permits 'nmea_shutdown()' to clean up all * resources, because it will be called immediately to do so. * ------------------------------------------------------------------- */ static int nmea_start( int unit, struct peer * peer ) { struct refclockproc * const pp = peer->procptr; nmea_unit * const up = emalloc_zero(sizeof(*up)); char device[20]; size_t devlen; u_int32 rate; int baudrate; const char * baudtext; /* Get baudrate choice from mode byte bits 4/5/6 */ rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT; switch (rate) { case 0: baudrate = SPEED232; baudtext = "4800"; break; case 1: baudrate = B9600; baudtext = "9600"; break; case 2: baudrate = B19200; baudtext = "19200"; break; case 3: baudrate = B38400; baudtext = "38400"; break; # ifdef B57600 case 4: baudrate = B57600; baudtext = "57600"; break; # endif # ifdef B115200 case 5: baudrate = B115200; baudtext = "115200"; break; # endif default: baudrate = SPEED232; baudtext = "4800 (fallback)"; break; } /* Allocate and initialize unit structure */ pp->unitptr = (caddr_t)up; pp->io.fd = -1; pp->io.clock_recv = nmea_receive; pp->io.srcclock = peer; pp->io.datalen = 0; /* force change detection on first valid message */ memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime)); memset(&up->last_gpsdate, 0x00, sizeof(up->last_gpsdate)); /* force checksum on GPRMC, see below */ up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID; # ifdef HAVE_PPSAPI up->ppsapi_fd = -1; # endif /* HAVE_PPSAPI */ ZERO(up->tally); /* Initialize miscellaneous variables */ peer->precision = PRECISION; pp->clockdesc = DESCRIPTION; memcpy(&pp->refid, REFID, 4); /* Open serial port. Use CLK line discipline, if available. */ devlen = snprintf(device, sizeof(device), DEVICE, unit); if (devlen >= sizeof(device)) { msyslog(LOG_ERR, "%s clock device name too long", refnumtoa(&peer->srcadr)); return FALSE; /* buffer overflow */ } pp->io.fd = refclock_open(device, baudrate, LDISC_CLK); if (0 >= pp->io.fd) { pp->io.fd = nmead_open(device); if (-1 == pp->io.fd) return FALSE; } LOGIF(CLOCKINFO, (LOG_NOTICE, "%s serial %s open at %s bps", refnumtoa(&peer->srcadr), device, baudtext)); /* succeed if this clock can be added */ return io_addclock(&pp->io) != 0; } /* * ------------------------------------------------------------------- * nmea_shutdown - shut down a GPS clock * * NOTE this routine is called after nmea_start() returns failure, * as well as during a normal shutdown due to ntpq :config unpeer. * ------------------------------------------------------------------- */ static void nmea_shutdown( int unit, struct peer * peer ) { struct refclockproc * const pp = peer->procptr; nmea_unit * const up = (nmea_unit *)pp->unitptr; UNUSED_ARG(unit); if (up != NULL) { # ifdef HAVE_PPSAPI if (up->ppsapi_lit) time_pps_destroy(up->atom.handle); if (up->ppsapi_tried && up->ppsapi_fd != pp->io.fd) close(up->ppsapi_fd); # endif free(up); } pp->unitptr = (caddr_t)NULL; if (-1 != pp->io.fd) io_closeclock(&pp->io); pp->io.fd = -1; } /* * ------------------------------------------------------------------- * nmea_control - configure fudge params * ------------------------------------------------------------------- */ #ifdef HAVE_PPSAPI static void nmea_control( int unit, const struct refclockstat * in_st, struct refclockstat * out_st, struct peer * peer ) { struct refclockproc * const pp = peer->procptr; nmea_unit * const up = (nmea_unit *)pp->unitptr; char device[32]; size_t devlen; UNUSED_ARG(in_st); UNUSED_ARG(out_st); /* * PPS control * * If /dev/gpspps$UNIT can be opened that will be used for * PPSAPI. Otherwise, the GPS serial device /dev/gps$UNIT * already opened is used for PPSAPI as well. (This might not * work, in which case the PPS API remains unavailable...) */ /* Light up the PPSAPI interface if not yet attempted. */ if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) { up->ppsapi_tried = TRUE; devlen = snprintf(device, sizeof(device), PPSDEV, unit); if (devlen < sizeof(device)) { up->ppsapi_fd = open(device, PPSOPENMODE, S_IRUSR | S_IWUSR); } else { up->ppsapi_fd = -1; msyslog(LOG_ERR, "%s PPS device name too long", refnumtoa(&peer->srcadr)); } if (-1 == up->ppsapi_fd) up->ppsapi_fd = pp->io.fd; if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) { /* use the PPS API for our own purposes now. */ up->ppsapi_lit = refclock_params( pp->sloppyclockflag, &up->atom); if (!up->ppsapi_lit) { /* failed to configure, drop PPS unit */ time_pps_destroy(up->atom.handle); msyslog(LOG_WARNING, "%s set PPSAPI params fails", refnumtoa(&peer->srcadr)); } /* note: the PPS I/O handle remains valid until * flag1 is cleared or the clock is shut down. */ } else { msyslog(LOG_WARNING, "%s flag1 1 but PPSAPI fails", refnumtoa(&peer->srcadr)); } } /* shut down PPS API if activated */ if ( !