/* * kmp_gsupport.cpp */ //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "kmp.h" #include "kmp_atomic.h" #include "kmp_utils.h" #if OMPT_SUPPORT #include "ompt-specific.h" #endif enum { KMP_GOMP_TASK_UNTIED_FLAG = 1, KMP_GOMP_TASK_FINAL_FLAG = 2, KMP_GOMP_TASK_DEPENDS_FLAG = 8 }; enum { KMP_GOMP_DEPOBJ_IN = 1, KMP_GOMP_DEPOBJ_OUT = 2, KMP_GOMP_DEPOBJ_INOUT = 3, KMP_GOMP_DEPOBJ_MTXINOUTSET = 4 }; // This class helps convert gomp dependency info into // kmp_depend_info_t structures class kmp_gomp_depends_info_t { void **depend; kmp_int32 num_deps; size_t num_out, num_mutexinout, num_in, num_depobj; size_t offset; public: kmp_gomp_depends_info_t(void **depend) : depend(depend) { size_t ndeps = (kmp_intptr_t)depend[0]; // GOMP taskdep structure: // if depend[0] != 0: // depend = [ ndeps | nout | &out | ... | &out | &in | ... | &in ] // // if depend[0] == 0: // depend = [ 0 | ndeps | nout | nmtx | nin | &out | ... | &out | &mtx | // ... | &mtx | &in | ... | &in | &depobj | ... | &depobj ] if (ndeps) { num_out = (kmp_intptr_t)depend[1]; num_in = ndeps - num_out; num_mutexinout = num_depobj = 0; offset = 2; } else { ndeps = (kmp_intptr_t)depend[1]; num_out = (kmp_intptr_t)depend[2]; num_mutexinout = (kmp_intptr_t)depend[3]; num_in = (kmp_intptr_t)depend[4]; num_depobj = ndeps - num_out - num_mutexinout - num_in; KMP_ASSERT(num_depobj <= ndeps); offset = 5; } num_deps = static_cast(ndeps); } kmp_int32 get_num_deps() const { return num_deps; } kmp_depend_info_t get_kmp_depend(size_t index) const { kmp_depend_info_t retval; memset(&retval, '\0', sizeof(retval)); KMP_ASSERT(index < (size_t)num_deps); retval.len = 0; // Because inout and out are logically equivalent, // use inout and in dependency flags. GOMP does not provide a // way to distinguish if user specified out vs. inout. if (index < num_out) { retval.flags.in = 1; retval.flags.out = 1; retval.base_addr = (kmp_intptr_t)depend[offset + index]; } else if (index >= num_out && index < (num_out + num_mutexinout)) { retval.flags.mtx = 1; retval.base_addr = (kmp_intptr_t)depend[offset + index]; } else if (index >= (num_out + num_mutexinout) && index < (num_out + num_mutexinout + num_in)) { retval.flags.in = 1; retval.base_addr = (kmp_intptr_t)depend[offset + index]; } else { // depobj is a two element array (size of elements are size of pointer) // depobj[0] = base_addr // depobj[1] = type (in, out, inout, mutexinoutset, etc.) kmp_intptr_t *depobj = (kmp_intptr_t *)depend[offset + index]; retval.base_addr = depobj[0]; switch (depobj[1]) { case KMP_GOMP_DEPOBJ_IN: retval.flags.in = 1; break; case KMP_GOMP_DEPOBJ_OUT: retval.flags.out = 1; break; case KMP_GOMP_DEPOBJ_INOUT: retval.flags.in = 1; retval.flags.out = 1; break; case KMP_GOMP_DEPOBJ_MTXINOUTSET: retval.flags.mtx = 1; break; default: KMP_FATAL(GompFeatureNotSupported, "Unknown depobj type"); } } return retval; } }; #ifdef __cplusplus extern "C" { #endif // __cplusplus #define MKLOC(loc, routine) \ static ident_t loc = {0, KMP_IDENT_KMPC, 0, 0, ";unknown;unknown;0;0;;"}; #include "kmp_ftn_os.h" void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_BARRIER)(void) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_barrier"); KA_TRACE(20, ("GOMP_barrier: T#%d\n", gtid)); #if OMPT_SUPPORT && OMPT_OPTIONAL ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_barrier(&loc, gtid); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif } // Mutual exclusion // The symbol that icc/ifort generates for unnamed critical sections // - .gomp_critical_user_ - is defined using .comm in any objects reference it. // We can't reference it directly here in C code, as the symbol contains a ".". // // The RTL contains an assembly language definition of .gomp_critical_user_ // with another symbol __kmp_unnamed_critical_addr initialized with it's // address. extern kmp_critical_name *__kmp_unnamed_critical_addr; void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CRITICAL_START)(void) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_critical_start"); KA_TRACE(20, ("GOMP_critical_start: T#%d\n", gtid)); #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_critical(&loc, gtid, __kmp_unnamed_critical_addr); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CRITICAL_END)(void) { int