/* * z_Windows_NT_util.cpp -- platform specific routines. */ //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "kmp.h" #include "kmp_affinity.h" #include "kmp_i18n.h" #include "kmp_io.h" #include "kmp_itt.h" #include "kmp_wait_release.h" /* This code is related to NtQuerySystemInformation() function. This function is used in the Load balance algorithm for OMP_DYNAMIC=true to find the number of running threads in the system. */ #include // UNICODE_STRING #undef WIN32_NO_STATUS #include #include #ifdef _MSC_VER #pragma comment(lib, "psapi.lib") #endif enum SYSTEM_INFORMATION_CLASS { SystemProcessInformation = 5 }; // SYSTEM_INFORMATION_CLASS struct CLIENT_ID { HANDLE UniqueProcess; HANDLE UniqueThread; }; // struct CLIENT_ID enum THREAD_STATE { StateInitialized, StateReady, StateRunning, StateStandby, StateTerminated, StateWait, StateTransition, StateUnknown }; // enum THREAD_STATE struct VM_COUNTERS { SIZE_T PeakVirtualSize; SIZE_T VirtualSize; ULONG PageFaultCount; SIZE_T PeakWorkingSetSize; SIZE_T WorkingSetSize; SIZE_T QuotaPeakPagedPoolUsage; SIZE_T QuotaPagedPoolUsage; SIZE_T QuotaPeakNonPagedPoolUsage; SIZE_T QuotaNonPagedPoolUsage; SIZE_T PagefileUsage; SIZE_T PeakPagefileUsage; SIZE_T PrivatePageCount; }; // struct VM_COUNTERS struct SYSTEM_THREAD { LARGE_INTEGER KernelTime; LARGE_INTEGER UserTime; LARGE_INTEGER CreateTime; ULONG WaitTime; LPVOID StartAddress; CLIENT_ID ClientId; DWORD Priority; LONG BasePriority; ULONG ContextSwitchCount; THREAD_STATE State; ULONG WaitReason; }; // SYSTEM_THREAD KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); #if KMP_ARCH_X86 || KMP_ARCH_ARM KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); #else KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); #endif struct SYSTEM_PROCESS_INFORMATION { ULONG NextEntryOffset; ULONG NumberOfThreads; LARGE_INTEGER Reserved[3]; LARGE_INTEGER CreateTime; LARGE_INTEGER UserTime; LARGE_INTEGER KernelTime; UNICODE_STRING ImageName; DWORD BasePriority; HANDLE ProcessId; HANDLE ParentProcessId; ULONG HandleCount; ULONG Reserved2[2]; VM_COUNTERS VMCounters; IO_COUNTERS IOCounters; SYSTEM_THREAD Threads[1]; }; // SYSTEM_PROCESS_INFORMATION typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); #if KMP_ARCH_X86 || KMP_ARCH_ARM KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); #else KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); #endif typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, PVOID, ULONG, PULONG); NtQuerySystemInformation_t NtQuerySystemInformation = NULL; HMODULE ntdll = NULL; /* End of NtQuerySystemInformation()-related code */ static HMODULE kernel32 = NULL; #if KMP_HANDLE_SIGNALS typedef void (*sig_func_t)(int); static sig_func_t __kmp_sighldrs[NSIG]; static int __kmp_siginstalled[NSIG]; #endif #if KMP_USE_MONITOR static HANDLE __kmp_monitor_ev; #endif static kmp_int64 __kmp_win32_time; double __kmp_win32_tick; int __kmp_init_runtime = FALSE; CRITICAL_SECTION __kmp_win32_section; void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { InitializeCriticalSection(&mx->cs); #if USE_ITT_BUILD __kmp_itt_system_object_created(&mx->cs, "Critical Section"); #endif /* USE_ITT_BUILD */ } void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { DeleteCriticalSection(&mx->cs); } void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { EnterCriticalSection(&mx->cs); } int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) { return TryEnterCriticalSection(&mx->cs); } void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { LeaveCriticalSection(&mx->cs); } void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { cv->waiters_count_ = 0; cv->wait_generation_count_ = 0; cv->release_count_ = 0; /* Initialize the critical section */ __kmp_win32_mutex_init(&cv->waiters_count_lock_); /* Create a manual-reset event. */ cv->event_ = CreateEvent(NULL, // no security TRUE, // manual-reset FALSE, // non-signaled initially NULL); // unnamed #if USE_ITT_BUILD __kmp_itt_system_object_created(cv->event_, "Event"); #endif /* USE_ITT_BUILD */ } void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); __kmp_free_handle(cv->event_); memset(cv, '\0', sizeof(*cv)); } /* TODO associate cv with a team instead of a thread so as to optimize the case where we wake up a whole team */ template static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, kmp_info_t *th, C *flag) { int my_generation; int last_waiter; /* Avoid race conditions */ __kmp_win32_mutex_lock(&cv->waiters_count_lock_); /* Increment count of waiters */ cv->waiters_count_++; /* Store current generation in our activation record. */ my_generation = cv->wait_generation_count_; __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); __kmp_win32_mutex_unlock(mx); for (;;) { int wait_done = 0; DWORD res, timeout = 5000; // just tried to quess an appropriate number /* Wait until the event is signaled */ res = WaitForSingleObject(cv->event_, timeout); if (res == WAIT_OBJECT_0) { // event signaled __kmp_win32_mutex_lock(&cv->waiters_count_lock_); /* Exit the loop when the event_> is signaled and there are still waiting threads from this that haven't been released from this wait yet. */ wait_done = (cv->release_count_ > 0) && (cv->wait_generation_count_ != my_generation); __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) { // check if the flag and cv counters are in consistent state // as MS sent us debug dump whith inconsistent state of data __kmp_win32_mutex_lock(mx); typename C::flag_t old_f = flag->set_sleeping(); if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) { __kmp_win32_mutex_unlock(mx); continue; } // condition fulfilled, exiting flag->unset_sleeping(); TCW_PTR(th->th.th_sleep_loc, NULL); th->th.th_sleep_loc_type = flag_unset; KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition " "fulfilled: flag's loc(%p): %u\n", flag->get(), (unsigned int)flag->load())); __kmp_win32_mutex_lock(&cv->waiters_count_lock_); KMP_DEBUG_ASSERT(cv->waiters_count_ > 0); cv->release_count_ = cv->waiters_count_; cv->wait_generation_count_++; wait_done = 1; __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); __kmp_win32_mutex_unlock(mx); } /* there used to be a semicolon after the if statement, it looked like a bug, so i removed it */ if (wait_done) break; } __kmp_win32_mutex_lock(mx); __kmp_win32_mutex_lock(&cv->waiters_count_lock_); cv->waiters_count_--; cv->release_count_--; last_waiter = (cv->release_count_ == 0); __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); if (last_waiter) { /* We're the last waiter to be notified, so reset the manual event. */ ResetEvent(cv->event_); } } void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { __kmp_win32_mutex_lock(&cv->waiters_count_lock_); if (cv->waiters_count_ > 0) { SetEvent(cv->event_); /* Release all the threads in this generation. */ cv->release_count_ = cv->waiters_count_; /* Start a new generation. */ cv->wait_generation_count_++; } __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); } void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { __kmp_win32_cond_broadcast(cv); } void __kmp_enable(int new_state) { if (__kmp_init_runtime) LeaveCriticalSection(&__kmp_win32_section); } void __kmp_disable(int *old_state) { *old_state = 0; if (__kmp_init_runtime) EnterCriticalSection(&__kmp_win32_section); } void __kmp_suspend_initialize(void) { /* do nothing */ } void __kmp_suspend_initialize_thread(kmp_info_t *th) { int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init); int new_value = TRUE; // Return if already initialized if (old_value == new_value) return; // Wait, then return if being initialized if (old_value == -1 || !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) { while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) { KMP_CPU_PAUSE(); } } else { // Claim to be the initializer and do initializations __kmp_win32_cond_init(&th->th.th_suspend_cv); __kmp_win32_mutex_init(&th->th.th_suspend_mx); KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value); } } void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) { /* this means we have initialize the suspension pthread objects for this thread in this instance of the process */ __kmp_win32_cond_destroy(&th->th.th_suspend_cv); __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE); } } int __kmp_try_suspend_mx(kmp_info_t *th) { return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx); } void __kmp_lock_suspend_mx(kmp_info_t *th) { __kmp_win32_mutex_lock(&th->th.th_suspend_mx); } void __kmp_unlock_suspend_mx(kmp_info_t *th) { __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); } /* This routine puts the calling thread to sleep after setting the sleep bit for the indicated flag variable to true. */ template static inline void __kmp_suspend_template(int th_gtid, C *flag) { kmp_info_t *th = __kmp_threads[th_gtid]; typename C::flag_t old_spin; KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", th_gtid, flag->get())); __kmp_suspend_initialize_thread(th); __kmp_lock_suspend_mx(th); KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" " loc(%p)\n", th_gtid, flag->get())); /* TODO: shouldn't this use release semantics to ensure that __kmp_suspend_initialize_thread gets called first? */ old_spin = flag->set_sleeping(); TCW_PTR(th->th.th_sleep_loc, (void *)flag); th->th.th_sleep_loc_type = flag->get_type(); if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && __kmp_pause_status != kmp_soft_paused) { flag->unset_sleeping(); TCW_PTR(th->th.th_sleep_loc, NULL); th->th.th_sleep_loc_type = flag_unset; __kmp_unlock_suspend_mx(th); return; } KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" " loc(%p)==%u\n", th_gtid, flag->get(), (unsigned int)flag->load())); if (flag->done_check_val(old_spin) || flag->done_check()) { flag->unset_sleeping(); TCW_PTR(th->th.th_sleep_loc, NULL); th->th.th_sleep_loc_type = flag_unset; KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " "for flag's loc(%p)\n", th_gtid, flag->get())); } else { #ifdef DEBUG_SUSPEND __kmp_suspend_count++; #endif /* Encapsulate in a loop as the documentation states that this may "with low probability" return when the condition variable has not been signaled or broadcast */ int deactivated = FALSE; while (flag->is_sleeping()) { KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " "kmp_win32_cond_wait()\n", th_gtid)); // Mark the thread as no longer active (only in the first iteration of the // loop). if (!deactivated) { th->th.th_active = FALSE; if (th->th.th_active_in_pool) { th->th.th_active_in_pool = FALSE; KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); } deactivated = TRUE; } KMP_DEBUG_ASSERT(th->th.th_sleep_loc); KMP_DEBUG_ASSERT(th->th.th_sleep_loc_type == flag->get_type()); __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, flag); #ifdef KMP_DEBUG if (flag->is_sleeping()) { KF_TRACE(100, ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); } #endif /* KMP_DEBUG */ } // while // We may have had the loop variable set before entering the loop body; // so we need to reset sleep_loc. TCW_PTR(th->th.th_sleep_loc, NULL); th->th.th_sleep_loc_type = flag_unset; KMP_DEBUG_ASSERT(!flag->is_sleeping()); KMP_DEBUG_ASSERT(!th->th.th_sleep_loc); // Mark the thread as active again (if it was previous marked as inactive) if (deactivated) { th->th.th_active = TRUE; if (TCR_4(th->th.th_in_pool)) { KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); th->th.th_active_in_pool = TRUE; } } } __kmp_unlock_suspend_mx(th); KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); } template void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { __kmp_suspend_template(th_gtid, flag); } template void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { __kmp_suspend_template(th_gtid, flag); } template void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64 *flag) { __kmp_suspend_template(th_gtid, flag); } void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { __kmp_suspend_template(th_gtid, flag); } template void __kmp_suspend_32(int, kmp_flag_32 *); template void __kmp_suspend_64(int, kmp_flag_64 *); template void __kmp_suspend_64(int, kmp_flag_64 *); template void __kmp_atomic_suspend_64(int, kmp_atomic_flag_64 *); template void __kmp_atomic_suspend_64(int, kmp_atomic_flag_64 *); /* This routine signals the thread specified by target_gtid to wake up after setting the sleep bit indicated by the flag argument to FALSE */ template static inline void __kmp_resume_template(int target_gtid, C *flag) { kmp_info_t *th = __kmp_threads[target_gtid]; #ifdef KMP_DEBUG int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; #endif KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", gtid, target_gtid)); __kmp_suspend_initialize_thread(th); __kmp_lock_suspend_mx(th); if (!flag || flag != th->th.th_sleep_loc) { // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a // different location; wake up at new location flag = (C *)th->th.th_sleep_loc; } // First, check if the flag is null or its type has changed. If so, someone // else woke it up. if (!flag || flag->get_type() != th->th.th_sleep_loc_type) { // simply shows what flag was cast to KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " "awake: flag's loc(%p)\n", gtid, target_gtid, NULL)); __kmp_unlock_suspend_mx(th); return; } else { if (!flag->is_sleeping()) { KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " "awake: flag's loc(%p): %u\n", gtid, target_gtid, flag->get(), (unsigned int)flag->load())); __kmp_unlock_suspend_mx(th); return; } } KMP_DEBUG_ASSERT(flag); flag->unset_sleeping(); TCW_PTR(th->th.th_sleep_loc, NULL); th->th.th_sleep_loc_type = flag_unset; KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " "bit for flag's loc(%p)\n", gtid, target_gtid, flag->get())); __kmp_win32_cond_signal(&th->th.th_suspend_cv); __kmp_unlock_suspend_mx(th); KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" " for T#%d\n", gtid, target_gtid)); } template void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { __kmp_resume_template(target_gtid, flag); } template void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { __kmp_resume_template(target_gtid, flag); } template void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64 *flag) { __kmp_resume_template(target_gtid, flag); } void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { __kmp_resume_template(target_gtid, flag); } template void __kmp_resume_32(int, kmp_flag_32 *); template void __kmp_resume_32(int, kmp_flag_32 *); template void __kmp_resume_64(int, kmp_flag_64 *); template void __kmp_atomic_resume_64(int, kmp_atomic_flag_64 *); void __kmp_yield() { Sleep(0); } void __kmp_gtid_set_specific(int gtid) { if (__kmp_init_gtid) { KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, __kmp_gtid_threadprivate_key)); kmp_intptr_t g = (kmp_intptr_t)gtid; if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(g + 1))) KMP_FATAL(TLSSetValueFailed); } else { KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); } } int __kmp_gtid_get_specific() { int gtid; if (!__kmp_init_gtid) { KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " "KMP_GTID_SHUTDOWN\n")); return KMP_GTID_SHUTDOWN; } gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); if (gtid == 0) { gtid = KMP_GTID_DNE; } else { gtid--; } KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", __kmp_gtid_threadprivate_key, gtid)); return gtid; } void __kmp_affinity_bind_thread(int proc) { if (__kmp_num_proc_groups > 1) { // Form the GROUP_AFFINITY struct directly, rather than filling // out a bit vector and calling __kmp_set_system_affinity(). GROUP_AFFINITY ga; KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * sizeof(DWORD_PTR)))); ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { DWORD error = GetLastError(); // AC: continue silently if not verbose if (__kmp_affinity.flags.verbose) { kmp_msg_t err_code = KMP_ERR(error); __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, __kmp_msg_null); if (__kmp_generate_warnings == kmp_warnings_off) { __kmp_str_free(&err_code.str); } } } } else { kmp_affin_mask_t *mask; KMP_CPU_ALLOC_ON_STACK(mask); KMP_CPU_ZERO(mask); KMP_CPU_SET(proc, mask); __kmp_set_system_affinity(mask, TRUE); KMP_CPU_FREE_FROM_STACK(mask); } } void __kmp_affinity_determine_capable(const char *env_var) { // All versions of Windows* OS (since Win '95) support // SetThreadAffinityMask(). #if KMP_GROUP_AFFINITY KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); #else KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); #endif KA_TRACE(10, ("__kmp_affinity_determine_capable: " "Windows* OS affinity interface functional (mask size = " "%" KMP_SIZE_T_SPEC ").