(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) { /* shutdown PPS API */ if (up->ppsapi_lit) time_pps_destroy(up->atom.handle); up->atom.handle = 0; /* close/drop PPS fd */ if (up->ppsapi_fd != pp->io.fd) close(up->ppsapi_fd); up->ppsapi_fd = -1; /* clear markers and peer items */ up->ppsapi_gate = FALSE; up->ppsapi_lit = FALSE; up->ppsapi_tried = FALSE; peer->flags &= ~FLAG_PPS; peer->precision = PRECISION; } } #endif /* HAVE_PPSAPI */ /* * ------------------------------------------------------------------- * nmea_timer - called once per second * * Usually 'nmea_receive()' can get a timestamp every second, but at * least one Motorola unit needs prompting each time. Doing so in * 'nmea_poll()' gives only one sample per poll cycle, which actually * defeats the purpose of the median filter. Polling once per second * seems a much better idea. * * Also takes care of sample expiration if the receiver fails to * provide new input data. * ------------------------------------------------------------------- */ static void nmea_timer( int unit, struct peer * peer ) { struct refclockproc * const pp = peer->procptr; nmea_unit * const up = (nmea_unit *)pp->unitptr; UNUSED_ARG(unit); # if NMEA_WRITE_SUPPORT if (-1 != pp->io.fd) /* any mode bits to evaluate here? */ gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer); # endif /* NMEA_WRITE_SUPPORT */ /* receive timeout occurred? */ if (up->rcvtout) { --up->rcvtout; } else if (pp->codeproc != pp->coderecv) { /* expire one (the oldest) sample, if any */ refclock_samples_expire(pp, 1); /* reset message assembly buffer */ up->lb_buf[0] = '\0'; up->lb_len = 0; } if (up->hold_gpsdate && (--up->hold_gpsdate < DATE_HLIM)) up->type_gpsdate = DTYP_NONE; } /* * ------------------------------------------------------------------- * nmea_procrec - receive data from the serial interface * * This is the workhorse for NMEA data evaluation: * * + it checks all NMEA data, and rejects sentences that are not valid * NMEA sentences * + it checks whether a sentence is known and to be used * + it parses the time and date data from the NMEA data string and * augments the missing bits. (century in date, whole date, ...) * + it rejects data that is not from the first accepted sentence in a * burst * + it eventually replaces the receive time with the PPS edge time. * + it feeds the data to the internal processing stages. * * This function assumes a non-empty line in the unit line buffer. * ------------------------------------------------------------------- */ static void nmea_procrec( struct peer * const peer, l_fp rd_timestamp ) { /* declare & init control structure pointers */ struct refclockproc * const pp = peer->procptr; nmea_unit * const up = (nmea_unit*)pp->unitptr; /* Use these variables to hold data until we decide its worth keeping */ nmea_data rdata; l_fp rd_reftime; /* working stuff */ TCivilDate date; /* to keep & convert the time stamp */ TGpsDatum wgps; /* week time storage */ TNtpDatum dntp; l_fp tofs; /* offset to full-second reftime */ /* results of sentence/date/time parsing */ u_char sentence; /* sentence tag */ int checkres; int warp; /* warp to GPS base date */ char * cp; int rc_date, rc_time; u_short rc_dtyp; # ifdef HAVE_PPSAPI int withpps = 0; # endif /* HAVE_PPSAPI */ /* make sure data has defined pristine state */ ZERO(tofs); ZERO(date); ZERO(wgps); ZERO(dntp); /* * Read the timecode and timestamp, then initialize field * processing. The at the NMEA line end is translated * to by the terminal input routines on most systems, * and this gives us one spurious empty read per record which we * better ignore silently. */ checkres = field_init(&rdata, up->lb_buf, up->lb_len); switch (checkres) { case CHECK_INVALID: DPRINTF(1, ("%s invalid data: '%s'\n", refnumtoa(&peer->srcadr), up->lb_buf)); refclock_report(peer, CEVNT_BADREPLY); return; case CHECK_EMPTY: return; default: DPRINTF(1, ("%s gpsread: %d '%s'\n", refnumtoa(&peer->srcadr), up->lb_len, up->lb_buf)); break; } up->tally.total++; /* * --> below this point we have a valid NMEA sentence <-- * * Check sentence name. Skip first 2 chars (talker ID) in most * cases, to allow for $GLGGA and $GPGGA etc. Since the name * field has at least 5 chars we can simply shift the field * start. */ cp = field_parse(&rdata, 0); if (strncmp(cp + 2, "RMC,", 4) == 0) sentence = NMEA_GPRMC; else if (strncmp(cp + 2, "GGA,", 4) == 0) sentence = NMEA_GPGGA; else if (strncmp(cp + 2, "GLL,", 4) == 0) sentence = NMEA_GPGLL; else if (strncmp(cp + 2, "ZDA,", 4) == 0) sentence = NMEA_GPZDA; else if (strncmp(cp + 2, "ZDG,", 4) == 0) sentence = NMEA_GPZDG; else if (strncmp(cp, "PGRMF,", 6) == 0) sentence = NMEA_PGRMF; else if (strncmp(cp, "PUBX,04,", 8) == 0) sentence = NMEA_PUBX04; else return; /* not something we know about */ /* Eventually output delay measurement now. */ if (peer->ttl & NMEA_DELAYMEAS_MASK) { mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s", ldexp(rd_timestamp.l_uf, -32), (int)(strchr(up->lb_buf, ',') - up->lb_buf), up->lb_buf); } /* See if I want to process this message type */ if ((peer->ttl & NMEA_MESSAGE_MASK) && !