/* * kmp_wait_release.h -- Wait/Release implementation */ //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef KMP_WAIT_RELEASE_H #define KMP_WAIT_RELEASE_H #include "kmp.h" #include "kmp_itt.h" #include "kmp_stats.h" #if OMPT_SUPPORT #include "ompt-specific.h" #endif /*! @defgroup WAIT_RELEASE Wait/Release operations The definitions and functions here implement the lowest level thread synchronizations of suspending a thread and awaking it. They are used to build higher level operations such as barriers and fork/join. */ /*! @ingroup WAIT_RELEASE @{ */ /*! * The flag_type describes the storage used for the flag. */ enum flag_type { flag32, /**< 32 bit flags */ flag64, /**< 64 bit flags */ flag_oncore /**< special 64-bit flag for on-core barrier (hierarchical) */ }; /*! * Base class for wait/release volatile flag */ template class kmp_flag_native { volatile P *loc; flag_type t; public: typedef P flag_t; kmp_flag_native(volatile P *p, flag_type ft) : loc(p), t(ft) {} volatile P *get() { return loc; } void *get_void_p() { return RCAST(void *, CCAST(P *, loc)); } void set(volatile P *new_loc) { loc = new_loc; } flag_type get_type() { return t; } P load() { return *loc; } void store(P val) { *loc = val; } }; /*! * Base class for wait/release atomic flag */ template class kmp_flag { std::atomic

*loc; /**< Pointer to the flag storage that is modified by another thread */ flag_type t; /**< "Type" of the flag in loc */ public: typedef P flag_t; kmp_flag(std::atomic

*p, flag_type ft) : loc(p), t(ft) {} /*! * @result the pointer to the actual flag */ std::atomic

*get() { return loc; } /*! * @result void* pointer to the actual flag */ void *get_void_p() { return RCAST(void *, loc); } /*! * @param new_loc in set loc to point at new_loc */ void set(std::atomic

*new_loc) { loc = new_loc; } /*! * @result the flag_type */ flag_type get_type() { return t; } /*! * @result flag value */ P load() { return loc->load(std::memory_order_acquire); } /*! * @param val the new flag value to be stored */ void store(P val) { loc->store(val, std::memory_order_release); } // Derived classes must provide the following: /* kmp_info_t * get_waiter(kmp_uint32 i); kmp_uint32 get_num_waiters(); bool done_check(); bool done_check_val(P old_loc); bool notdone_check(); P internal_release(); void suspend(int th_gtid); void resume(int th_gtid); P set_sleeping(); P unset_sleeping(); bool is_sleeping(); bool is_any_sleeping(); bool is_sleeping_val(P old_loc); int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32 is_constrained); */ }; #if OMPT_SUPPORT OMPT_NOINLINE static void __ompt_implicit_task_end(kmp_info_t *this_thr, ompt_state_t ompt_state, ompt_data_t *tId) { int ds_tid = this_thr->th.th_info.ds.ds_tid; if (ompt_state == ompt_state_wait_barrier_implicit) { this_thr->th.ompt_thread_info.state = ompt_state_overhead; #if OMPT_OPTIONAL void *codeptr = NULL; if (ompt_enabled.ompt_callback_sync_region_wait) { ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId, codeptr); } if (ompt_enabled.ompt_callback_sync_region) { ompt_callbacks.ompt_callback(ompt_callback_sync_region)( ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId, codeptr); } #endif if (!KMP_MASTER_TID(ds_tid)) { if (ompt_enabled.ompt_callback_implicit_task) { ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( ompt_scope_end, NULL, tId, 0, ds_tid, ompt_task_implicit); } // return to idle state this_thr->th.ompt_thread_info.state = ompt_state_idle; } else { this_thr->th.ompt_thread_info.state = ompt_state_overhead; } } } #endif /* Spin wait loop that first does pause/yield, then sleep. A thread that calls __kmp_wait_* must make certain that another thread calls __kmp_release to wake it back up to prevent deadlocks! NOTE: We may not belong to a team at this point. */ template static inline bool __kmp_wait_template(kmp_info_t *this_thr, C *flag USE_ITT_BUILD_ARG(void *itt_sync_obj)) { #if USE_ITT_BUILD && USE_ITT_NOTIFY volatile void *spin = flag->get(); #endif kmp_uint32 spins; int th_gtid; int tasks_completed = FALSE; int oversubscribed; #if !KMP_USE_MONITOR kmp_uint64 poll_count; kmp_uint64 hibernate_goal; #else kmp_uint32 hibernate; #endif KMP_FSYNC_SPIN_INIT(spin, NULL); if (flag->done_check()) { KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin)); return false; } th_gtid = this_thr->th.th_info.ds.ds_gtid; if (cancellable) { kmp_team_t *team = this_thr->th.th_team; if (team && team->t.t_cancel_request == cancel_parallel) return true; } #if KMP_OS_UNIX if (final_spin) KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true); #endif KA_TRACE(20, ("__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag)); #if KMP_STATS_ENABLED stats_state_e thread_state = KMP_GET_THREAD_STATE(); #endif /* OMPT Behavior: THIS function is called from __kmp_barrier (2 times) (implicit or explicit barrier in parallel regions) these have join / fork behavior In these cases, we don't change the state or trigger events in THIS function. Events are triggered in the calling code (__kmp_barrier): state := ompt_state_overhead barrier-begin barrier-wait-begin state := ompt_state_wait_barrier call join-barrier-implementation (finally arrive here) {} call fork-barrier-implementation (finally arrive here) {} state := ompt_state_overhead barrier-wait-end barrier-end state := ompt_state_work_parallel __kmp_fork_barrier (after thread creation, before executing implicit task) call fork-barrier-implementation (finally arrive here) {} // worker arrive here with state = ompt_state_idle __kmp_join_barrier (implicit barrier at end of parallel region) state := ompt_state_barrier_implicit barrier-begin barrier-wait-begin call join-barrier-implementation (finally arrive here final_spin=FALSE) { } __kmp_fork_barrier (implicit barrier at end of parallel region) call fork-barrier-implementation (finally arrive here final_spin=TRUE) Worker after task-team is finished: barrier-wait-end barrier-end implicit-task-end idle-begin state := ompt_state_idle Before leaving, if state = ompt_state_idle idle-end state := ompt_state_overhead */ #if OMPT_SUPPORT ompt_state_t ompt_entry_state; ompt_data_t *tId; if (ompt_enabled.enabled) { ompt_entry_state = this_thr->th.ompt_thread_info.state; if (!final_spin || ompt_entry_state != ompt_state_wait_barrier_implicit || KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) { ompt_lw_taskteam_t *team = this_thr->th.th_team->t.ompt_serialized_team_info; if (team) { tId = &(team->ompt_task_info.task_data); } else { tId = OMPT_CUR_TASK_DATA(this_thr); } } else { tId = &(this_thr->th.ompt_thread_info.task_data); } if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec || this_thr->th.th_task_team == NULL)) { // implicit task is done. Either no taskqueue, or task-team finished __ompt_implicit_task_end(this_thr, ompt_entry_state, tId); } } #endif KMP_INIT_YIELD(spins); // Setup for waiting if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME || __kmp_pause_status == kmp_soft_paused) { #if KMP_USE_MONITOR // The worker threads cannot rely on the team struct existing at this point. // Use the bt values cached in the thread struct instead. #ifdef KMP_ADJUST_BLOCKTIME if (__kmp_pause_status == kmp_soft_paused || (__kmp_zero_bt && !this_thr->th.th_team_bt_set)) // Force immediate suspend if not set by user and more threads than // available procs hibernate = 0; else hibernate = this_thr->th.th_team_bt_intervals; #else hibernate = this_thr->th.th_team_bt_intervals; #endif /* KMP_ADJUST_BLOCKTIME */ /* If the blocktime is nonzero, we want to make sure that we spin wait for the entirety of the specified #intervals, plus up to one interval more. This increment make certain that this thread doesn't go to sleep too soon. */ if (hibernate != 0) hibernate++; // Add in the current time value. hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value); KF_TRACE(20, ("__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n", th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate, hibernate - __kmp_global.g.g_time.dt.t_value)); #else if (__kmp_pause_status == kmp_soft_paused) { // Force immediate suspend hibernate_goal = KMP_NOW(); } else hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals; poll_count = 0; #endif // KMP_USE_MONITOR } oversubscribed = (TCR_4(__kmp_nth) > __kmp_avail_proc); KMP_MB(); // Main wait spin loop while (flag->notdone_check()) { kmp_task_team_t *task_team = NULL; if (__kmp_tasking_mode != tskm_immediate_exec) { task_team = this_thr->th.th_task_team; /* If the thread's task team pointer is NULL, it means one of 3 things: 1) A newly-created thread is first being released by __kmp_fork_barrier(), and its task team has not been set up yet. 2) All tasks have been executed to completion. 3) Tasking is off for this region. This could be because we are in a serialized region (perhaps the outer one), or else tasking was manually disabled (KMP_TASKING=0). */ if (task_team != NULL) { if (TCR_SYNC_4(task_team->tt.tt_active)) { if (KMP_TASKING_ENABLED(task_team)) flag->execute_tasks( this_thr, th_gtid, final_spin, &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0); else this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; } else { KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)); #if OMPT_SUPPORT // task-team is done now, other cases should be catched above if (final_spin && ompt_enabled.enabled) __ompt_implicit_task_end(this_thr, ompt_entry_state, tId); #endif this_thr->th.th_task_team = NULL; this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; } } else { this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; } // if } // if KMP_FSYNC_SPIN_PREPARE(CCAST(void *, spin)); if (TCR_4(__kmp_global.g.g_done)) { if (__kmp_global.g.g_abort) __kmp_abort_thread(); break; } // If we are oversubscribed, or have waited a bit (and // KMP_LIBRARY=throughput), then yield KMP_YIELD_OVERSUB_ELSE_SPIN(spins); #if KMP_STATS_ENABLED // Check if thread has been signalled to idle state // This indicates that the logical "join-barrier" has finished if (this_thr->th.th_stats->isIdle() && KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) { KMP_SET_THREAD_STATE(IDLE); KMP_PUSH_PARTITIONED_TIMER(OMP_idle); } #endif // Check if the barrier surrounding this wait loop has been cancelled if (cancellable) { kmp_team_t *team = this_thr->th.th_team; if (team && team->t.t_cancel_request == cancel_parallel) break; } // Don't suspend if KMP_BLOCKTIME is set to "infinite" if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && __kmp_pause_status != kmp_soft_paused) continue; // Don't suspend if there is a likelihood of new tasks being spawned. if ((task_team != NULL) && TCR_4(task_team->tt.tt_found_tasks)) continue; #if KMP_USE_MONITOR // If we have waited a bit more, fall asleep if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate) continue; #else if (KMP_BLOCKING(hibernate_goal, poll_count++)) continue; #endif // Don't suspend if wait loop designated non-sleepable // in template parameters if (!sleepable) continue; if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && __kmp_pause_status != kmp_soft_paused) continue; KF_TRACE(50, ("__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid)); #if KMP_OS_UNIX if (final_spin) KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false); #endif flag->suspend(th_gtid); #if KMP_OS_UNIX if (final_spin) KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true); #endif if (TCR_4(__kmp_global.g.g_done)) { if (__kmp_global.g.g_abort) __kmp_abort_thread(); break; } else if (__kmp_tasking_mode != tskm_immediate_exec && this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) { this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; } // TODO: If thread is done with work and times out, disband/free } #if OMPT_SUPPORT ompt_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state; if (ompt_enabled.enabled && ompt_exit_state != ompt_state_undefined) { #if OMPT_OPTIONAL if (final_spin) { __ompt_implicit_task_end(this_thr, ompt_exit_state, tId); ompt_exit_state = this_thr->th.ompt_thread_info.state; } #endif if (ompt_exit_state == ompt_state_idle) { this_thr->th.ompt_thread_info.state = ompt_state_overhead; } } #endif #if KMP_STATS_ENABLED // If we were put into idle state, pop that off the state stack if (KMP_GET_THREAD_STATE() == IDLE) { KMP_POP_PARTITIONED_TIMER(); KMP_SET_THREAD_STATE(thread_state); this_thr->th.th_stats->resetIdleFlag(); } #endif #if KMP_OS_UNIX if (final_spin) KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false); #endif KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin)); if (cancellable) { kmp_team_t *team = this_thr->th.th_team; if (team && team->t.t_cancel_request == cancel_parallel) { if (tasks_completed) { // undo the previous decrement of unfinished_threads so that the // thread can decrement at the join barrier with no problem kmp_task_team_t *task_team = this_thr->th.th_task_team; std::atomic *unfinished_threads = &(task_team->tt.tt_unfinished_threads); KMP_ATOMIC_INC(unfinished_threads); } return true; } } return false; } /* Release any threads specified as waiting on the flag by releasing the flag and resume the waiting thread if indicated by the sleep bit(s). A thread that calls __kmp_wait_template must call this function to wake up the potentially sleeping thread and prevent deadlocks! */ template static inline void __kmp_release_template(C *flag) { #ifdef KMP_DEBUG int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; #endif KF_TRACE(20, ("__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get())); KMP_DEBUG_ASSERT(flag->get()); KMP_FSYNC_RELEASING(flag->get_void_p()); flag->internal_release(); KF_TRACE(100, ("__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(), flag->load())); if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Only need to check sleep stuff if infinite block time not set. // Are *any* threads waiting on flag sleeping? if (flag->is_any_sleeping()) { for (unsigned int i = 0; i < flag->get_num_waiters(); ++i) { // if sleeping waiter exists at i, sets current_waiter to i inside flag kmp_info_t *waiter = flag->get_waiter(i); if (waiter) { int wait_gtid = waiter->th.th_info.ds.ds_gtid; // Wake up thread if needed KF_TRACE(50, ("__kmp_release: T#%d waking up thread T#%d since sleep " "flag(%p) set\n", gtid, wait_gtid, flag->get())); flag->resume(wait_gtid); // unsets flag's current_waiter when done } } } } } template struct flag_traits {}; template <> struct flag_traits { typedef kmp_uint32 flag_t; static const flag_type t = flag32; static inline flag_t tcr(flag_t f) { return TCR_4(f); } static inline flag_t test_then_add4(volatile flag_t *f) { return KMP_TEST_THEN_ADD4_32(RCAST(volatile kmp_int32 *, f)); } static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { return KMP_TEST_THEN_OR32(f, v); } static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { return KMP_TEST_THEN_AND32(f, v); } }; template <> struct flag_traits { typedef kmp_uint64 flag_t; static const flag_type t = flag64; static inline flag_t tcr(flag_t f) { return TCR_8(f); } static inline flag_t test_then_add4(volatile flag_t *f) { return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f)); } static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { return KMP_TEST_THEN_OR64(f, v); } static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { return KMP_TEST_THEN_AND64(f, v); } }; // Basic flag that does not use C11 Atomics template class kmp_basic_flag_native : public kmp_flag_native { typedef flag_traits traits_type; FlagType checker; /**< Value to compare flag to to check if flag has been released. */ kmp_info_t *waiting_threads[1]; /**< Array of threads sleeping on this thread. */ kmp_uint32 num_waiting_threads; /**< Number of threads sleeping on this thread. */ public: kmp_basic_flag_native(volatile FlagType *p) : kmp_flag_native(p, traits_type::t), num_waiting_threads(0) {} kmp_basic_flag_native(volatile FlagType *p, kmp_info_t *thr) : kmp_flag_native(p, traits_type::t), num_waiting_threads(1) { waiting_threads[0] = thr; } kmp_basic_flag_native(volatile FlagType *p, FlagType c) : kmp_flag_native(p, traits_type::t), checker(c), num_waiting_threads(0) {} /*! * param i in index into waiting_threads * @result the thread that is waiting at index i */ kmp_info_t *get_waiter(kmp_uint32 i) { KMP_DEBUG_ASSERT(i < num_waiting_threads); return waiting_threads[i]; } /*! * @result num_waiting_threads */ kmp_uint32 get_num_waiters() { return num_waiting_threads; } /*! * @param thr in the thread which is now waiting * * Insert a waiting thread at index 0. */ void set_waiter(kmp_info_t *thr) { waiting_threads[0] = thr; num_waiting_threads = 1; } /*! * @result true if the flag object has been released. */ bool done_check() { return traits_type::tcr(*(this->get())) == checker; } /*! * @param old_loc in old value of flag * @result true if the flag's old value indicates it was released. */ bool done_check_val(FlagType old_loc) { return old_loc == checker; } /*! * @result true if the flag object is not yet released. * Used in __kmp_wait_template like: * @code * while (flag.notdone_check()) { pause(); } * @endcode */ bool notdone_check() { return traits_type::tcr(*(this->get())) != checker; } /*! * @result Actual flag value before release was applied. * Trigger all waiting threads to run by modifying flag to release state. */ void internal_release() { (void)traits_type::test_then_add4((volatile FlagType *)this->get()); } /*! * @result Actual flag value before sleep bit(s) set. * Notes that there is at least one thread sleeping on the flag by setting * sleep bit(s). */ FlagType set_sleeping() { return traits_type::test_then_or((volatile FlagType *)this->get(), KMP_BARRIER_SLEEP_STATE); } /*! * @result Actual flag value before sleep bit(s) cleared. * Notes that there are no longer threads sleeping on the flag by clearing * sleep bit(s). */ FlagType unset_sleeping() { return traits_type::test_then_and((volatile FlagType *)this->get(), ~KMP_BARRIER_SLEEP_STATE); } /*! * @param old_loc in old value of flag * Test whether there are threads sleeping on the flag's old value in old_loc. */ bool is_sleeping_val(FlagType old_loc) { return old_loc & KMP_BARRIER_SLEEP_STATE; } /*! * Test whether there are threads sleeping on the flag. */ bool is_sleeping() { return is_sleeping_val(*(this->get())); } bool is_any_sleeping() { return is_sleeping_val(*(this->get())); } kmp_uint8 *get_stolen() { return NULL; } enum barrier_type get_bt() { return bs_last_barrier; } }; template class kmp_basic_flag : public kmp_flag { typedef flag_traits traits_type; FlagType checker; /**< Value to compare flag to to check if flag has been released. */ kmp_info_t *waiting_threads[1]; /**< Array of threads sleeping on this thread. */ kmp_uint32 num_waiting_threads; /**< Number of threads sleeping on this thread. */ public: kmp_basic_flag(std::atomic *p) : kmp_flag(p, traits_type::t), num_waiting_threads(0) {} kmp_basic_flag(std::atomic *p, kmp_info_t *thr) : kmp_flag(p, traits_type::t), num_waiting_threads(1) { waiting_threads[0] = thr; } kmp_basic_flag(std::atomic *p, FlagType c) : kmp_flag(p, traits_type::t), checker(c), num_waiting_threads(0) {} /*! * param i in index into waiting_threads * @result the thread that is waiting at index i */ kmp_info_t *get_waiter(kmp_uint32 i) { KMP_DEBUG_ASSERT(i < num_waiting_threads); return waiting_threads[i]; } /*! * @result num_waiting_threads */ kmp_uint32 get_num_waiters() { return num_waiting_threads; } /*! * @param thr in the thread which is now waiting * * Insert a waiting thread at index 0. */ void set_waiter(kmp_info_t *thr) { waiting_threads[0] = thr; num_waiting_threads = 1; } /*! * @result true if the flag object has been released. */ bool done_check() { return this->load() == checker; } /*! * @param old_loc in