\n", __kmp_affin_mask_size)); } double __kmp_read_cpu_time(void) { FILETIME CreationTime, ExitTime, KernelTime, UserTime; int status; double cpu_time; cpu_time = 0; status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, &KernelTime, &UserTime); if (status) { double sec = 0; sec += KernelTime.dwHighDateTime; sec += UserTime.dwHighDateTime; /* Shift left by 32 bits */ sec *= (double)(1 << 16) * (double)(1 << 16); sec += KernelTime.dwLowDateTime; sec += UserTime.dwLowDateTime; cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; } return cpu_time; } int __kmp_read_system_info(struct kmp_sys_info *info) { info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ info->minflt = 0; /* the number of page faults serviced without any I/O */ info->majflt = 0; /* the number of page faults serviced that required I/O */ info->nswap = 0; // the number of times a process was "swapped" out of memory info->inblock = 0; // the number of times the file system had to perform input info->oublock = 0; // number of times the file system had to perform output info->nvcsw = 0; /* the number of times a context switch was voluntarily */ info->nivcsw = 0; /* the number of times a context switch was forced */ return 1; } void __kmp_runtime_initialize(void) { SYSTEM_INFO info; kmp_str_buf_t path; UINT path_size; if (__kmp_init_runtime) { return; } #if KMP_DYNAMIC_LIB /* Pin dynamic library for the lifetime of application */ { // First, turn off error message boxes UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); HMODULE h; BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_PIN, (LPCTSTR)&__kmp_serial_initialize, &h); (void)ret; KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); SetErrorMode(err_mode); // Restore error mode KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); } #endif InitializeCriticalSection(&__kmp_win32_section); #if USE_ITT_BUILD __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); #endif /* USE_ITT_BUILD */ __kmp_initialize_system_tick(); #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) if (!__kmp_cpuinfo.initialized) { __kmp_query_cpuid(&__kmp_cpuinfo); } #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ /* Set up minimum number of threads to switch to TLS gtid */ #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB // Windows* OS, static library. /* New thread may use stack space previously used by another thread, currently terminated. On Windows* OS, in case of static linking, we do not know the moment of thread termination, and our structures (__kmp_threads and __kmp_root arrays) are still keep info about dead threads. This leads to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid (by searching through stack addresses of all known threads) for unregistered foreign tread. Setting __kmp_tls_gtid_min to 0 workarounds this problem: __kmp_get_global_thread_id() does not search through stacks, but get gtid from TLS immediately. --ln */ __kmp_tls_gtid_min = 0; #else __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; #endif /* for the static library */ if (!__kmp_gtid_threadprivate_key) { __kmp_gtid_threadprivate_key = TlsAlloc(); if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { KMP_FATAL(TLSOutOfIndexes); } } // Load ntdll.dll. /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We have to specify full path to the library. */ __kmp_str_buf_init(&path); path_size = GetSystemDirectory(path.str, path.size); KMP_DEBUG_ASSERT(path_size > 0); if (path_size >= path.size) { // Buffer is too short. Expand the buffer and try again. __kmp_str_buf_reserve(&path, path_size); path_size = GetSystemDirectory(path.str, path.size); KMP_DEBUG_ASSERT(path_size > 0); } if (path_size > 0 && path_size < path.size) { // Now we have system directory name in the buffer. // Append backslash and name of dll to form full path, path.used = path_size; __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); // Now load ntdll using full path. ntdll = GetModuleHandle(path.str); } KMP_DEBUG_ASSERT(ntdll != NULL); if (ntdll != NULL) { NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( ntdll, "NtQuerySystemInformation"); } KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); #if KMP_GROUP_AFFINITY // Load kernel32.dll. // Same caveat - must use full system path name. if (path_size > 0 && path_size < path.size) { // Truncate the buffer back to just the system path length, // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". path.used = path_size; __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); // Load kernel32.dll using full path. kernel32 = GetModuleHandle(path.str); KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); // Load the function pointers to kernel32.dll routines // that may or may not exist on this system. if (kernel32 != NULL) { __kmp_GetActiveProcessorCount = (kmp_GetActiveProcessorCount_t)GetProcAddress( kernel32, "GetActiveProcessorCount"); __kmp_GetActiveProcessorGroupCount = (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( kernel32, "GetActiveProcessorGroupCount"); __kmp_GetThreadGroupAffinity = (kmp_GetThreadGroupAffinity_t)GetProcAddress( kernel32, "GetThreadGroupAffinity"); __kmp_SetThreadGroupAffinity = (kmp_SetThreadGroupAffinity_t)GetProcAddress( kernel32, "SetThreadGroupAffinity"); KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" " = %p\n", __kmp_GetActiveProcessorCount)); KA_TRACE(10, ("__kmp_runtime_initialize: " "__kmp_GetActiveProcessorGroupCount = %p\n", __kmp_GetActiveProcessorGroupCount)); KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" " = %p\n", __kmp_GetThreadGroupAffinity)); KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" " = %p\n", __kmp_SetThreadGroupAffinity)); KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", sizeof(kmp_affin_mask_t))); // See if group affinity is supported on this system. // If so, calculate the #groups and #procs. // // Group affinity was introduced with Windows* 7 OS and // Windows* Server 2008 R2 OS. if ((__kmp_GetActiveProcessorCount != NULL) && (__kmp_GetActiveProcessorGroupCount != NULL) && (__kmp_GetThreadGroupAffinity != NULL) && (__kmp_SetThreadGroupAffinity != NULL) && ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 1)) { // Calculate the total number of active OS procs. int i; KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" " detected\n", __kmp_num_proc_groups)); __kmp_xproc = 0; for (i = 0; i < __kmp_num_proc_groups; i++) { DWORD size = __kmp_GetActiveProcessorCount(i); __kmp_xproc += size; KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", i, size)); } } else { KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" " detected\n", __kmp_num_proc_groups)); } } } if (__kmp_num_proc_groups <= 1) { GetSystemInfo(&info); __kmp_xproc = info.dwNumberOfProcessors; } #else (void)kernel32; GetSystemInfo(&info); __kmp_xproc = info.dwNumberOfProcessors; #endif /* KMP_GROUP_AFFINITY */ // If the OS said there were 0 procs, take a guess and use a value of 2. // This is done for Linux* OS, also. Do we need error / warning? if (__kmp_xproc <= 0) { __kmp_xproc = 2; } KA_TRACE(5, ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); __kmp_str_buf_free(&path); #if USE_ITT_BUILD __kmp_itt_initialize(); #endif /* USE_ITT_BUILD */ __kmp_init_runtime = TRUE; } // __kmp_runtime_initialize void __kmp_runtime_destroy(void) { if (!__kmp_init_runtime) { return; } #if USE_ITT_BUILD __kmp_itt_destroy(); #endif /* USE_ITT_BUILD */ /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ /* due to the KX_TRACE() commands */ KA_TRACE(40, ("__kmp_runtime_destroy\n")); if (__kmp_gtid_threadprivate_key) { TlsFree(__kmp_gtid_threadprivate_key); __kmp_gtid_threadprivate_key = 0; } __kmp_affinity_uninitialize(); DeleteCriticalSection(&__kmp_win32_section); ntdll = NULL; NtQuerySystemInformation = NULL; #if KMP_ARCH_X86_64 kernel32 = NULL; __kmp_GetActiveProcessorCount = NULL; __kmp_GetActiveProcessorGroupCount = NULL; __kmp_GetThreadGroupAffinity = NULL; __kmp_SetThreadGroupAffinity = NULL; #endif // KMP_ARCH_X86_64 __kmp_init_runtime = FALSE; } void __kmp_terminate_thread(int gtid) { kmp_info_t *th = __kmp_threads[gtid]; if (!th) return; KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { /* It's OK, the thread may have exited already */ } __kmp_free_handle(th->th.th_info.ds.ds_thread); } void __kmp_clear_system_time(void) { LARGE_INTEGER time; QueryPerformanceCounter(&time); __kmp_win32_time = (kmp_int64)time.QuadPart; } void __kmp_initialize_system_tick(void) { { BOOL status; LARGE_INTEGER freq; status = QueryPerformanceFrequency(&freq); if (!status) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), KMP_ERR(error), __kmp_msg_null); } else { __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; } } } /* Calculate the elapsed wall clock time for the user */ void __kmp_elapsed(double *t) { LARGE_INTEGER now; QueryPerformanceCounter(&now); *t = ((double)now.QuadPart) * __kmp_win32_tick; } /* Calculate the elapsed wall clock tick for the user */ void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } void __kmp_read_system_time(double *delta) { if (delta != NULL) { LARGE_INTEGER now; QueryPerformanceCounter(&now); *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * __kmp_win32_tick; } } /* Return the current time stamp in nsec */ kmp_uint64 __kmp_now_nsec() { LARGE_INTEGER now; QueryPerformanceCounter(&now); return 1e9 * __kmp_win32_tick * now.QuadPart; } extern "C" void *__stdcall __kmp_launch_worker(void *arg) { volatile void *stack_data; void *exit_val; void *padding = 0; kmp_info_t *this_thr = (kmp_info_t *)arg; int gtid; gtid = this_thr->th.th_info.ds.ds_gtid; __kmp_gtid_set_specific(gtid); #ifdef KMP_TDATA_GTID #error "This define causes problems with LoadLibrary() + declspec(thread) " \ "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ "reference: http://support.microsoft.com/kb/118816" //__kmp_gtid = gtid; #endif #if USE_ITT_BUILD __kmp_itt_thread_name(gtid); #endif /* USE_ITT_BUILD */ __kmp_affinity_bind_init_mask(gtid); #if KMP_ARCH_X86 || KMP_ARCH_X86_64 // Set FP control regs to be a copy of the parallel initialization thread's. __kmp_clear_x87_fpu_status_word(); __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); __kmp_load_mxcsr(&__kmp_init_mxcsr); #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ if (__kmp_stkoffset > 0 && gtid > 0) { padding = KMP_ALLOCA(gtid * __kmp_stkoffset); (void)padding; } KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if it is used to get gtid TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); __kmp_check_stack_overlap(this_thr); } KMP_MB(); exit_val = __kmp_launch_thread(this_thr); KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); KMP_MB(); return exit_val; } #if KMP_USE_MONITOR /* The monitor thread controls all of the threads in the complex */ void *__stdcall __kmp_launch_monitor(void *arg) { DWORD wait_status; kmp_thread_t monitor; int status; int interval; kmp_info_t *this_thr = (kmp_info_t *)arg; KMP_DEBUG_ASSERT(__kmp_init_monitor); TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started // TODO: hide "2" in enum (like {true,false,started}) this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); KMP_MB(); /* Flush all pending memory write invalidates. */ KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); monitor = GetCurrentThread(); /* set thread priority */ status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); if (!status) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); } /* register us as monitor */ __kmp_gtid_set_specific(KMP_GTID_MONITOR); #ifdef KMP_TDATA_GTID #error "This define causes problems with LoadLibrary() + declspec(thread) " \ "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ "reference: http://support.microsoft.com/kb/118816" //__kmp_gtid = KMP_GTID_MONITOR; #endif #if USE_ITT_BUILD __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore // monitor thread. #endif /* USE_ITT_BUILD */ KMP_MB(); /* Flush all pending memory write invalidates. */ interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ while (!TCR_4(__kmp_global.g.g_done)) { /* This thread monitors the state of the system */ KA_TRACE(15, ("__kmp_launch_monitor: update\n")); wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); if (wait_status == WAIT_TIMEOUT) { TCW_4(__kmp_global.g.g_time.dt.t_value, TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); } KMP_MB(); /* Flush all pending memory write invalidates. */ } KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); if (!status) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); } if (__kmp_global.g.g_abort != 0) { /* now we need to terminate the worker threads */ /* the value of t_abort is the signal we caught */ int gtid; KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", (__kmp_global.g.g_abort))); /* terminate the OpenMP worker threads */ /* TODO this is not valid for sibling threads!! * the uber master might not be 0 anymore.. */ for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) __kmp_terminate_thread(gtid); __kmp_cleanup(); Sleep(0); KA_TRACE(10, ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); if (__kmp_global.g.g_abort > 0) { raise(__kmp_global.g.g_abort); } } TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); KMP_MB(); return arg; } #endif void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { kmp_thread_t handle; DWORD idThread; KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); th->th.th_info.ds.ds_gtid = gtid; if (KMP_UBER_GTID(gtid)) { int stack_data; /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for other threads to use. Is it appropriate to just use GetCurrentThread? When should we close this handle? When unregistering the root? */ { BOOL rc; rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, FALSE, DUPLICATE_SAME_ACCESS); KMP_ASSERT(rc); KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " "handle = %" KMP_UINTPTR_SPEC "\n", (LPVOID)th, th->th.th_info.ds.ds_thread)); th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); } if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid /* we will dynamically update the stack range if gtid_mode == 1 */ TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); __kmp_check_stack_overlap(th); } } else { KMP_MB(); /* Flush all pending memory write invalidates. */ /* Set stack size for this thread now. */ KA_TRACE(10, ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", stack_size)); stack_size += gtid * __kmp_stkoffset; TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); KA_TRACE(10, ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, (LPVOID)th, &idThread)); handle = CreateThread( NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); KA_TRACE(10, ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC " bytes, &__kmp_launch_worker = %p, th = %p, " "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, (LPVOID)th, idThread, handle)); if (handle == 0) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); } else { th->th.th_info.ds.ds_thread = handle; } KMP_MB(); /* Flush all pending memory write invalidates. */ } KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); } int __kmp_still_running(kmp_info_t *th) { return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); } #if KMP_USE_MONITOR void __kmp_create_monitor(kmp_info_t *th) { kmp_thread_t handle; DWORD idThread; int ideal, new_ideal; if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { // We don't need monitor thread in case of MAX_BLOCKTIME KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " "MAX blocktime\n")); th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op th->th.th_info.ds.ds_gtid = 0; TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation return; } KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); KMP_MB(); /* Flush all pending memory write invalidates. */ __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); if (__kmp_monitor_ev == NULL) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); } #if USE_ITT_BUILD __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); #endif /* USE_ITT_BUILD */ th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how // to automatically expand stacksize based on CreateThread error code. if (__kmp_monitor_stksize == 0) { __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; } if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { __kmp_monitor_stksize = __kmp_sys_min_stksize; } KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", (int)__kmp_monitor_stksize)); TCW_4(__kmp_global.g.g_time.dt.t_value, 0); handle = CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); if (handle == 0) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); } else th->th.th_info.ds.ds_thread = handle; KMP_MB(); /* Flush all pending memory write invalidates. */ KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", (void *)th->th.th_info.ds.ds_thread)); } #endif /* Check to see if thread is still alive. NOTE: The ExitProcess(code) system call causes all threads to Terminate with a exit_val = code. Because of this we can not rely on exit_val having any particular value. So this routine may return STILL_ALIVE in exit_val even after the thread is dead. */ int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { DWORD rc; rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); if (rc == 0) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), __kmp_msg_null); } return (*exit_val == STILL_ACTIVE); } void __kmp_exit_thread(int exit_status) { ExitThread(exit_status); } // __kmp_exit_thread // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). static void __kmp_reap_common(kmp_info_t *th) { DWORD exit_val; KMP_MB(); /* Flush all pending memory write invalidates. */ KA_TRACE( 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); /* 2006-10-19: There are two opposite situations: 1. Windows* OS keep thread alive after it resets ds_alive flag and exits from thread function. (For example, see C70770/Q394281 "unloading of dll based on OMP is very slow".) 