(peer->ttl & sentence_mode[sentence])) { up->tally.filtered++; return; } /* * make sure it came in clean * * Apparently, older NMEA specifications (which are expensive) * did not require the checksum for all sentences. $GPMRC is * the only one so far identified which has always been required * to include a checksum. * * Today, most NMEA GPS receivers checksum every sentence. To * preserve its error-detection capabilities with modern GPSes * while allowing operation without checksums on all but $GPMRC, * we keep track of whether we've ever seen a valid checksum on * a given sentence, and if so, reject future instances without * checksum. ('up->cksum_type[NMEA_GPRMC]' is set in * 'nmea_start()' to enforce checksums for $GPRMC right from the * start.) */ if (up->cksum_type[sentence] <= (u_char)checkres) { up->cksum_type[sentence] = (u_char)checkres; } else { DPRINTF(1, ("%s checksum missing: '%s'\n", refnumtoa(&peer->srcadr), up->lb_buf)); refclock_report(peer, CEVNT_BADREPLY); up->tally.malformed++; return; } /* * $GPZDG provides GPS time not UTC, and the two mix poorly. * Once have processed a $GPZDG, do not process any further UTC * sentences (all but $GPZDG currently). */ if (sentence == NMEA_GPZDG) { if (!up->gps_time) { msyslog(LOG_INFO, "%s using GPS time as if it were UTC", refnumtoa(&peer->srcadr)); up->gps_time = 1; } } else { if (up->gps_time) { up->tally.filtered++; return; } } DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n", refnumtoa(&peer->srcadr), up->lb_len, up->lb_buf)); /* * Grab fields depending on clock string type and possibly wipe * sensitive data from the last timecode. */ rc_date = -1; /* assume we have to do day-time mapping */ rc_dtyp = DTYP_NONE; switch (sentence) { case NMEA_GPRMC: /* Check quality byte, fetch data & time */ rc_time = parse_time(&date, &tofs, &rdata, 1); pp->leap = parse_qual(&rdata, 2, 'A', 0); if (up->type_gpsdate <= DTYP_Y2D) { rc_date = parse_date(&date, &rdata, 9, DATE_1_DDMMYY); rc_dtyp = DTYP_Y2D; } if (CLK_FLAG4 & pp->sloppyclockflag) field_wipe(&rdata, 3, 4, 5, 6, -1); break; case NMEA_GPGGA: /* Check quality byte, fetch time only */ rc_time = parse_time(&date, &tofs, &rdata, 1); pp->leap = parse_qual(&rdata, 6, '0', 1); if (CLK_FLAG4 & pp->sloppyclockflag) field_wipe(&rdata, 2, 4, -1); break; case NMEA_GPGLL: /* Check quality byte, fetch time only */ rc_time = parse_time(&date, &tofs, &rdata, 5); pp->leap = parse_qual(&rdata, 6, 'A', 0); if (CLK_FLAG4 & pp->sloppyclockflag) field_wipe(&rdata, 1, 3, -1); break; case NMEA_GPZDA: /* No quality. Assume best, fetch time & full date */ rc_time = parse_time(&date, &tofs, &rdata, 1); if (up->type_gpsdate <= DTYP_Y4D) { rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY); rc_dtyp = DTYP_Y4D; } break; case NMEA_GPZDG: /* Check quality byte, fetch time & full date */ rc_time = parse_time(&date, &tofs, &rdata, 1); pp->leap = parse_qual(&rdata, 4, '0', 1); --tofs.l_ui; /* GPZDG gives *following* second */ if (up->type_gpsdate <= DTYP_Y4D) { rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY); rc_dtyp = DTYP_Y4D; } break; case NMEA_PGRMF: /* get time, qualifier and GPS weektime. */ rc_time = parse_time(&date, &tofs, &rdata, 4); if (up->type_gpsdate <= DTYP_W10B) { rc_date = parse_gpsw(&wgps, &rdata, 1, 2, 5); rc_dtyp = DTYP_W10B; } pp->leap = parse_qual(&rdata, 11, '0', 1); if (CLK_FLAG4 & pp->sloppyclockflag) field_wipe(&rdata, 6, 8, -1); break; case NMEA_PUBX04: /* PUBX,04 is peculiar. The UTC time-of-week is the *internal* * time base, which is not exactly on par with the fix time. */ rc_time = parse_time(&date, &tofs, &rdata, 2); if (up->type_gpsdate <= DTYP_WEXT) { rc_date = parse_gpsw(&wgps, &rdata, 5, 4, -1); rc_dtyp = DTYP_WEXT; } break; default: INVARIANT(0); /* Coverity 97123 */ return; } /* check clock sanity; [bug 2143] */ if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */ checkres = CEVNT_PROP; up->tally.rejected++; } /* Check sanity of time-of-day. */ else if (rc_time == 0) { /* no time or conversion error? */ checkres = CEVNT_BADTIME; up->tally.malformed++; } /* Check sanity of date. */ else if (rc_date == 0) { /* no date or conversion error? */ checkres = CEVNT_BADDATE; up->tally.malformed++; } else { checkres = -1; } if (checkres != -1) { refclock_save_lcode(pp, up->lb_buf, up->lb_len); refclock_report(peer, checkres); return; } /* See if we can augment the receive time stamp. If not, apply * fudge time 2 to the receive time stamp directly. */ # ifdef HAVE_PPSAPI if (up->ppsapi_lit && pp->leap != LEAP_NOTINSYNC) withpps = refclock_ppsaugment( &up->atom, &rd_timestamp, pp->fudgetime2, pp->fudgetime1); else # endif /* HAVE_PPSAPI */ rd_timestamp = ntpfp_with_fudge( rd_timestamp, pp->fudgetime2); /* set the GPS base date, if possible */ warp = !