/* * ntp_calendar.c - calendar and helper functions * * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project. * The contents of 'html/copyright.html' apply. * * -------------------------------------------------------------------- * Some notes on the implementation: * * Calendar algorithms thrive on the division operation, which is one of * the slowest numerical operations in any CPU. What saves us here from * abysmal performance is the fact that all divisions are divisions by * constant numbers, and most compilers can do this by a multiplication * operation. But this might not work when using the div/ldiv/lldiv * function family, because many compilers are not able to do inline * expansion of the code with following optimisation for the * constant-divider case. * * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which * are inherently target dependent. Nothing that could not be cured with * autoconf, but still a mess... * * Furthermore, we need floor division in many places. C either leaves * the division behaviour undefined (< C99) or demands truncation to * zero (>= C99), so additional steps are required to make sure the * algorithms work. The {l,ll}div function family is requested to * truncate towards zero, which is also the wrong direction for our * purpose. * * For all this, all divisions by constant are coded manually, even when * there is a joined div/mod operation: The optimiser should sort that * out, if possible. Most of the calculations are done with unsigned * types, explicitely using two's complement arithmetics where * necessary. This minimises the dependecies to compiler and target, * while still giving reasonable to good performance. * * The implementation uses a few tricks that exploit properties of the * two's complement: Floor division on negative dividents can be * executed by using the one's complement of the divident. One's * complement can be easily created using XOR and a mask. * * Finally, check for overflow conditions is minimal. There are only two * calculation steps in the whole calendar that potentially suffer from * an internal overflow, and these are coded in a way that avoids * it. All other functions do not suffer from internal overflow and * simply return the result truncated to 32 bits. */ #include #include #include "ntp_types.h" #include "ntp_calendar.h" #include "ntp_stdlib.h" #include "ntp_fp.h" #include "ntp_unixtime.h" #include "ntpd.h" #include "lib_strbuf.h" /* For now, let's take the conservative approach: if the target property * macros are not defined, check a few well-known compiler/architecture * settings. Default is to assume that the representation of signed * integers is unknown and shift-arithmetic-right is not available. */ #ifndef TARGET_HAS_2CPL # if defined(__GNUC__) # if defined(__i386__) || defined(__x86_64__) || defined(__arm__) # define TARGET_HAS_2CPL 1 # else # define TARGET_HAS_2CPL 0 # endif # elif defined(_MSC_VER) # if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) # define TARGET_HAS_2CPL 1 # else # define TARGET_HAS_2CPL 0 # endif # else # define TARGET_HAS_2CPL 0 # endif #endif #ifndef TARGET_HAS_SAR # define TARGET_HAS_SAR 0 #endif #if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX) # define HAVE_64BITREGS #endif /* *--------------------------------------------------------------------- * replacing the 'time()' function *--------------------------------------------------------------------- */ static systime_func_ptr systime_func = &time; static inline time_t now(void); systime_func_ptr ntpcal_set_timefunc( systime_func_ptr nfunc ) { systime_func_ptr res; res = systime_func; if (NULL == nfunc) nfunc = &time; systime_func = nfunc; return res; } static inline time_t now(void) { return (*systime_func)(NULL); } /* *--------------------------------------------------------------------- * Get sign extension mask and unsigned 2cpl rep for a signed integer *--------------------------------------------------------------------- */ static inline uint32_t int32_sflag( const int32_t v) { # if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4 /* Let's assume that shift is the fastest way to get the sign * extension of of a signed integer. This might not always be * true, though -- On 8bit CPUs or machines without barrel * shifter this will kill the performance. So we make sure * we do this only if 'int' has at least 4 bytes. */ return (uint32_t)(v >> 31); # else /* This should be a rather generic approach for getting a sign * extension mask... */ return UINT32_C(0) - (uint32_t)(v < 0); # endif } static inline int32_t uint32_2cpl_to_int32( const uint32_t vu) { int32_t v; # if TARGET_HAS_2CPL /* Just copy through the 32 bits from the unsigned value if * we're on a two's complement target. */ v = (int32_t)vu; # else /* Convert to signed integer, making sure signed integer * overflow cannot happen. Again, the optimiser might or might * not find out that this is just a copy of 32 bits on a target * with two's complement representation for signed integers. */ if (vu > INT32_MAX) v = -(int32_t)(~vu) - 1; else v = (int32_t)vu; # endif return v; } /* *--------------------------------------------------------------------- * Convert between 'time_t' and 'vint64' *--------------------------------------------------------------------- */ vint64 time_to_vint64( const time_t * ptt ) { vint64 res; time_t tt; tt = *ptt; # if SIZEOF_TIME_T <= 4 res.D_s.hi = 0; if (tt < 0) { res.D_s.lo = (uint32_t)-tt; M_NEG(res.D_s.hi, res.D_s.lo); } else { res.D_s.lo = (uint32_t)tt; } # elif defined(HAVE_INT64) res.q_s = tt; # else /* * shifting negative signed quantities is compiler-dependent, so * we better avoid it and do it all manually. And shifting more * than the width of a quantity is undefined. Also a don't do! */ if (tt < 0) { tt = -tt; res.D_s.lo = (uint32_t)tt; res.D_s.hi = (uint32_t)(tt >> 32); M_NEG(res.D_s.hi, res.D_s.lo); } else { res.D_s.lo = (uint32_t)tt; res.D_s.hi = (uint32_t)(tt >> 32); } # endif return res; } time_t vint64_to_time( const vint64 *tv ) { time_t res; # if SIZEOF_TIME_T <= 4 res = (time_t)tv->D_s.lo; # elif defined(HAVE_INT64) res = (time_t)tv->q_s; # else res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo; # endif return res; } /* *--------------------------------------------------------------------- * Get the build date & time *--------------------------------------------------------------------- */ int ntpcal_get_build_date( struct calendar * jd ) { /* The C standard tells us the format of '__DATE__': * * __DATE__ The date of translation of the preprocessing * translation unit: a character string literal of the form "Mmm * dd yyyy", where the names of the months are the same as those * generated by the asctime function, and the first character of * dd is a space character if the value is less than 10. If the * date of translation is not available, an * implementation-defined valid date shall be supplied. * * __TIME__ The time of translation of the preprocessing * translation unit: a character string literal of the form * "hh:mm:ss" as in the time generated by the asctime * function. If the time of translation is not