old value of flag * @result true if the flag's old value indicates it was released. */ bool done_check_val(FlagType old_loc) { return old_loc == checker; } /*! * @result true if the flag object is not yet released. * Used in __kmp_wait_template like: * @code * while (flag.notdone_check()) { pause(); } * @endcode */ bool notdone_check() { return this->load() != checker; } /*! * @result Actual flag value before release was applied. * Trigger all waiting threads to run by modifying flag to release state. */ void internal_release() { KMP_ATOMIC_ADD(this->get(), 4); } /*! * @result Actual flag value before sleep bit(s) set. * Notes that there is at least one thread sleeping on the flag by setting * sleep bit(s). */ FlagType set_sleeping() { return KMP_ATOMIC_OR(this->get(), KMP_BARRIER_SLEEP_STATE); } /*! * @result Actual flag value before sleep bit(s) cleared. * Notes that there are no longer threads sleeping on the flag by clearing * sleep bit(s). */ FlagType unset_sleeping() { return KMP_ATOMIC_AND(this->get(), ~KMP_BARRIER_SLEEP_STATE); } /*! * @param old_loc in old value of flag * Test whether there are threads sleeping on the flag's old value in old_loc. */ bool is_sleeping_val(FlagType old_loc) { return old_loc & KMP_BARRIER_SLEEP_STATE; } /*! * Test whether there are threads sleeping on the flag. */ bool is_sleeping() { return is_sleeping_val(this->load()); } bool is_any_sleeping() { return is_sleeping_val(this->load()); } kmp_uint8 *get_stolen() { return NULL; } enum barrier_type get_bt() { return bs_last_barrier; } }; class kmp_flag_32 : public kmp_basic_flag { public: kmp_flag_32(std::atomic *p) : kmp_basic_flag(p) {} kmp_flag_32(std::atomic *p, kmp_info_t *thr) : kmp_basic_flag(p, thr) {} kmp_flag_32(std::atomic *p, kmp_uint32 c) : kmp_basic_flag(p, c) {} void suspend(int th_gtid) { __kmp_suspend_32(th_gtid, this); } void resume(int th_gtid) { __kmp_resume_32(th_gtid, this); } int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), kmp_int32 is_constrained) { return __kmp_execute_tasks_32( this_thr, gtid, this, final_spin, thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); } void wait(kmp_info_t *this_thr, int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) { if (final_spin) __kmp_wait_template( this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); else __kmp_wait_template( this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); } void release() { __kmp_release_template(this); } flag_type get_ptr_type() { return flag32; } }; class kmp_flag_64 : public kmp_basic_flag_native { public: kmp_flag_64(volatile kmp_uint64 *p) : kmp_basic_flag_native(p) {} kmp_flag_64(volatile kmp_uint64 *p, kmp_info_t *thr) : kmp_basic_flag_native(p, thr) {} kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c) : kmp_basic_flag_native(p, c) {} void suspend(int th_gtid) { __kmp_suspend_64(th_gtid, this); } void resume(int th_gtid) { __kmp_resume_64(th_gtid, this); } int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), kmp_int32 is_constrained) { return __kmp_execute_tasks_64( this_thr, gtid, this, final_spin, thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); } void wait(kmp_info_t *this_thr, int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) { if (final_spin) __kmp_wait_template( this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); else __kmp_wait_template( this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); } bool wait_cancellable_nosleep(kmp_info_t *this_thr, int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) { bool retval = false; if (final_spin) retval = __kmp_wait_template( this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); else retval = __kmp_wait_template( this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); return retval; } void release() { __kmp_release_template(this); } flag_type get_ptr_type() { return flag64; } }; // Hierarchical 64-bit on-core barrier instantiation class kmp_flag_oncore : public