(peer->ttl & NMEA_DATETRUST_MASK); if (rc_dtyp != DTYP_NONE) { DPRINTF(1, ("%s saving date, type=%hu\n", refnumtoa(&peer->srcadr), rc_dtyp)); switch (rc_dtyp) { case DTYP_W10B: up->last_gpsdate = gpsntp_from_gpscal_ex( &wgps, (warp = TRUE)); break; case DTYP_WEXT: up->last_gpsdate = gpsntp_from_gpscal_ex( &wgps, warp); break; default: up->last_gpsdate = gpsntp_from_calendar_ex( &date, tofs, warp); break; } up->type_gpsdate = rc_dtyp; up->hold_gpsdate = DATE_HOLD; } /* now convert and possibly extend/expand the time stamp. */ if (up->hold_gpsdate) { /* time of day, based */ dntp = gpsntp_from_daytime2_ex( &date, tofs, &up->last_gpsdate, warp); } else { /* time of day, floating */ dntp = gpsntp_from_daytime1_ex( &date, tofs, rd_timestamp, warp); } if (debug) { /* debug print time stamp */ gpsntp_to_calendar(&date, &dntp); # ifdef HAVE_PPSAPI DPRINTF(1, ("%s effective timecode: %s (%s PPS)\n", refnumtoa(&peer->srcadr), ntpcal_iso8601std(NULL, 0, &date), (withpps ? "with" : "without"))); # else /* ?HAVE_PPSAPI */ DPRINTF(1, ("%s effective timecode: %s\n", refnumtoa(&peer->srcadr), ntpcal_iso8601std(NULL, 0, &date))); # endif /* !HAVE_PPSAPI */ } /* Get the reference time stamp from the calendar buffer. * Process the new sample in the median filter and determine the * timecode timestamp, but only if the PPS is not in control. * Discard sentence if reference time did not change. */ rd_reftime = ntpfp_from_ntpdatum(&dntp); if (L_ISEQU(&up->last_reftime, &rd_reftime)) { /* Do not touch pp->a_lastcode on purpose! */ up->tally.filtered++; return; } up->last_reftime = rd_reftime; DPRINTF(1, ("%s using '%s'\n", refnumtoa(&peer->srcadr), up->lb_buf)); /* Data will be accepted. Update stats & log data. */ up->tally.accepted++; refclock_save_lcode(pp, up->lb_buf, up->lb_len); pp->lastrec = rd_timestamp; /* If we have PPS augmented receive time, we *must* have a * working PPS source and we must set the flags accordingly. */ # ifdef HAVE_PPSAPI if (withpps) { up->ppsapi_gate = TRUE; peer->precision = PPS_PRECISION; if (tabsdiffd(rd_reftime, rd_timestamp) < 0.5) { if ( ! (peer->ttl & NMEA_QUIETPPS_MASK)) peer->flags |= FLAG_PPS; DPRINTF(2, ("%s PPS_RELATE_PHASE\n", refnumtoa(&peer->srcadr))); up->tally.pps_used++; } else { DPRINTF(2, ("%s PPS_RELATE_EDGE\n", refnumtoa(&peer->srcadr))); } /* !Note! 'FLAG_PPS' is reset in 'nmea_poll()' */ } # endif /* HAVE_PPSAPI */ /* Whether the receive time stamp is PPS-augmented or not, * the proper fudge offset is already applied. There's no * residual fudge to process. */ refclock_process_offset(pp, rd_reftime, rd_timestamp, 0.0); up->rcvtout = 2; } /* * ------------------------------------------------------------------- * nmea_receive - receive data from the serial interface * * With serial IO only, a single call to 'refclock_gtlin()' to get the * string would suffice to get the NMEA data. When using NMEAD, this * does unfortunately no longer hold, since TCP is stream oriented and * not line oriented, and there's no one to do the line-splitting work * of the TTY driver in line/cooked mode. * * So we have to do this manually here, and we have to live with the * fact that there could be more than one sentence in a receive buffer. * Likewise, there can be partial messages on either end. (Strictly * speaking, a receive buffer could also contain just a single fragment, * though that's unlikely.) * * We deal with that by scanning the input buffer, copying bytes from * the receive buffer to the assembly buffer as we go and calling the * record processor every time we hit a CR/LF, provided the resulting * line is not empty. Any leftovers are kept for the next round. * * Note: When used with a serial data stream, there's no change to the * previous line-oriented input: One line is copied to the buffer and * processed per call. Only with NMEAD the behavior changes, and the * timing is badly affected unless a PPS channel is also associated with * the clock instance. TCP leaves us nothing to improve on here. * ------------------------------------------------------------------- */ static void nmea_receive( struct recvbuf * rbufp ) { /* declare & init control structure pointers */ struct peer * const peer = rbufp->recv_peer; struct refclockproc * const pp = peer->procptr; nmea_unit * const up = (nmea_unit*)pp->unitptr; const char *sp, *se; char *dp, *de; /* paranoia check: */ if (up->lb_len >= sizeof(up->lb_buf)) up->lb_len = 0; /* pick up last assembly position; leave room for NUL */ dp = up->lb_buf + up->lb_len; de = up->lb_buf + sizeof(up->lb_buf) - 1; /* set up input range */ sp = (const char *)rbufp->recv_buffer; se = sp + rbufp->recv_length; /* walk over the input data, dropping parity bits and control * chars as we go, and calling the record processor for each * complete non-empty line. */ while (sp != se) { char ch = (*sp++ & 0x7f); if (dp == up->lb_buf) { if (ch == '$') *dp++ = ch; } else if (dp > de) { dp = up->lb_buf; } else if (ch == '\n' || ch == '\r') { *dp = '\0'; up->lb_len = (int)(dp - up->lb_buf); dp = up->lb_buf; nmea_procrec(peer, rbufp->recv_time); } else if (ch >= 0x20 && ch < 0x7f) { *dp++ = ch; } } /* update state to keep for next round */ *dp = '\0'; up->lb_len = (int)(dp - up->lb_buf); } /* * ------------------------------------------------------------------- * nmea_poll - called by the transmit procedure * * Does the necessary bookkeeping stuff to keep the reported state of * the clock in sync with reality. * * We go to great pains to avoid changing state here, since there may * be more than one eavesdropper receiving the same timecode. * ------------------------------------------------------------------- */ static void nmea_poll( int unit, struct peer * peer ) { struct refclockproc * const pp = peer->procptr; nmea_unit * const up = (nmea_unit *)pp->unitptr; /* * Process median filter samples. If none received, declare a * timeout and keep going. */ # ifdef HAVE_PPSAPI /* * If we don't have PPS pulses and time stamps, turn PPS down * for now. */ if (!up->ppsapi_gate) { peer->flags &= ~FLAG_PPS; peer->precision = PRECISION; } else { up->ppsapi_gate = FALSE; } # endif /* HAVE_PPSAPI */ /* * If the median filter is empty, claim a timeout. Else process * the input data and keep the stats going. */ if (pp->coderecv == pp->codeproc) { peer->flags &= ~FLAG_PPS; if (pp->currentstatus < CEVNT_TIMEOUT) refclock_report(peer, CEVNT_TIMEOUT); memset(&up->last_gpsdate, 0, sizeof(up->last_gpsdate)); } else { pp->polls++; pp->lastref = pp->lastrec; refclock_receive(peer); if (pp->currentstatus > CEVNT_NOMINAL) refclock_report(peer, CEVNT_NOMINAL); } /* * If extended logging is required, write the tally stats to the * clockstats file; otherwise just do a normal clock stats * record. Clear the tally stats anyway. */ if (peer->ttl & NMEA_EXTLOG_MASK) { /* Log & reset counters with extended logging */ const char *nmea = pp->a_lastcode; if (*nmea == '\0') nmea = "(none)"; mprintf_clock_stats( &peer->srcadr, "%s %u %u %u %u %u %u", nmea, up->tally.total, up->tally.accepted, up->tally.rejected, up->tally.malformed, up->tally.filtered, up->tally.pps_used); } else { record_clock_stats(&peer->srcadr, pp->a_lastcode); } ZERO(up->tally); } #if NMEA_WRITE_SUPPORT /* * ------------------------------------------------------------------- * gps_send(fd, cmd, peer) Sends a command to the GPS receiver. * as in gps_send(fd, "rqts,u", peer); * * If 'cmd' starts with a '$' it is assumed that this command is in raw * format, that is, starts with '$', ends with '' and that any * checksum is correctly provided; the command will be send 'as is' in * that case. Otherwise the function will create the necessary frame * (start char, chksum, final CRLF) on the fly. * * We don't currently send any data, but would like to send RTCM SC104 * messages for differential positioning. It should also give us better * time. Without a PPS output, we're Just fooling ourselves because of * the serial code paths * ------------------------------------------------------------------- */ static void gps_send( int fd, const char * cmd, struct peer * peer ) { /* $...*xy add 7 */ char buf[NMEA_PROTO_MAXLEN + 7]; int len; u_char dcs; const u_char *beg, *end; if (*cmd != '$') { /* get checksum and length */ beg = end = (const u_char*)cmd; dcs = 0; while (*end >= ' ' && *end != '*') dcs ^= *end++; len = end - beg; /* format into output buffer with overflow check */ len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n", len, beg, dcs); if ((size_t)len >= sizeof(buf)) { DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n", refnumtoa(&peer->srcadr), cmd)); return; /* game over player 1 */ } cmd = buf; } else { len = strlen(cmd); } DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr), len - 2, cmd)); /* send out the whole stuff */ if (write(fd, cmd, len) == -1) refclock_report(peer, CEVNT_FAULT); } #endif /* NMEA_WRITE_SUPPORT */ /* * ------------------------------------------------------------------- * helpers for faster field splitting * ------------------------------------------------------------------- * * set up a field record, check syntax and verify checksum * * format is $XXXXX,1,2,3,4*ML * * 8-bit XOR of characters between $ and * noninclusive is transmitted * in last two chars M and L holding most and least significant nibbles * in hex representation such as: * * $GPGLL,5057.970,N,00146.110,E,142451,A*27 * $GPVTG,089.0,T,,,15.2,N,,*7F * * Some other constraints: * + The field name must be at least 5 upcase characters or digits and * must start with a character. * + The checksum (if present) must be uppercase hex digits. * + The length of a sentence is limited to 80 characters (not including * the final CR/LF nor the checksum, but including the leading '$') * * Return values: * + CHECK_INVALID * The data does not form a valid NMEA sentence or a checksum error * occurred. * + CHECK_VALID * The data is a valid NMEA sentence but contains no checksum. * + CHECK_CSVALID * The data is a valid NMEA sentence and passed the checksum test. * ------------------------------------------------------------------- */ static int field_init( nmea_data * data, /* context structure */ char * cptr, /* start of raw data */ int dlen /* data len, not counting trailing NUL */ ) { u_char cs_l; /* checksum local computed */ u_char cs_r; /* checksum remote given */ char * eptr; /* buffer end end pointer */ char tmp; /* char buffer */ cs_l = 0; cs_r = 0; /* some basic input constraints */ if (dlen < 0) dlen = 0; eptr = cptr + dlen; *eptr = '\0'; /* load data context */ data->base = cptr; data->cptr = cptr; data->cidx = 0; data->blen = dlen; /* syntax check follows here. check allowed character * sequences, updating the local computed checksum as we go. * * regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$' */ /* -*- start character: '^\$' */ if (*cptr == '\0') return CHECK_EMPTY; if (*cptr++ != '$') return CHECK_INVALID; /* -*- advance context beyond start character */ data->base++; data->cptr++; data->blen--; /* -*- field name: '[A-Z][A-Z0-9]{4,},' */ if (*cptr < 'A' || *cptr > 'Z') return CHECK_INVALID; cs_l ^= *cptr++; while ((*cptr >= 'A' && *cptr <= 'Z') || (*cptr >= '0' && *cptr <= '9') ) cs_l ^= *cptr++; if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN) return CHECK_INVALID; cs_l ^= *cptr++; /* -*- data: '[^*]*' */ while (*cptr && *cptr != '*') cs_l ^= *cptr++; /* -*- checksum field: (\*[0-9A-F]{2})?$ */ if (*cptr == '\0') return CHECK_VALID; if (*cptr != '*' || cptr != eptr - 3 || (cptr - data->base) >= NMEA_PROTO_MAXLEN) return CHECK_INVALID; for (cptr++; (tmp = *cptr) != '\0'; cptr++) { if (tmp >= '0' && tmp <= '9') cs_r = (cs_r << 4) + (tmp - '0'); else if (tmp >= 'A' && tmp <= 'F') cs_r = (cs_r << 4) + (tmp - 'A' + 10); else break; } /* -*- make sure we are at end of string and csum matches */ if (cptr != eptr || cs_l != cs_r) return CHECK_INVALID; return CHECK_CSVALID; } /* * ------------------------------------------------------------------- * fetch a data field by index, zero being the name field. If this * function is called repeatedly with increasing indices, the total load * is O(n), n being the length of the string; if it is called with * decreasing indices, the total load is O(n^2). Try not to go backwards * too often. * ------------------------------------------------------------------- */ static char * field_parse( nmea_data * data, int fn ) { char tmp; if (fn < data->cidx) { data->cidx = 0; data->cptr = data->base; } while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') { data->cidx += (tmp == ','); data->cptr++; } return data->cptr; } /* * ------------------------------------------------------------------- * Wipe (that is, overwrite with '_') data fields and the checksum in * the last timecode. The list of field indices is given as integers * in a varargs list, preferably in ascending order, in any case * terminated by a negative field index. * * A maximum number of 8 fields can be overwritten at once to guard * against runaway (that is, unterminated) argument lists. * * This function affects what a remote user can see with * * ntpq -c clockvar * * Note that this also removes the wiped fields from any clockstats * log. Some NTP operators monitor their NMEA GPS using the change in * location in clockstats over time as as a proxy for the quality of * GPS reception and thereby time reported. * ------------------------------------------------------------------- */ static void field_wipe( nmea_data * data, ... ) { va_list va; /* vararg index list */ int fcnt; /* safeguard against runaway arglist */ int fidx; /* field to nuke, or -1 for checksum */ char * cp; /* overwrite destination */ fcnt = 8; cp = NULL; va_start(va, data); do { fidx = va_arg(va, int); if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) { cp = field_parse(data, fidx); } else { cp = data->base + data->blen; if (data->blen >= 3 && cp[-3] == '*') cp -= 