available, an * implementation-defined valid time shall be supplied. * * Note that MSVC declares DATE and TIME to be in the local time * zone, while neither the C standard nor the GCC docs make any * statement about this. As a result, we may be +/-12hrs off * UTC. But for practical purposes, this should not be a * problem. * */ # ifdef MKREPRO_DATE static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE; # else static const char build[] = __TIME__ "/" __DATE__; # endif static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec"; char monstr[4]; const char * cp; unsigned short hour, minute, second, day, year; /* Note: The above quantities are used for sscanf 'hu' format, * so using 'uint16_t' is contra-indicated! */ # ifdef DEBUG static int ignore = 0; # endif ZERO(*jd); jd->year = 1970; jd->month = 1; jd->monthday = 1; # ifdef DEBUG /* check environment if build date should be ignored */ if (0 == ignore) { const char * envstr; envstr = getenv("NTPD_IGNORE_BUILD_DATE"); ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes"))); } if (ignore > 1) return FALSE; # endif if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu", &hour, &minute, &second, monstr, &day, &year)) { cp = strstr(mlist, monstr); if (NULL != cp) { jd->year = year; jd->month = (uint8_t)((cp - mlist) / 3 + 1); jd->monthday = (uint8_t)day; jd->hour = (uint8_t)hour; jd->minute = (uint8_t)minute; jd->second = (uint8_t)second; return TRUE; } } return FALSE; } /* *--------------------------------------------------------------------- * basic calendar stuff *--------------------------------------------------------------------- */ /* * Some notes on the terminology: * * We use the proleptic Gregorian calendar, which is the Gregorian * calendar extended in both directions ad infinitum. This totally * disregards the fact that this calendar was invented in 1582, and * was adopted at various dates over the world; sometimes even after * the start of the NTP epoch. * * Normally date parts are given as current cycles, while time parts * are given as elapsed cycles: * * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month, * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed. * * The basic calculations for this calendar implementation deal with * ELAPSED date units, which is the number of full years, full months * and full days before a date: 1970-01-01 would be (1969, 0, 0) in * that notation. * * To ease the numeric computations, month and day values outside the * normal range are acceptable: 2001-03-00 will be treated as the day * before 2001-03-01, 2000-13-32 will give the same result as * 2001-02-01 and so on. * * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die' * (day number). This is the number of days elapsed since 0000-12-31 * in the proleptic Gregorian calendar. The begin of the Christian Era * (0001-01-01) is RD(1). */ /* * ==================================================================== * * General algorithmic stuff * * ==================================================================== */ /* *--------------------------------------------------------------------- * fast modulo 7 operations (floor/mathematical convention) *--------------------------------------------------------------------- */ int u32mod7( uint32_t x ) { /* This is a combination of tricks from "Hacker's Delight" with * some modifications, like a multiplication that rounds up to * drop the final adjustment stage. * * Do a partial reduction by digit sum to keep the value in the * range permitted for the mul/shift stage. There are several * possible and absolutely equivalent shift/mask combinations; * this one is ARM-friendly because of a mask that fits into 16 * bit. */ x = (x >> 15) + (x & UINT32_C(0x7FFF)); /* Take reminder as (mod 8) by mul/shift. Since the multiplier * was calculated using ceil() instead of floor(), it skips the * value '7' properly. * M <- ceil(ldexp(8/7, 29)) */ return (int)((x * UINT32_C(0x24924925)) >> 29); } int i32mod7( int32_t x ) { /* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative * numbers to map them into the postive range. Only the term '-4' * survives, obviously. */ uint32_t ux = (uint32_t)x; return u32mod7((x < 0) ? (ux - 4u) : ux); } uint32_t i32fmod( int32_t x, uint32_t d ) { uint32_t ux = (uint32_t)x; uint32_t sf = UINT32_C(0) - (x < 0); ux = (sf ^ ux ) % d; return (d & sf) + (sf ^ ux); } /* *--------------------------------------------------------------------- * Do a periodic extension of 'value' around 'pivot' with a period of * 'cycle'. * * The result 'res' is a number that holds to the following properties: * * 1) res MOD cycle == value MOD cycle * 2) pivot <= res < pivot + cycle * (replace />= for negative cycles) * * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which * is not the same as the '%' operator in C: C requires division to be * a truncated division, where remainder and dividend have the same * sign if the remainder is not zero, whereas floor division requires * divider and modulus to have the same sign for a non-zero modulus. * * This function has some useful applications: * * + let Y be a calendar year and V a truncated 2-digit year: then * periodic_extend(Y-50, V, 100) * is the closest expansion of the truncated year with respect to * the full year, that is a 4-digit year with a difference of less * than 50 years to the year Y. ("century unfolding") * * + let T be a UN*X time stamp and V be seconds-of-day: then * perodic_extend(T-43200, V, 86400) * is a time stamp that has the same seconds-of-day as the input * value, with an absolute difference to T of <= 12hrs. ("day * unfolding") * * + Wherever you have a truncated periodic value and a non-truncated * base value and you want to match them somehow... * * Basically, the function delivers 'pivot + (value - pivot) % cycle', * but the implementation takes some pains to avoid internal signed * integer overflows in the '(value - pivot) % cycle' part and adheres * to the floor division convention. * * If 64bit scalars where available on all intended platforms, writing a * version that uses 64 bit ops would be easy; writing a general * division routine for 64bit ops on a platform that can only do * 32/16bit divisions and is still performant is a bit more * difficult. Since most usecases can be coded in a way that does only * require the 32bit version a 64bit version is NOT provided here. *--------------------------------------------------------------------- */ int32_t ntpcal_periodic_extend( int32_t pivot, int32_t value, int32_t cycle ) { /* Implement a 4-quadrant modulus calculation by 2 2-quadrant * branches, one for positive and one for negative dividers. * Everything else can be handled by bit level logic and * conditional one's complement arithmetic. By convention, we * assume * * x % b == 0 if |b| < 2 * * that is, we don't actually divide for cycles of -1,0,1 and * return the pivot value in that case. */ uint32_t uv = (uint32_t)value; uint32_t up = (uint32_t)pivot; uint32_t uc, sf; if (cycle > 1) { uc = (uint32_t)cycle; sf = UINT32_C(0) - (value < pivot); uv = sf ^ (uv - up); uv %= uc; pivot += (uc & sf) + (sf ^ uv); } else if (cycle < -1) { uc = ~(uint32_t)cycle + 1; sf = UINT32_C(0) - (value > pivot); uv = sf ^ (up - uv); uv %= uc; pivot -= (uc & sf) + (sf ^ uv); } return pivot; } /*--------------------------------------------------------------------- * Note to the casual reader * * In the next two functions you will find (or would have found...) * the expression * * res.Q_s -= 0x80000000; * * There was some ruckus about a possible programming error due to * integer overflow and sign propagation. * * This assumption is based on a lack of understanding of the C * standard. (Though this is admittedly not one of the most 'natural' * aspects of the 'C' language and easily to get wrong.) * * see * http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf * "ISO/IEC 9899:201x Committee Draft — April 12, 2011" * 6.4.4.1 Integer constants, clause 5 * * why there is no sign extension/overflow problem here. * * But to ease the minds of the doubtful, I added back the 'u' qualifiers * that somehow got lost over the last years. */ /* *--------------------------------------------------------------------- * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X * scale with proper epoch unfolding around a given pivot or the current * system time. This function happily accepts negative pivot values as * timestamps before 1970-01-01, so be aware of possible trouble on * platforms with 32bit 'time_t'! * * This is also a periodic extension, but since the cycle is 2^32 and * the shift is 2^31, we can do some *very* fast math without explicit * divisions. *--------------------------------------------------------------------- */ vint64 ntpcal_ntp_to_time( uint32_t ntp, const time_t * pivot ) { vint64 res; # if defined(HAVE_INT64) res.q_s = (pivot != NULL) ? *pivot : now(); res.Q_s -= 0x80000000u; /* unshift of half range */ ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */ ntp -= res.D_s.lo; /* cycle difference */ res.Q_s += (uint64_t)ntp; /* get expanded time */ # else /* no 64bit scalars */ time_t tmp; tmp = (pivot != NULL) ? *pivot : now(); res = time_to_vint64(&tmp); M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u); ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */ ntp -= res.D_s.lo; /* cycle difference */ M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp); # endif /* no 64bit scalars */ return res; } /* *--------------------------------------------------------------------- * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP * scale with proper epoch unfolding around a given pivot or the current * system time. * * Note: The pivot must be given in the UN*X time domain! * * This is also a periodic extension, but since the cycle is 2^32 and * the shift is 2^31, we can do some *very* fast math without explicit * divisions. *--------------------------------------------------------------------- */ vint64 ntpcal_ntp_to_ntp( uint32_t ntp, const time_t *pivot ) { vint64 res; # if defined(HAVE_INT64) res.q_s = (pivot) ? *pivot : now(); res.Q_s -= 0x80000000u; /* unshift of half range */ res.Q_s += (uint32_t)JAN_1970; /* warp into NTP domain */ ntp -= res.D_s.lo; /* cycle difference */ res.Q_s += (uint64_t)ntp; /* get expanded time */ # else /* no 64bit scalars */ time_t tmp; tmp = (pivot) ? *pivot : now(); res = time_to_vint64(&tmp); M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u); M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */ ntp -= res.D_s.lo; /* cycle difference */ M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp); # endif /* no 64bit scalars */ return res; } /* * ==================================================================== * * Splitting values to composite entities * * ==================================================================== */ /* *--------------------------------------------------------------------- * Split a 64bit seconds value into elapsed days in 'res.hi' and * elapsed seconds since midnight in 'res.lo' using explicit floor * division. This function happily accepts negative time values as * timestamps before the respective epoch start. *--------------------------------------------------------------------- */ ntpcal_split ntpcal_daysplit( const vint64 *ts ) { ntpcal_split res; uint32_t Q, R; # if defined(HAVE_64BITREGS) /* Assume we have 64bit registers an can do a divison by * constant reasonably fast using the one's complement trick.. */ uint64_t sf64 = (uint64_t)-(ts->q_s < 0); Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY)); R = (uint32_t)(ts->Q_s - Q * SECSPERDAY); # elif defined(UINT64_MAX) && !defined(__arm__) /* We rely on the compiler to do efficient 64bit divisions as * good as possible. Which might or might not be true. At least * for ARM CPUs, the sum-by-digit code in the next section is * faster for many compilers. (This might change over time, but * the 64bit-by-32bit division will never outperform the exact * division by a substantial factor....) */ if (ts->q_s < 0) Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY); else Q = (uint32_t)( ts->Q_s / SECSPERDAY); R = ts->D_s.lo - Q * SECSPERDAY; # else /* We don't have 64bit regs. That hurts a bit. * * Here we use a mean trick to get away with just one explicit * modulo operation and pure 32bit ops. * * Remember: 86400 <--> 128 * 675 * * So we discard the lowest 7 bit and do an exact division by * 675, modulo 2**32. * * First we shift out the lower 7 bits. * * Then we use a digit-wise pseudo-reduction, where a 'digit' is * actually a 16-bit group. This is followed by a full reduction * with a 'true' division step. This yields the modulus of the * full 64bit value. The sign bit gets some extra treatment. * * Then we decrement the lower limb by that modulus, so it is * exactly divisible by 675. [*] * * Then we multiply with the modular inverse of 675 (mod 2**32) * and voila, we have the result. * * Special Thanks to Henry S. Warren and his "Hacker's delight" * for giving that idea. * * (Note[*]: that's not the full truth. We would have to * subtract the modulus from the full 64 bit number to get a * number that is divisible by 675. But since we use the * multiplicative inverse (mod 2**32) there's no reason to carry * the subtraction into the upper bits!) */ uint32_t al = ts->D_s.lo; uint32_t ah = ts->D_s.hi; /* shift out the lower 7 bits, smash sign bit */ al = (al >> 7) | (ah << 25); ah = (ah >> 7) & 0x00FFFFFFu; R = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */ R += (al & 0xFFFF); R += (al >> 16 ) * 61u; /* 2**16 % 675 */ R += (ah & 0xFFFF) * 346u; /* 2**32 % 675 */ R += (ah >> 16 ) * 181u; /* 2**48 % 675 */ R %= 675u; /* final reduction */ Q = (al - R) * 0x2D21C10Bu; /* modinv(675, 2**32) */ R = (R << 7) | (ts->d_s.lo & 0x07F); # endif res.hi = uint32_2cpl_to_int32(Q); res.lo = R; return res; } /* *--------------------------------------------------------------------- * Split a 64bit seconds value into elapsed weeks in 'res.hi' and * elapsed seconds since week start in 'res.lo' using explicit floor * division. This function happily accepts negative time values as * timestamps before the respective epoch start. *--------------------------------------------------------------------- */ ntpcal_split