2. Windows* OS may kill thread before it resets ds_alive flag. Right solution seems to be waiting for *either* thread termination *or* ds_alive resetting. */ { // TODO: This code is very similar to KMP_WAIT. Need to generalize // KMP_WAIT to cover this usage also. void *obj = NULL; kmp_uint32 spins; kmp_uint64 time; #if USE_ITT_BUILD KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); #endif /* USE_ITT_BUILD */ KMP_INIT_YIELD(spins); KMP_INIT_BACKOFF(time); do { #if USE_ITT_BUILD KMP_FSYNC_SPIN_PREPARE(obj); #endif /* USE_ITT_BUILD */ __kmp_is_thread_alive(th, &exit_val); KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); #if USE_ITT_BUILD if (exit_val == STILL_ACTIVE) { KMP_FSYNC_CANCEL(obj); } else { KMP_FSYNC_SPIN_ACQUIRED(obj); } #endif /* USE_ITT_BUILD */ } __kmp_free_handle(th->th.th_info.ds.ds_thread); /* NOTE: The ExitProcess(code) system call causes all threads to Terminate with a exit_val = code. Because of this we can not rely on exit_val having any particular value. */ kmp_intptr_t e = (kmp_intptr_t)exit_val; if (exit_val == STILL_ACTIVE) { KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); } else if ((void *)e != (void *)th) { KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); } KA_TRACE(10, ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC "\n", th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); th->th.th_info.ds.ds_thread = 0; th->th.th_info.ds.ds_tid = KMP_GTID_DNE; th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; th->th.th_info.ds.ds_thread_id = 0; KMP_MB(); /* Flush all pending memory write invalidates. */ } #if KMP_USE_MONITOR void __kmp_reap_monitor(kmp_info_t *th) { int status; KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", (void *)th->th.th_info.ds.ds_thread)); // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. // If both tid and gtid are 0, it means the monitor did not ever start. // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); return; } KMP_MB(); /* Flush all pending memory write invalidates. */ status = SetEvent(__kmp_monitor_ev); if (status == FALSE) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); } KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", th->th.th_info.ds.ds_gtid)); __kmp_reap_common(th); __kmp_free_handle(__kmp_monitor_ev); KMP_MB(); /* Flush all pending memory write invalidates. */ } #endif void __kmp_reap_worker(kmp_info_t *th) { KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", th->th.th_info.ds.ds_gtid)); __kmp_reap_common(th); } #if KMP_HANDLE_SIGNALS static void __kmp_team_handler(int signo) { if (__kmp_global.g.g_abort == 0) { // Stage 1 signal handler, let's shut down all of the threads. if (__kmp_debug_buf) { __kmp_dump_debug_buffer(); } KMP_MB(); // Flush all pending memory write invalidates. TCW_4(__kmp_global.g.g_abort, signo); KMP_MB(); // Flush all pending memory write invalidates. TCW_4(__kmp_global.g.g_done, TRUE); KMP_MB(); // Flush all pending memory write invalidates. } } // __kmp_team_handler static sig_func_t __kmp_signal(int signum, sig_func_t handler) { sig_func_t old = signal(signum, handler); if (old == SIG_ERR) { int error = errno; __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), __kmp_msg_null); } return old; } static void __kmp_install_one_handler(int sig, sig_func_t handler, int parallel_init) { sig_func_t old; KMP_MB(); /* Flush all pending memory write invalidates. */ KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); if (parallel_init) { old = __kmp_signal(sig, handler); // SIG_DFL on Windows* OS in NULL or 0. if (old == __kmp_sighldrs[sig]) { __kmp_siginstalled[sig] = 1; } else { // Restore/keep user's handler if one previously installed. old = __kmp_signal(sig, old); } } else { // Save initial/system signal handlers to see if user handlers installed. // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals // called once with parallel_init == TRUE. old = __kmp_signal(sig, SIG_DFL); __kmp_sighldrs[sig] = old; __kmp_signal(sig, old); } KMP_MB(); /* Flush all pending memory write invalidates. */ } // __kmp_install_one_handler static void __kmp_remove_one_handler(int sig) { if (__kmp_siginstalled[sig]) { sig_func_t old; KMP_MB(); // Flush all pending memory write invalidates. KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); old = __kmp_signal(sig, __kmp_sighldrs[sig]); if (old != __kmp_team_handler) { KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " "restoring: sig=%d\n", sig)); old = __kmp_signal(sig, old); } __kmp_sighldrs[sig] = NULL; __kmp_siginstalled[sig] = 0; KMP_MB(); // Flush all pending memory write invalidates. } } // __kmp_remove_one_handler void __kmp_install_signals(int parallel_init) { KB_TRACE(10, ("__kmp_install_signals: called\n")); if (!