2; } for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++) if ('.' != *cp) *cp = '_'; } while (fcnt-- && fidx >= 0); va_end(va); } /* * ------------------------------------------------------------------- * PARSING HELPERS * ------------------------------------------------------------------- */ typedef unsigned char const UCC; static char const * const s_eof_chars = ",*\r\n"; static int field_length(UCC *cp, unsigned int nfields) { char const * ep = (char const*)cp; ep = strpbrk(ep, s_eof_chars); if (ep && nfields) while (--nfields && ep && *ep == ',') ep = strpbrk(ep + 1, s_eof_chars); return (ep) ? (int)((UCC*)ep - cp) : (int)strlen((char const*)cp); } /* /[,*\r\n]/ --> skip */ static int _parse_eof(UCC *cp, UCC ** ep) { int rc = (strchr(s_eof_chars, *(char const*)cp) != NULL); *ep = cp + rc; return rc; } /* /,/ --> skip */ static int _parse_sep(UCC *cp, UCC ** ep) { int rc = (*cp == ','); *ep = cp + rc; return rc; } /* /[[:digit:]]{2}/ --> uint16_t */ static int _parse_num2d(UCC *cp, UCC ** ep, uint16_t *into) { int rc = FALSE; if (isdigit(cp[0]) && isdigit(cp[1])) { *into = (cp[0] - '0') * 10 + (cp[1] - '0'); cp += 2; rc = TRUE; } *ep = cp; return rc; } /* /[[:digit:]]+/ --> uint16_t */ static int _parse_u16(UCC *cp, UCC **ep, uint16_t *into, unsigned int ndig) { uint16_t num = 0; int rc = FALSE; if (isdigit(*cp) && ndig) { rc = TRUE; do num = (num * 10) + (*cp - '0'); while (isdigit(*++cp) && --ndig); *into = num; } *ep = cp; return rc; } /* /[[:digit:]]+/ --> uint32_t */ static int _parse_u32(UCC *cp, UCC **ep, uint32_t *into, unsigned int ndig) { uint32_t num = 0; int rc = FALSE; if (isdigit(*cp) && ndig) { rc = TRUE; do num = (num * 10) + (*cp - '0'); while (isdigit(*++cp) && --ndig); *into = num; } *ep = cp; return rc; } /* /(\.[[:digit:]]*)?/ --> l_fp{0, f} * read fractional seconds, convert to l_fp * * Only the first 9 decimal digits are evaluated; any excess is parsed * away but silently ignored. (--> truncation to 1 nanosecond) */ static int _parse_frac(UCC *cp, UCC **ep, l_fp *into) { static const uint32_t powtab[10] = { 0, 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 }; struct timespec ts; ZERO(ts); if (*cp == '.') { uint32_t fval = 0; UCC * sp = cp + 1; if (_parse_u32(sp, &cp, &fval, 9)) ts.tv_nsec = fval * powtab[(size_t)(cp - sp)]; while (isdigit(*cp)) ++cp; } *ep = cp; *into = tspec_intv_to_lfp(ts); return TRUE; } /* /[[:digit:]]{6}/ --> time-of-day * parses a number string representing 'HHMMSS' */ static int _parse_time(UCC *cp, UCC ** ep, TCivilDate *into) { uint16_t s, m, h; int rc; UCC * xp = cp; rc = _parse_num2d(cp, &cp, &h) && (h < 24) && _parse_num2d(cp, &cp, &m) && (m < 60) && _parse_num2d(cp, &cp, &s) && (s < 61); /* leap seconds! */ if (rc) { into->hour = (uint8_t)h; into->minute = (uint8_t)m; into->second = (uint8_t)s; *ep = cp; } else { *ep = xp; DPRINTF(1, ("nmea: invalid time code: '%.*s'\n", field_length(xp, 1), xp)); } return rc; } /* /[[:digit:]]{6}/ --> civil date * parses a number string representing 'ddmmyy' */ static int _parse_date1(UCC *cp, UCC **ep, TCivilDate *into) { unsigned short d, m, y; int rc; UCC * xp = cp; rc = _parse_num2d(cp, &cp, &d) && (d - 1 < 31) && _parse_num2d(cp, &cp, &m) && (m - 1 < 12) && _parse_num2d(cp, &cp, &y) && _parse_eof(cp, ep); if (rc) { into->monthday = (uint8_t )d; into->month = (uint8_t )m; into->year = (uint16_t)y; *ep = cp; } else { *ep = xp; DPRINTF(1, ("nmea: invalid date code: '%.*s'\n", field_length(xp, 1), xp)); } return rc; } /* /[[:digit:]]+,[[:digit:]]+,[[:digit:]]+/ --> civil date * parses three successive numeric fields as date: day,month,year */ static int _parse_date3(UCC *cp, UCC **ep, TCivilDate *into) { uint16_t d, m, y; int rc; UCC * xp = cp; rc = _parse_u16(cp, &cp, &d, 2) && (d - 1 < 31) && _parse_sep(cp, &cp) && _parse_u16(cp, &cp, &m, 2) && (m - 1 < 12) && _parse_sep(cp, &cp) && _parse_u16(cp, &cp, &y, 4) && (y > 1980) && _parse_eof(cp, ep); if (rc) { into->monthday = (uint8_t )d; into->month = (uint8_t )m; into->year = (uint16_t)y; *ep = cp; } else { *ep = xp; DPRINTF(1, ("nmea: invalid date code: '%.