ntpcal_weeksplit( const vint64 *ts ) { ntpcal_split res; uint32_t Q, R; /* This is a very close relative to the day split function; for * details, see there! */ # if defined(HAVE_64BITREGS) uint64_t sf64 = (uint64_t)-(ts->q_s < 0); Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK)); R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK); # elif defined(UINT64_MAX) && !defined(__arm__) if (ts->q_s < 0) Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK); else Q = (uint32_t)( ts->Q_s / SECSPERWEEK); R = ts->D_s.lo - Q * SECSPERWEEK; # else /* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */ uint32_t al = ts->D_s.lo; uint32_t ah = ts->D_s.hi; al = (al >> 7) | (ah << 25); ah = (ah >> 7) & 0x00FFFFFF; R = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */ R += (al & 0xFFFF); R += (al >> 16 ) * 4111u; /* 2**16 % 4725 */ R += (ah & 0xFFFF) * 3721u; /* 2**32 % 4725 */ R += (ah >> 16 ) * 2206u; /* 2**48 % 4725 */ R %= 4725u; /* final reduction */ Q = (al - R) * 0x98BBADDDu; /* modinv(4725, 2**32) */ R = (R << 7) | (ts->d_s.lo & 0x07F); # endif res.hi = uint32_2cpl_to_int32(Q); res.lo = R; return res; } /* *--------------------------------------------------------------------- * Split a 32bit seconds value into h/m/s and excessive days. This * function happily accepts negative time values as timestamps before * midnight. *--------------------------------------------------------------------- */ static int32_t priv_timesplit( int32_t split[3], int32_t ts ) { /* Do 3 chained floor divisions by positive constants, using the * one's complement trick and factoring out the intermediate XOR * ops to reduce the number of operations. */ uint32_t us, um, uh, ud, sf32; sf32 = int32_sflag(ts); us = (uint32_t)ts; um = (sf32 ^ us) / SECSPERMIN; uh = um / MINSPERHR; ud = uh / HRSPERDAY; um ^= sf32; uh ^= sf32; ud ^= sf32; split[0] = (int32_t)(uh - ud * HRSPERDAY ); split[1] = (int32_t)(um - uh * MINSPERHR ); split[2] = (int32_t)(us - um * SECSPERMIN); return uint32_2cpl_to_int32(ud); } /* *--------------------------------------------------------------------- * Given the number of elapsed days in the calendar era, split this * number into the number of elapsed years in 'res.hi' and the number * of elapsed days of that year in 'res.lo'. * * if 'isleapyear' is not NULL, it will receive an integer that is 0 for * regular years and a non-zero value for leap years. *--------------------------------------------------------------------- */ ntpcal_split ntpcal_split_eradays( int32_t days, int *isleapyear ) { /* Use the fast cycle split algorithm here, to calculate the * centuries and years in a century with one division each. This * reduces the number of division operations to two, but is * susceptible to internal range overflow. We take some extra * steps to avoid the gap. */ ntpcal_split res; int32_t n100, n001; /* calendar year cycles */ uint32_t uday, Q; /* split off centuries first * * We want to execute '(days * 4 + 3) /% 146097' under floor * division rules in the first step. Well, actually we want to * calculate 'floor((days + 0.75) / 36524.25)', but we want to * do it in scaled integer calculation. */ # if defined(HAVE_64BITREGS) /* not too complicated with an intermediate 64bit value */ uint64_t ud64, sf64; ud64 = ((uint64_t)days << 2) | 3u; sf64 = (uint64_t)-(days < 0); Q = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS)); uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS); n100 = uint32_2cpl_to_int32(Q); # else /* '4*days+3' suffers from range overflow when going to the * limits. We solve this by doing an exact division (mod 2^32) * after caclulating the remainder first. * * We start with a partial reduction by digit sums, extracting * the upper bits from the original value before they get lost * by scaling, and do one full division step to get the true * remainder. Then a final multiplication with the * multiplicative inverse of 146097 (mod 2^32) gives us the full * quotient. * * (-2^33) % 146097 --> 130717 : the sign bit value * ( 2^20) % 146097 --> 25897 : the upper digit value * modinv(146097, 2^32) --> 660721233 : the inverse */ uint32_t ux = ((uint32_t)days << 2) | 3; uday = (days < 0) ? 130717u : 0u; /* sign dgt */ uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */ uday += (ux & 0xFFFFFu); /* lo dgt */ uday %= GREGORIAN_CYCLE_DAYS; /* full reduction */ Q = (ux - uday) * 660721233u; /* exact div */ n100 = uint32_2cpl_to_int32(Q); # endif /* Split off years in century -- days >= 0 here, and we're far * away from integer overflow trouble now. */ uday |= 3; n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS; uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS; /* Assemble the year and day in year */ res.hi = n100 * 100 + n001; res.lo = uday / 4u; /* Possibly set the leap year flag */ if (isleapyear) { uint32_t tc = (uint32_t)n100 + 1; uint32_t ty = (uint32_t)n001 + 1; *isleapyear = !(ty & 3) && ((ty != 100) || !(tc & 3)); } return res; } /* *--------------------------------------------------------------------- * Given a number of elapsed days in a year and a leap year indicator, * split the number of elapsed days into the number of elapsed months in * 'res.hi' and the number of elapsed days of that month in 'res.lo'. * * This function will fail and return {-1,-1} if the number of elapsed * days is not in the valid range! *--------------------------------------------------------------------- */ ntpcal_split ntpcal_split_yeardays( int32_t eyd, int isleap ) { /* Use the unshifted-year, February-with-30-days approach here. * Fractional interpolations are used in both directions, with * the smallest power-of-two divider to avoid any true division. */ ntpcal_split res = {-1, -1}; /* convert 'isleap' to number of defective days */ isleap = 1 + !isleap; /* adjust for February of 30 nominal days */ if (eyd >= 61 - isleap) eyd += isleap; /* if in range, convert to months and days in month */ if (eyd >= 0 && eyd < 367) { res.hi = (eyd * 67 + 32) >> 11; res.lo = eyd - ((489 * res.hi + 8) >> 4); } return res; } /* *--------------------------------------------------------------------- * Convert a RD into the date part of a 'struct calendar'. *--------------------------------------------------------------------- */ int ntpcal_rd_to_date( struct calendar *jd, int32_t rd ) { ntpcal_split split; int leapy; u_int ymask; /* Get day-of-week first. It's simply the RD (mod 7)... */ jd->weekday = i32mod7(rd); split = ntpcal_split_eradays(rd - 1, &leapy); /* Get year and day-of-year, with overflow check. If any of the * upper 16 bits is set after shifting to unity-based years, we * will have an overflow when converting to an unsigned 16bit * year. Shifting to the right is OK here, since it does not * matter if the shift is logic or arithmetic. */ split.hi += 1; ymask = 0u - ((split.hi >> 16) == 0); jd->year = (uint16_t)(split.hi & ymask); jd->yearday = (uint16_t)split.lo + 1; /* convert to month and mday */ split = ntpcal_split_yeardays(split.lo, leapy); jd->month = (uint8_t)split.hi + 1; jd->monthday = (uint8_t)split.lo + 1; return ymask ? leapy : -1; } /* *--------------------------------------------------------------------- * Convert