kmp_flag_native { kmp_uint64 checker; kmp_info_t *waiting_threads[1]; kmp_uint32 num_waiting_threads; kmp_uint32 offset; /**< Portion of flag that is of interest for an operation. */ bool flag_switch; /**< Indicates a switch in flag location. */ enum barrier_type bt; /**< Barrier type. */ kmp_info_t *this_thr; /**< Thread that may be redirected to different flag location. */ #if USE_ITT_BUILD void * itt_sync_obj; /**< ITT object that must be passed to new flag location. */ #endif unsigned char &byteref(volatile kmp_uint64 *loc, size_t offset) { return (RCAST(unsigned char *, CCAST(kmp_uint64 *, loc)))[offset]; } public: kmp_flag_oncore(volatile kmp_uint64 *p) : kmp_flag_native(p, flag_oncore), num_waiting_threads(0), flag_switch(false) {} kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint32 idx) : kmp_flag_native(p, flag_oncore), num_waiting_threads(0), offset(idx), flag_switch(false) {} kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx, enum barrier_type bar_t, kmp_info_t *thr USE_ITT_BUILD_ARG(void *itt)) : kmp_flag_native(p, flag_oncore), checker(c), num_waiting_threads(0), offset(idx), flag_switch(false), bt(bar_t), this_thr(thr) USE_ITT_BUILD_ARG(itt_sync_obj(itt)) {} kmp_info_t *get_waiter(kmp_uint32 i) { KMP_DEBUG_ASSERT(i < num_waiting_threads); return waiting_threads[i]; } kmp_uint32 get_num_waiters() { return num_waiting_threads; } void set_waiter(kmp_info_t *thr) { waiting_threads[0] = thr; num_waiting_threads = 1; } bool done_check_val(kmp_uint64 old_loc) { return byteref(&old_loc, offset) == checker; } bool done_check() { return done_check_val(*get()); } bool notdone_check() { // Calculate flag_switch if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG) flag_switch = true; if (byteref(get(), offset) != 1 && !flag_switch) return true; else if (flag_switch) { this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING; kmp_flag_64 flag(&this_thr->th.th_bar[bt].bb.b_go, (kmp_uint64)KMP_BARRIER_STATE_BUMP); __kmp_wait_64(this_thr, &flag, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); } return false; } void internal_release() { // Other threads can write their own bytes simultaneously. if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { byteref(get(), offset) = 1; } else { kmp_uint64 mask = 0; byteref(&mask, offset) = 1; KMP_TEST_THEN_OR64(get(), mask); } } kmp_uint64 set_sleeping() { return KMP_TEST_THEN_OR64(get(), KMP_BARRIER_SLEEP_STATE); } kmp_uint64 unset_sleeping() { return KMP_TEST_THEN_AND64(get(), ~KMP_BARRIER_SLEEP_STATE); } bool is_sleeping_val(kmp_uint64 old_loc) { return old_loc & KMP_BARRIER_SLEEP_STATE; } bool is_sleeping() { return is_sleeping_val(*get()); } bool is_any_sleeping() { return is_sleeping_val(*get()); } void wait(kmp_info_t *this_thr, int final_spin) { if (final_spin) __kmp_wait_template( this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); else __kmp_wait_template( this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); } void release() { __kmp_release_template(this); } void suspend(int th_gtid) { __kmp_suspend_oncore(th_gtid, this); } void resume(int th_gtid) { __kmp_resume_oncore(th_gtid, this); } int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), kmp_int32 is_constrained) { return __kmp_execute_tasks_oncore( this_thr, gtid, this, final_spin, thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); } kmp_uint8 *get_stolen() { return NULL; } enum barrier_type get_bt() { return bt; } flag_type get_ptr_type() { return flag_oncore; } }; // Used to wake up threads, volatile void* flag is usually the th_sleep_loc // associated with int gtid. static inline void __kmp_null_resume_wrapper(int gtid, volatile void *flag) { if (!flag) return; switch (RCAST(kmp_flag_64 *, CCAST(void *, flag))->get_type()) { case flag32: __kmp_resume_32(gtid, NULL); break; case flag64: __kmp_resume_64(gtid, NULL); break; case flag_oncore: __kmp_resume_oncore(gtid, NULL); break; } } /*! @} */ #endif // KMP_WAIT_RELEASE_H