__kmp_handle_signals) { KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " "handlers not installed\n")); return; } __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); } // __kmp_install_signals void __kmp_remove_signals(void) { int sig; KB_TRACE(10, ("__kmp_remove_signals: called\n")); for (sig = 1; sig < NSIG; ++sig) { __kmp_remove_one_handler(sig); } } // __kmp_remove_signals #endif // KMP_HANDLE_SIGNALS /* Put the thread to sleep for a time period */ void __kmp_thread_sleep(int millis) { DWORD status; status = SleepEx((DWORD)millis, FALSE); if (status) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), __kmp_msg_null); } } // Determine whether the given address is mapped into the current address space. int __kmp_is_address_mapped(void *addr) { MEMORY_BASIC_INFORMATION lpBuffer; SIZE_T dwLength; dwLength = sizeof(MEMORY_BASIC_INFORMATION); VirtualQuery(addr, &lpBuffer, dwLength); return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || ((lpBuffer.Protect == PAGE_NOACCESS) || (lpBuffer.Protect == PAGE_EXECUTE))); } kmp_uint64 __kmp_hardware_timestamp(void) { kmp_uint64 r = 0; QueryPerformanceCounter((LARGE_INTEGER *)&r); return r; } /* Free handle and check the error code */ void __kmp_free_handle(kmp_thread_t tHandle) { /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined * as HANDLE */ BOOL rc; rc = CloseHandle(tHandle); if (!rc) { DWORD error = GetLastError(); __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); } } int __kmp_get_load_balance(int max) { static ULONG glb_buff_size = 100 * 1024; // Saved count of the running threads for the thread balance algorithm static int glb_running_threads = 0; static double glb_call_time = 0; /* Thread balance algorithm call time */ int running_threads = 0; // Number of running threads in the system. NTSTATUS status = 0; ULONG buff_size = 0; ULONG info_size = 0; void *buffer = NULL; PSYSTEM_PROCESS_INFORMATION spi = NULL; int first_time = 1; double call_time = 0.0; // start, finish; __kmp_elapsed(&call_time); if (glb_call_time && (call_time - glb_call_time < __kmp_load_balance_interval)) { running_threads = glb_running_threads; goto finish; } glb_call_time = call_time; // Do not spend time on running algorithm if we have a permanent error. if (NtQuerySystemInformation == NULL) { running_threads = -1; goto finish; } if (max <= 0) { max = INT_MAX; } do { if (first_time) { buff_size = glb_buff_size; } else { buff_size = 2 * buff_size; } buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); if (buffer == NULL) { running_threads = -1; goto finish; } status = NtQuerySystemInformation(SystemProcessInformation, buffer, buff_size, &info_size); first_time = 0; } while (status == STATUS_INFO_LENGTH_MISMATCH); glb_buff_size = buff_size; #define CHECK(cond) \ { \ KMP_DEBUG_ASSERT(cond); \ if (!(cond)) { \ running_threads = -1; \ goto finish; \ } \ } CHECK(buff_size >= info_size); spi = PSYSTEM_PROCESS_INFORMATION(buffer); for (;;) { ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); CHECK(0 <= offset && offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); HANDLE pid = spi->ProcessId; ULONG num = spi->NumberOfThreads; CHECK(num >= 1); size_t spi_size = sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); CHECK(offset + spi_size < info_size); // Make sure process info record fits the buffer. if (spi->NextEntryOffset != 0) { CHECK(spi_size <= spi->NextEntryOffset); // And do not overlap with the next record. } // pid == 0 corresponds to the System Idle Process. It always has running // threads on all cores. So, we don't consider the running threads of this // process. if (pid != 0) { for (ULONG i = 0; i < num; ++i) { THREAD_STATE state = spi->Threads[i].State; // Count threads that have Ready or Running state. // !!! TODO: Why comment does not match the code??? if (state == StateRunning) { ++running_threads; // Stop counting running threads if the number is already greater than // the number of available cores if (running_threads >= max) { goto finish; } } } } if (spi->NextEntryOffset == 0) { break; } spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); } #undef CHECK finish: // Clean up and exit. if (buffer != NULL) { KMP_INTERNAL_FREE(buffer); } glb_running_threads = running_threads; return running_threads; } //__kmp_get_load_balance() // Find symbol from the loaded modules void *__kmp_lookup_symbol(const char *name, bool next) { HANDLE process = GetCurrentProcess(); DWORD needed; HMODULE *modules = nullptr; if (!EnumProcessModules(process, modules, 0, &needed)) return nullptr; DWORD num_modules = needed / sizeof(HMODULE); modules = (HMODULE *)malloc(num_modules * sizeof(HMODULE)); if (!EnumProcessModules(process, modules, needed, &needed)) { free(modules); return nullptr; } HMODULE curr_module = nullptr; if (next) { // Current module needs to be skipped if next flag is true if (!GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, (LPCTSTR)&__kmp_lookup_symbol, &curr_module)) { free(modules); return nullptr; } } void *proc = nullptr; for (uint32_t i = 0; i < num_modules; i++) { if (next && modules[i] == curr_module) continue; proc = (void *)GetProcAddress(modules[i], name); if (proc) break; } free(modules); return proc; } // Functions for hidden helper task void __kmp_hidden_helper_worker_thread_wait() { KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); } void __kmp_do_initialize_hidden_helper_threads() { KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); } void __kmp_hidden_helper_threads_initz_wait() { KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); } void __kmp_hidden_helper_initz_release() { KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); } void __kmp_hidden_helper_main_thread_wait() { KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); } void __kmp_hidden_helper_main_thread_release() { KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); } void __kmp_hidden_helper_worker_thread_signal() { KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); } void __kmp_hidden_helper_threads_deinitz_wait() { KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); } void __kmp_hidden_helper_threads_deinitz_release() { KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); }