a RD into the date part of a 'struct tm'. *--------------------------------------------------------------------- */ int ntpcal_rd_to_tm( struct tm *utm, int32_t rd ) { ntpcal_split split; int leapy; /* get day-of-week first */ utm->tm_wday = i32mod7(rd); /* get year and day-of-year */ split = ntpcal_split_eradays(rd - 1, &leapy); utm->tm_year = split.hi - 1899; utm->tm_yday = split.lo; /* 0-based */ /* convert to month and mday */ split = ntpcal_split_yeardays(split.lo, leapy); utm->tm_mon = split.hi; /* 0-based */ utm->tm_mday = split.lo + 1; /* 1-based */ return leapy; } /* *--------------------------------------------------------------------- * Take a value of seconds since midnight and split it into hhmmss in a * 'struct calendar'. *--------------------------------------------------------------------- */ int32_t ntpcal_daysec_to_date( struct calendar *jd, int32_t sec ) { int32_t days; int ts[3]; days = priv_timesplit(ts, sec); jd->hour = (uint8_t)ts[0]; jd->minute = (uint8_t)ts[1]; jd->second = (uint8_t)ts[2]; return days; } /* *--------------------------------------------------------------------- * Take a value of seconds since midnight and split it into hhmmss in a * 'struct tm'. *--------------------------------------------------------------------- */ int32_t ntpcal_daysec_to_tm( struct tm *utm, int32_t sec ) { int32_t days; int32_t ts[3]; days = priv_timesplit(ts, sec); utm->tm_hour = ts[0]; utm->tm_min = ts[1]; utm->tm_sec = ts[2]; return days; } /* *--------------------------------------------------------------------- * take a split representation for day/second-of-day and day offset * and convert it to a 'struct calendar'. The seconds will be normalised * into the range of a day, and the day will be adjusted accordingly. * * returns >0 if the result is in a leap year, 0 if in a regular * year and <0 if the result did not fit into the calendar struct. *--------------------------------------------------------------------- */ int ntpcal_daysplit_to_date( struct calendar *jd, const ntpcal_split *ds, int32_t dof ) { dof += ntpcal_daysec_to_date(jd, ds->lo); return ntpcal_rd_to_date(jd, ds->hi + dof); } /* *--------------------------------------------------------------------- * take a split representation for day/second-of-day and day offset * and convert it to a 'struct tm'. The seconds will be normalised * into the range of a day, and the day will be adjusted accordingly. * * returns 1 if the result is in a leap year and zero if in a regular * year. *--------------------------------------------------------------------- */ int ntpcal_daysplit_to_tm( struct tm *utm, const ntpcal_split *ds , int32_t dof ) { dof += ntpcal_daysec_to_tm(utm, ds->lo); return ntpcal_rd_to_tm(utm, ds->hi + dof); } /* *--------------------------------------------------------------------- * Take a UN*X time and convert to a calendar structure. *--------------------------------------------------------------------- */ int ntpcal_time_to_date( struct calendar *jd, const vint64 *ts ) { ntpcal_split ds; ds = ntpcal_daysplit(ts); ds.hi += ntpcal_daysec_to_date(jd, ds.lo); ds.hi += DAY_UNIX_STARTS; return ntpcal_rd_to_date(jd, ds.hi); } /* * ==================================================================== * * merging composite entities * * ==================================================================== */ #if !defined(HAVE_INT64) /* multiplication helper. Seconds in days and weeks are multiples of 128, * and without that factor fit well into 16 bit. So a multiplication * of 32bit by 16bit and some shifting can be used on pure 32bit machines * with compilers that do not support 64bit integers. * * Calculate ( hi * mul * 128 ) + lo */ static vint64 _dwjoin( uint16_t mul, int32_t hi, int32_t lo ) { vint64 res; uint32_t p1, p2, sf; /* get sign flag and absolute value of 'hi' in p1 */ sf = (uint32_t)-(hi < 0); p1 = ((uint32_t)hi + sf) ^ sf; /* assemble major units: res <- |hi| * mul */ res.D_s.lo = (p1 & 0xFFFF) * mul; res.D_s.hi = 0; p1 = (p1 >> 16) * mul; p2 = p1 >> 16; p1 = p1 << 16; M_ADD(res.D_s.hi, res.D_s.lo, p2, p1); /* mul by 128, using shift: res <-- res << 7 */ res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25); res.D_s.lo = (res.D_s.lo << 7); /* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */ M_ADD(res.D_s.hi, res.D_s.lo, sf, sf); res.D_s.lo ^= sf; res.D_s.hi ^= sf; /* properly add seconds: res <-- res + [sx(lo)|lo] */ p2 = (uint32_t)-(lo < 0); p1 = (uint32_t)lo; M_ADD(res.D_s.hi, res.D_s.lo, p2, p1); return res; } #endif /* *--------------------------------------------------------------------- * Merge a number of days and a number of seconds into seconds, * expressed in 64 bits to avoid overflow. *--------------------------------------------------------------------- */ vint64 ntpcal_dayjoin( int32_t days, int32_t secs ) { vint64 res; # if defined(HAVE_INT64) res.q_s = days; res.q_s *= SECSPERDAY; res.q_s += secs; # else res = _dwjoin(675, days, secs); # endif return res; } /* *--------------------------------------------------------------------- * Merge a number of weeks and a number of seconds into seconds, * expressed in 64 bits to avoid overflow. *--------------------------------------------------------------------- */ vint64 ntpcal_weekjoin( int32_t week, int32_t secs ) { vint64 res; # if defined(HAVE_INT64) res.q_s = week; res.q_s *= SECSPERWEEK; res.q_s += secs; # else res = _dwjoin(4725, week, secs); # endif return res; } /* *--------------------------------------------------------------------- * get leap years since epoch in elapsed years *--------------------------------------------------------------------- */ int32_t ntpcal_leapyears_in_years( int32_t years ) { /* We use the in-out-in algorithm here, using the one's * complement division trick for negative numbers. The chained * division sequence by 4/25/4 gives the compiler the chance to * get away with only one true division and doing shifts otherwise. */ uint32_t sf32, sum, uyear; sf32 = int32_sflag(years); uyear = (uint32_t)years; uyear ^= sf32; sum = (uyear /= 4u); /* 4yr rule --> IN */ sum -= (uyear /= 25u); /* 100yr rule --> OUT */ sum += (uyear /= 4u); /* 400yr rule --> IN */ /* Thanks to the alternation of IN/OUT/IN we can do the sum * directly and have a single one's complement operation * here. (Only if the years are negative, of course.) Otherwise * the one's complement would have to be done when * adding/subtracting the terms. */ return uint32_2cpl_to_int32(sf32 ^ sum); } /* *--------------------------------------------------------------------- * Convert elapsed years in Era into elapsed days in Era. *--------------------------------------------------------------------- */ int32_t ntpcal_days_in_years( int32_t years ) { return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years); } /* *--------------------------------------------------------------------- * Convert a number of elapsed month in a year into elapsed days in year. * * The month will be normalized, and 'res.hi' will contain the * excessive years that must be considered when converting the years, * while 'res.lo' will contain the number of elapsed days