*s'\n", field_length(xp, 3), xp)); } return rc; } /* * ------------------------------------------------------------------- * Check sync status * * If the character at the data field start matches the tag value, * return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted' * flag is given, just the opposite value is returned. If there is no * data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC. * ------------------------------------------------------------------- */ static u_char parse_qual( nmea_data * rd, int idx, char tag, int inv ) { static const u_char table[2] = { LEAP_NOTINSYNC, LEAP_NOWARNING }; char * dp = field_parse(rd, idx); return table[ *dp && ((*dp == tag) == !inv) ]; } /* * ------------------------------------------------------------------- * Parse a time stamp in HHMMSS[.sss] format with error checking. * * returns 1 on success, 0 on failure * ------------------------------------------------------------------- */ static int parse_time( struct calendar * jd, /* result calendar pointer */ l_fp * fofs, /* storage for nsec fraction */ nmea_data * rd, int idx ) { UCC * dp = (UCC*)field_parse(rd, idx); return _parse_time(dp, &dp, jd) && _parse_frac(dp, &dp, fofs) && _parse_eof (dp, &dp); } /* * ------------------------------------------------------------------- * Parse a date string from an NMEA sentence. This could either be a * partial date in DDMMYY format in one field, or DD,MM,YYYY full date * spec spanning three fields. This function does some extensive error * checking to make sure the date string was consistent. * * returns 1 on success, 0 on failure * ------------------------------------------------------------------- */ static int parse_date( struct calendar * jd, /* result pointer */ nmea_data * rd, int idx, enum date_fmt fmt ) { UCC * dp = (UCC*)field_parse(rd, idx); switch (fmt) { case DATE_1_DDMMYY: return _parse_date1(dp, &dp, jd); case DATE_3_DDMMYYYY: return _parse_date3(dp, &dp, jd); default: DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt)); break; } return FALSE; } /* * ------------------------------------------------------------------- * Parse GPS week time info from an NMEA sentence. This info contains * the GPS week number, the GPS time-of-week and the leap seconds GPS * to UTC. * * returns 1 on success, 0 on failure * ------------------------------------------------------------------- */ static int parse_gpsw( TGpsDatum * wd, nmea_data * rd, int weekidx, int timeidx, int leapidx ) { uint32_t secs; uint16_t week, leap = 0; l_fp fofs; int rc; UCC * dpw = (UCC*)field_parse(rd, weekidx); UCC * dps = (UCC*)field_parse(rd, timeidx); rc = _parse_u16 (dpw, &dpw, &week, 5) && _parse_eof (dpw, &dpw) && _parse_u32 (dps, &dps, &secs, 9) && _parse_frac(dps, &dps, &fofs) && _parse_eof (dps, &dps) && (secs < 7*SECSPERDAY); if (rc && leapidx > 0) { UCC * dpl = (UCC*)field_parse(rd, leapidx); rc = _parse_u16 (dpl, &dpl, &leap, 5) && _parse_eof (dpl, &dpl); } if (rc) { fofs.l_ui -= leap; *wd = gpscal_from_gpsweek(week, secs, fofs); } else { DPRINTF(1, ("nmea: parse_gpsw: invalid weektime spec\n")); } return rc; } #ifdef HAVE_PPSAPI static double tabsdiffd( l_fp t1, l_fp t2 ) { double dd; L_SUB(&t1, &t2); LFPTOD(&t1, dd); return fabs(dd); } #endif /* HAVE_PPSAPI */ /* * =================================================================== * * NMEAD support * * original nmead support added by Jon Miner (cp_n18@yahoo.com) * * See http://home.hiwaay.net/~taylorc/gps/nmea-server/ * for information about nmead * * To use this, you need to create a link from /dev/gpsX to * the server:port where nmead is running. Something like this: * * ln -s server:port /dev/gps1 * * Split into separate function by Juergen Perlinger * (perlinger-at-ntp-dot-org) * * =================================================================== */ static int nmead_open( const char * device ) { int fd = -1; /* result file descriptor */ # ifdef HAVE_READLINK char host[80]; /* link target buffer */ char * port; /* port name or number */ int rc; /* result code (several)*/ int sh; /* socket handle */ struct addrinfo ai_hint; /* resolution hint */ struct addrinfo *ai_list; /* resolution result */ struct addrinfo *ai; /* result scan ptr */ fd = -1; /* try to read as link, make sure no overflow occurs */ rc = readlink(device, host, sizeof(host)); if ((size_t)rc >= sizeof(host)) return fd; /* error / overflow / truncation */ host[rc] = '\0'; /* readlink does not place NUL */ /* get port */ port = strchr(host, ':'); if (!port) return fd; /* not 'host:port' syntax ? */ *port++ = '\0'; /* put in separator */ /* get address infos and try to open socket * * This getaddrinfo() is naughty in ntpd's nonblocking main * thread, but you have to go out of your wary to use this code * and typically the blocking is at startup where its impact is * reduced. The same holds for the 'connect()', as it is * blocking, too... */ ZERO(ai_hint); ai_hint.ai_protocol = IPPROTO_TCP; ai_hint.ai_socktype = SOCK_STREAM; if (getaddrinfo(host, port, &ai_hint, &ai_list)) return fd; for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) { sh = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol); if (INVALID_SOCKET == sh) continue; rc = connect(sh, ai->ai_addr, ai->ai_addrlen); if (-1 != rc) fd = sh; else close(sh); } freeaddrinfo(ai_list); if (fd != -1) make_socket_nonblocking(fd); # else fd = -1; # endif return fd; } #else NONEMPTY_TRANSLATION_UNIT #endif /* REFCLOCK && CLOCK_NMEA */