since start * of the year. * * This code uses the shifted-month-approach to convert month to days, * because then there is no need to have explicit leap year * information. The slight disadvantage is that for most month values * the result is a negative value, and the year excess is one; the * conversion is then simply based on the start of the following year. *--------------------------------------------------------------------- */ ntpcal_split ntpcal_days_in_months( int32_t m ) { ntpcal_split res; /* Add ten months with proper year adjustment. */ if (m < 2) { res.lo = m + 10; res.hi = 0; } else { res.lo = m - 2; res.hi = 1; } /* Possibly normalise by floor division. This does not hapen for * input in normal range. */ if (res.lo < 0 || res.lo >= 12) { uint32_t mu, Q, sf32; sf32 = int32_sflag(res.lo); mu = (uint32_t)res.lo; Q = sf32 ^ ((sf32 ^ mu) / 12u); res.hi += uint32_2cpl_to_int32(Q); res.lo = mu - Q * 12u; } /* Get cummulated days in year with unshift. Use the fractional * interpolation with smallest possible power of two in the * divider. */ res.lo = ((res.lo * 979 + 16) >> 5) - 306; return res; } /* *--------------------------------------------------------------------- * Convert ELAPSED years/months/days of gregorian calendar to elapsed * days in Gregorian epoch. * * If you want to convert years and days-of-year, just give a month of * zero. *--------------------------------------------------------------------- */ int32_t ntpcal_edate_to_eradays( int32_t years, int32_t mons, int32_t mdays ) { ntpcal_split tmp; int32_t res; if (mons) { tmp = ntpcal_days_in_months(mons); res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo; } else res = ntpcal_days_in_years(years); res += mdays; return res; } /* *--------------------------------------------------------------------- * Convert ELAPSED years/months/days of gregorian calendar to elapsed * days in year. * * Note: This will give the true difference to the start of the given * year, even if months & days are off-scale. *--------------------------------------------------------------------- */ int32_t ntpcal_edate_to_yeardays( int32_t years, int32_t mons, int32_t mdays ) { ntpcal_split tmp; if (0 <= mons && mons < 12) { if (mons >= 2) mdays -= 2 - is_leapyear(years+1); mdays += (489 * mons + 8) >> 4; } else { tmp = ntpcal_days_in_months(mons); mdays += tmp.lo + ntpcal_days_in_years(years + tmp.hi) - ntpcal_days_in_years(years); } return mdays; } /* *--------------------------------------------------------------------- * Convert elapsed days and the hour/minute/second information into * total seconds. * * If 'isvalid' is not NULL, do a range check on the time specification * and tell if the time input is in the normal range, permitting for a * single leapsecond. *--------------------------------------------------------------------- */ int32_t ntpcal_etime_to_seconds( int32_t hours, int32_t minutes, int32_t seconds ) { int32_t res; res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds; return res; } /* *--------------------------------------------------------------------- * Convert the date part of a 'struct tm' (that is, year, month, * day-of-month) into the RD of that day. *--------------------------------------------------------------------- */ int32_t ntpcal_tm_to_rd( const struct tm *utm ) { return ntpcal_edate_to_eradays(utm->tm_year + 1899, utm->tm_mon, utm->tm_mday - 1) + 1; } /* *--------------------------------------------------------------------- * Convert the date part of a 'struct calendar' (that is, year, month, * day-of-month) into the RD of that day. *--------------------------------------------------------------------- */ int32_t ntpcal_date_to_rd( const struct calendar *jd ) { return ntpcal_edate_to_eradays((int32_t)jd->year - 1, (int32_t)jd->month - 1, (int32_t)jd->monthday - 1) + 1; } /* *--------------------------------------------------------------------- * convert a year number to rata die of year start *--------------------------------------------------------------------- */ int32_t ntpcal_year_to_ystart( int32_t year ) { return ntpcal_days_in_years(year - 1) + 1; } /* *--------------------------------------------------------------------- * For a given RD, get the RD of the associated year start, * that is, the RD of the last January,1st on or before that day. *--------------------------------------------------------------------- */ int32_t ntpcal_rd_to_ystart( int32_t rd ) { /* * Rather simple exercise: split the day number into elapsed * years and elapsed days, then remove the elapsed days from the * input value. Nice'n sweet... */ return rd - ntpcal_split_eradays(rd - 1, NULL).lo; } /* *--------------------------------------------------------------------- * For a given RD, get the RD of the associated month start. *--------------------------------------------------------------------- */ int32_t ntpcal_rd_to_mstart( int32_t rd ) { ntpcal_split split; int leaps; split = ntpcal_split_eradays(rd - 1, &leaps); split = ntpcal_split_yeardays(split.lo, leaps); return rd - split.lo; } /* *--------------------------------------------------------------------- * take a 'struct calendar' and get the seconds-of-day from it. *--------------------------------------------------------------------- */ int32_t ntpcal_date_to_daysec( const struct calendar *jd ) { return ntpcal_etime_to_seconds(jd->hour, jd->minute, jd->second); } /* *--------------------------------------------------------------------- * take a 'struct tm' and get the seconds-of-day from it. *--------------------------------------------------------------------- */ int32_t ntpcal_tm_to_daysec( const struct tm *utm ) { return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min, utm->tm_sec); } /* *--------------------------------------------------------------------- * take a 'struct calendar' and convert it to a 'time_t' *--------------------------------------------------------------------- */ time_t ntpcal_date_to_time( const struct calendar *jd ) { vint64 join; int32_t days, secs; days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS; secs = ntpcal_date_to_daysec(jd); join = ntpcal_dayjoin(days, secs); return vint64_to_time(&join); } /* * ==================================================================== * * extended and unchecked variants of caljulian/caltontp * * ==================================================================== */ int ntpcal_ntp64_to_date( struct calendar *jd, const vint64 *ntp ) { ntpcal_split ds; ds = ntpcal_daysplit(ntp); ds.hi += ntpcal_daysec_to_date(jd, ds.lo); return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS); } int ntpcal_ntp_to_date( struct calendar *jd, uint32_t ntp, const time_t *piv ) { vint64 ntp64; /* * Unfold ntp time around current time into NTP domain. Split * into days and seconds, shift days into CE domain and * process the parts. */ ntp64 = ntpcal_ntp_to_ntp(ntp, piv); return ntpcal_ntp64_to_date(jd, &ntp64); } vint64 ntpcal_date_to_ntp64( const struct calendar *jd ) { /* * Convert date to NTP. Ignore yearday, use d/m/y only. */ return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS, ntpcal_date_to_daysec(jd)); } uint32_t ntpcal_date_to_ntp( const struct calendar *jd ) { /* * Get lower half of 64bit NTP timestamp from date/time. */ return ntpcal_date_to_ntp64(jd).d_s.lo; } /* * ==================================================================== * * day-of-week calculations * * ==================================================================== */ /* * Given a RataDie and a day-of-week, calculate a RDN that is reater-than, * greater-or equal, closest, less-or-equal or less-than the given RDN * and denotes the given day-of-week */ int32_t ntpcal_weekday_gt( int32_t rdn, int32_t dow ) { return ntpcal_periodic_extend(rdn+1, dow, 7); } int32_t ntpcal_weekday_ge( int32_t rdn, int32_t dow ) { return ntpcal_periodic_extend(rdn, dow, 7); } int32_t ntpcal_weekday_close( int32_t rdn, int32_t dow ) { return ntpcal_periodic_extend(rdn-3, dow, 7); } int32_t ntpcal_weekday_le( int32_t rdn, int32_t dow ) { return ntpcal_periodic_extend(rdn, dow, -7); } int32_t ntpcal_weekday_lt( int32_t rdn, int32_t dow ) { return ntpcal_periodic_extend(rdn-1, dow, -7); } /* * ==================================================================== * * ISO week-calendar conversions * * The ISO8601 calendar defines a calendar of years, weeks and weekdays. * It is related to the Gregorian calendar, and a ISO year starts at the * Monday closest to Jan,1st of the corresponding Gregorian year. A ISO * calendar year has always 52 or 53 weeks, and like the Grogrian * calendar the ISO8601 calendar repeats itself every 400 years, or * 146097 days, or 20871 weeks. * * While it is possible to write ISO calendar functions based on the * Gregorian calendar functions, the following implementation takes a * different approach, based directly on years and weeks. * * Analysis of the tabulated data shows that it is not possible to * interpolate from years to weeks over a full 400 year range; cyclic * shifts over 400 years do not provide a solution here. But it *is* * possible to interpolate over every single century of the 400-year * cycle. (The centennial leap year rule seems to be the culprit here.) * * It can be shown that a conversion from years to weeks can be done * using a linear transformation of the form * * w = floor( y * a + b ) * * where the slope a must hold to * * 52.1780821918 <= a < 52.1791044776 * * and b must be chosen according to the selected slope and the number * of the century in a 400-year period. * * The inverse calculation can also be done in this way. Careful scaling * provides an unlimited set of integer coefficients a,k,b that enable * us to write the calulation in the form * * w = (y * a + b ) / k * y = (w * a' + b') / k' * * In this implementation the values of k and k' are chosen to be the * smallest possible powers of two, so the division can be implemented * as shifts if the optimiser chooses to do so. * * ==================================================================== */ /* * Given a number of elapsed (ISO-)years since the begin of the * christian era, return the number of elapsed weeks corresponding to * the number of years. */ int32_t isocal_weeks_in_years( int32_t years ) { /* * use: w = (y * 53431 + b[c]) / 1024 as interpolation */ static const uint16_t bctab[4] = { 157, 449, 597, 889 }; int32_t cs, cw; uint32_t cc, ci, yu, sf32; sf32 = int32_sflag(years); yu = (uint32_t)years; /* split off centuries, using floor division */ cc = sf32 ^ ((sf32 ^ yu) / 100u); yu -= cc * 100u; /* calculate century cycles shift and cycle index: * Assuming a century is 5217 weeks, we have to add a cycle * shift that is 3 for every 4 centuries, because 3 of the four * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual * correction, and the second century is the defective one. * * Needs floor division by 4, which is done with masking and * shifting. */ ci = cc * 3u + 1; cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2)); ci = ci & 3u; /* Get weeks in century. Can use plain division here as all ops * are >= 0, and let the compiler sort out the possible * optimisations. */ cw = (yu * 53431u + bctab[ci]) / 1024u; return uint32_2cpl_to_int32(cc) * 5217 + cs + cw; } /* * Given a number of elapsed weeks since the begin of the christian * era, split this number into the number of elapsed years in res.hi * and the excessive number of weeks in res.lo. (That is, res.lo is * the number of elapsed weeks in the remaining partial year.) */ ntpcal_split isocal_split_eraweeks( int32_t weeks ) { /* * use: y = (w * 157 + b[c]) / 8192 as interpolation */ static const uint16_t bctab[4] = { 85, 130, 17, 62 }; ntpcal_split res; int32_t cc, ci; uint32_t sw, cy, Q; /* Use two fast cycle-split divisions again. Herew e want to * execute '(weeks * 4 + 2) /% 20871' under floor division rules * in the first step. * * This is of course (again) susceptible to internal overflow if * coded directly in 32bit. And again we use 64bit division on * a 64bit target and exact division after calculating the * remainder first on a 32bit target. With the smaller divider, * that's even a bit neater. */ # if defined(HAVE_64BITREGS) /* Full floor division with 64bit values. */ uint64_t sf64, sw64; sf64 = (uint64_t)-(weeks < 0); sw64 = ((uint64_t)weeks << 2) | 2u; Q = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS)); sw = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS); # else /* Exact division after calculating the remainder via partial * reduction by digit sum. * (-2^33) % 20871 --> 5491 : the sign bit value * ( 2^20) % 20871 --> 5026 : the upper digit value * modinv(20871, 2^32) --> 330081335 : the inverse */ uint32_t ux = ((uint32_t)weeks << 2) | 2; sw = (weeks < 0) ? 5491u : 0u; /* sign dgt */ sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */ sw += (ux & 0xFFFFFu); /* lo dgt */ sw %= GREGORIAN_CYCLE_WEEKS; /* full reduction */ Q = (ux - sw) * 330081335u; /* exact div */ # endif ci = Q & 3u; cc = uint32_2cpl_to_int32(Q); /* Split off years; sw >= 0 here! The scaled weeks in the years * are scaled up by 157 afterwards. */ sw = (sw / 4u) * 157u + bctab[ci]; cy = sw / 8192u; /* sw >> 13 , let the compiler sort it out */ sw = sw % 8192u; /* sw & 8191, let the compiler sort it out */ /* assemble elapsed years and downscale the elapsed weeks in * the year. */ res.hi = 100*cc + cy; res.lo = sw / 157u; return res; } /* * Given a second in the NTP time scale and a pivot, expand the NTP * time stamp around the pivot and convert into an ISO calendar time * stamp. */ int isocal_ntp64_to_date( struct isodate *id, const vint64 *ntp ) { ntpcal_split ds; int32_t ts[3]; uint32_t uw, ud, sf32; /* * Split NTP time into days and seconds, shift days into CE * domain and process the parts. */ ds = ntpcal_daysplit(ntp); /* split time part */ ds.hi += priv_timesplit(ts, ds.lo); id->hour = (uint8_t)ts[0]; id->minute = (uint8_t)ts[1]; id->second = (uint8_t)ts[2]; /* split days into days and weeks, using floor division in unsigned */ ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */ sf32 = int32_sflag(ds.hi); ud = (uint32_t)ds.hi; uw = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK); ud -= uw * DAYSPERWEEK; ds.hi = uint32_2cpl_to_int32(uw); ds.lo = ud; id->weekday = (uint8_t)ds.lo + 1; /* weekday result */ /* get year and week in year */ ds = isocal_split_eraweeks(ds.hi); /* elapsed years&week*/ id->year = (uint16_t)ds.hi + 1; /* shift to current */ id->week = (uint8_t )ds.lo + 1; return (ds.hi >= 0 && ds.hi < 0x0000FFFF); } int isocal_ntp_to_date( struct isodate *id, uint32_t ntp, const time_t *piv ) { vint64 ntp64; /* * Unfold ntp time around current time into NTP domain, then * convert the full time stamp. */ ntp64 = ntpcal_ntp_to_ntp(ntp, piv); return isocal_ntp64_to_date(id, &ntp64); } /* * Convert a ISO date spec into a second in the NTP time scale, * properly truncated to 32 bit. */ vint64 isocal_date_to_ntp64( const struct isodate *id ) { int32_t weeks, days, secs; weeks = isocal_weeks_in_years((int32_t)id->year - 1) + (int32_t)id->week - 1; days = weeks * 7 + (int32_t)id->weekday; /* days is RDN of ISO date now */ secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second); return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs); } uint32_t isocal_date_to_ntp( const struct isodate *id ) { /* * Get lower half of 64bit NTP timestamp from date/time. */ return isocal_date_to_ntp64(id).d_s.lo; } /* * ==================================================================== * 'basedate' support functions * ==================================================================== */ static int32_t s_baseday = NTP_TO_UNIX_DAYS; static int32_t s_gpsweek = 0; int32_t basedate_eval_buildstamp(void) { struct calendar jd; int32_t ed; if (!ntpcal_get_build_date(&jd)) return NTP_TO_UNIX_DAYS; /* The time zone of the build stamp is unspecified; we remove * one day to provide a certain slack. And in case somebody * fiddled with the system clock, we make sure we do not go * before the UNIX epoch (1970-01-01). It's probably not possible * to do this to the clock on most systems, but there are other * ways to tweak the build stamp. */ jd.monthday -= 1; ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS; return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed; } int32_t basedate_eval_string( const char * str ) { u_short y,m,d; u_long ned; int rc, nc; size_t sl; sl = strlen(str); rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc); if (rc == 3 && (size_t)nc == sl) { if (m >= 1 && m <= 12 && d >= 1 && d <= 31) return ntpcal_edate_to_eradays(y-1, m-1, d) - DAY_NTP_STARTS; goto buildstamp; } rc = sscanf(str, "%lu%n", &ned, &nc); if (rc == 1 && (size_t)nc == sl) { if (ned <= INT32_MAX) return (int32_t)ned; goto buildstamp; } buildstamp: msyslog(LOG_WARNING, "basedate string \"%s\" invalid, build date substituted!", str); return basedate_eval_buildstamp(); } uint32_t basedate_get_day(void) { return s_baseday; } int32_t basedate_set_day( int32_t day ) { struct calendar jd; int32_t retv; /* set NTP base date for NTP era unfolding */ if (day < NTP_TO_UNIX_DAYS) { msyslog(LOG_WARNING, "baseday_set_day: invalid day (%lu), UNIX epoch substituted", (unsigned long)day); day = NTP_TO_UNIX_DAYS; } retv = s_baseday; s_baseday = day; ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS); msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu", jd.year, (u_short)jd.month, (u_short)jd.monthday); /* set GPS base week for GPS week unfolding */ day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY) - DAY_NTP_STARTS; if (day < NTP_TO_GPS_DAYS) day = NTP_TO_GPS_DAYS; s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK; ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS); msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)", jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek); return retv; } time_t basedate_get_eracenter(void) { time_t retv; retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS); retv *= SECSPERDAY; retv += (UINT32_C(1) << 31); return retv; } time_t basedate_get_erabase(void) { time_t retv; retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS); retv *= SECSPERDAY; return retv; } uint32_t basedate_get_gpsweek(void) { return s_gpsweek; } uint32_t basedate_expand_gpsweek( unsigned short weekno ) { /* We do a fast modulus expansion here. Since all quantities are * unsigned and we cannot go before the start of the GPS epoch * anyway, and since the truncated GPS week number is 10 bit, the * expansion becomes a simple sub/and/add sequence. */ #if GPSWEEKS != 1024 # error GPSWEEKS defined wrong -- should be 1024! #endif uint32_t diff; diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1); return s_gpsweek + diff; } /* * ==================================================================== * misc. helpers * ==================================================================== */ /* -------------------------------------------------------------------- * reconstruct the centrury from a truncated date and a day-of-week * * Given a date with truncated year (2-digit, 0..99) and a day-of-week * from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD. */ int32_t ntpcal_expand_century( uint32_t y, uint32_t m, uint32_t d, uint32_t wd) { /* This algorithm is short but tricky... It's related to * Zeller's congruence, partially done backwards. * * A few facts to remember: * 1) The Gregorian calendar has a cycle of 400 years. * 2) The weekday of the 1st day of a century shifts by 5 days * during a great cycle. * 3) For calendar math, a century starts with the 1st year, * which is year 1, !not! zero. * * So we start with taking the weekday difference (mod 7) * between the truncated date (which is taken as an absolute * date in the 1st century in the proleptic calendar) and the * weekday given. * * When dividing this residual by 5, we obtain the number of * centuries to add to the base. But since the residual is (mod * 7), we have to make this an exact division by multiplication * with the modular inverse of 5 (mod 7), which is 3: * 3*5 === 1 (mod 7). * * If this yields a result of 4/5/6, the given date/day-of-week * combination is impossible, and we return zero as resulting * year to indicate failure. * * Then we remap the century to the range starting with year * 1900. */ uint32_t c; /* check basic constraints */ if ((y >= 100u) || (--m >= 12u) || (--d >= 31u)) return 0; if ((m += 10u) >= 12u) /* shift base to prev. March,1st */ m -= 12u; else if (--y >= 100u) y += 100u; d += y + (y >> 2) + 2u; /* year share */ d += (m * 83u + 16u) >> 5; /* month share */ /* get (wd - d), shifted to positive value, and multiply with * 3(mod 7). (Exact division, see to comment) * Note: 1) d <= 184 at this point. * 2) 252 % 7 == 0, but 'wd' is off by one since we did * '--d' above, so we add just 251 here! */ c = u32mod7(3 * (251u + wd - d)); if (c > 3u) return 0; if ((m > 9u) && (++y >= 100u)) {/* undo base shift */ y -= 100u; c = (c + 1) & 3u; } y += (c * 100u); /* combine into 1st cycle */ y += (y < 300u) ? 2000 : 1600; /* map to destination era */ return (int)y; } char * ntpcal_iso8601std( char * buf, size_t len, TcCivilDate * cdp ) { if (!buf) { LIB_GETBUF(buf); len = LIB_BUFLENGTH; } if (len) { len = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u", cdp->year, cdp->month, cdp->monthday, cdp->hour, cdp->minute, cdp->second); if (len < 0) *buf = '\0'; } return buf; } /* -*-EOF-*- */