gtid = __kmp_get_gtid(); MKLOC(loc, "GOMP_critical_end"); KA_TRACE(20, ("GOMP_critical_end: T#%d\n", gtid)); #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_end_critical(&loc, gtid, __kmp_unnamed_critical_addr); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CRITICAL_NAME_START)(void **pptr) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_critical_name_start"); KA_TRACE(20, ("GOMP_critical_name_start: T#%d\n", gtid)); __kmpc_critical(&loc, gtid, (kmp_critical_name *)pptr); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CRITICAL_NAME_END)(void **pptr) { int gtid = __kmp_get_gtid(); MKLOC(loc, "GOMP_critical_name_end"); KA_TRACE(20, ("GOMP_critical_name_end: T#%d\n", gtid)); __kmpc_end_critical(&loc, gtid, (kmp_critical_name *)pptr); } // The Gnu codegen tries to use locked operations to perform atomic updates // inline. If it can't, then it calls GOMP_atomic_start() before performing // the update and GOMP_atomic_end() afterward, regardless of the data type. void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_ATOMIC_START)(void) { int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_atomic_start: T#%d\n", gtid)); #if OMPT_SUPPORT __ompt_thread_assign_wait_id(0); #endif __kmp_acquire_atomic_lock(&__kmp_atomic_lock, gtid); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_ATOMIC_END)(void) { int gtid = __kmp_get_gtid(); KA_TRACE(20, ("GOMP_atomic_end: T#%d\n", gtid)); __kmp_release_atomic_lock(&__kmp_atomic_lock, gtid); } int KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SINGLE_START)(void) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_single_start"); KA_TRACE(20, ("GOMP_single_start: T#%d\n", gtid)); if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); // 3rd parameter == FALSE prevents kmp_enter_single from pushing a // workshare when USE_CHECKS is defined. We need to avoid the push, // as there is no corresponding GOMP_single_end() call. kmp_int32 rc = __kmp_enter_single(gtid, &loc, FALSE); #if OMPT_SUPPORT && OMPT_OPTIONAL kmp_info_t *this_thr = __kmp_threads[gtid]; kmp_team_t *team = this_thr->th.th_team; int tid = __kmp_tid_from_gtid(gtid); if (ompt_enabled.enabled) { if (rc) { if (ompt_enabled.ompt_callback_work) { ompt_callbacks.ompt_callback(ompt_callback_work)( ompt_work_single_executor, ompt_scope_begin, &(team->t.ompt_team_info.parallel_data), &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), 1, OMPT_GET_RETURN_ADDRESS(0)); } } else { if (ompt_enabled.ompt_callback_work) { ompt_callbacks.ompt_callback(ompt_callback_work)( ompt_work_single_other, ompt_scope_begin, &(team->t.ompt_team_info.parallel_data), &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), 1, OMPT_GET_RETURN_ADDRESS(0)); ompt_callbacks.ompt_callback(ompt_callback_work)( ompt_work_single_other, ompt_scope_end, &(team->t.ompt_team_info.parallel_data), &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), 1, OMPT_GET_RETURN_ADDRESS(0)); } } } #endif return rc; } void *KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SINGLE_COPY_START)(void) { void *retval; int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_single_copy_start"); KA_TRACE(20, ("GOMP_single_copy_start: T#%d\n", gtid)); if (!TCR_4(__kmp_init_parallel)) __kmp_parallel_initialize(); __kmp_resume_if_soft_paused(); // If this is the first thread to enter, return NULL. The generated code will // then call GOMP_single_copy_end() for this thread only, with the // copyprivate data pointer as an argument. if (__kmp_enter_single(gtid, &loc, FALSE)) return NULL; // Wait for the first thread to set the copyprivate data pointer, // and for all other threads to reach this point. #if OMPT_SUPPORT && OMPT_OPTIONAL ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); // Retrieve the value of the copyprivate data point, and wait for all // threads to do likewise, then return. retval = __kmp_team_from_gtid(gtid)->t.t_copypriv_data; { #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); } #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif return retval; } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SINGLE_COPY_END)(void *data) { int gtid = __kmp_get_gtid(); KA_TRACE(20, ("GOMP_single_copy_end: T#%d\n", gtid)); // Set the copyprivate data pointer fo the team, then hit the barrier so that // the other threads will continue on and read it. Hit another barrier before // continuing, so that the know that the copyprivate data pointer has been // propagated to all threads before trying to reuse the t_copypriv_data field. __kmp_team_from_gtid(gtid)->t.t_copypriv_data = data; #if OMPT_SUPPORT && OMPT_OPTIONAL ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); { #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); } #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_ORDERED_START)(void) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_ordered_start"); KA_TRACE(20, ("GOMP_ordered_start: T#%d\n", gtid)); #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_ordered(&loc, gtid); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_ORDERED_END)(void) { int gtid = __kmp_get_gtid(); MKLOC(loc, "GOMP_ordered_end"); KA_TRACE(20, ("GOMP_ordered_start: T#%d\n", gtid)); #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_end_ordered(&loc, gtid); } // Dispatch macro defs // // They come in two flavors: 64-bit unsigned, and either 32-bit signed // (IA-32 architecture) or 64-bit signed (Intel(R) 64). #if KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_MIPS || KMP_ARCH_WASM || \ KMP_ARCH_PPC #define KMP_DISPATCH_INIT __kmp_aux_dispatch_init_4 #define KMP_DISPATCH_FINI_CHUNK __kmp_aux_dispatch_fini_chunk_4 #define KMP_DISPATCH_NEXT __kmpc_dispatch_next_4 #else #define KMP_DISPATCH_INIT __kmp_aux_dispatch_init_8 #define KMP_DISPATCH_FINI_CHUNK __kmp_aux_dispatch_fini_chunk_8 #define KMP_DISPATCH_NEXT __kmpc_dispatch_next_8 #endif /* KMP_ARCH_X86 */ #define KMP_DISPATCH_INIT_ULL __kmp_aux_dispatch_init_8u #define KMP_DISPATCH_FINI_CHUNK_ULL __kmp_aux_dispatch_fini_chunk_8u #define KMP_DISPATCH_NEXT_ULL __kmpc_dispatch_next_8u // The parallel construct #ifndef KMP_DEBUG static #endif /* KMP_DEBUG */ void __kmp_GOMP_microtask_wrapper(int *gtid, int *npr, void (*task)(void *), void *data) { #if OMPT_SUPPORT kmp_info_t *thr; ompt_frame_t *ompt_frame; ompt_state_t enclosing_state; if (ompt_enabled.enabled) { // get pointer to thread data structure thr = __kmp_threads[*gtid]; // save enclosing task state; set current state for task enclosing_state = thr->th.ompt_thread_info.state; thr->th.ompt_thread_info.state = ompt_state_work_parallel; // set task frame __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); ompt_frame->exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } #endif task(data); #if OMPT_SUPPORT if (ompt_enabled.enabled) { // clear task frame ompt_frame->exit_frame = ompt_data_none; // restore enclosing state thr->th.ompt_thread_info.state = enclosing_state; } #endif } #ifndef KMP_DEBUG static #endif /* KMP_DEBUG */ void __kmp_GOMP_parallel_microtask_wrapper(int *gtid, int *npr, void (*task)(void *), void *data, unsigned num_threads, ident_t *loc, enum sched_type schedule, long start, long end, long incr, long chunk_size) { // Initialize the loop worksharing construct. KMP_DISPATCH_INIT(loc, *gtid, schedule, start, end, incr, chunk_size, schedule != kmp_sch_static); #if OMPT_SUPPORT kmp_info_t *thr; ompt_frame_t *ompt_frame; ompt_state_t enclosing_state; if (ompt_enabled.enabled) { thr = __kmp_threads[*gtid]; // save enclosing task state; set current state for task enclosing_state = thr->th.ompt_thread_info.state; thr->th.ompt_thread_info.state = ompt_state_work_parallel; // set task frame __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); ompt_frame->exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } #endif // Now invoke the microtask. task(data); #if OMPT_SUPPORT if (ompt_enabled.enabled) { // clear task frame ompt_frame->exit_frame = ompt_data_none; // reset enclosing state thr->th.ompt_thread_info.state = enclosing_state; } #endif } static void __kmp_GOMP_fork_call(ident_t *loc, int gtid, unsigned num_threads, unsigned flags, void (*unwrapped_task)(void *), microtask_t wrapper, int argc, ...) { int rc; kmp_info_t *thr = __kmp_threads[gtid]; kmp_team_t *team = thr->th.th_team; int tid = __kmp_tid_from_gtid(gtid); va_list ap; va_start(ap, argc); if (num_threads != 0) __kmp_push_num_threads(loc, gtid, num_threads); if (flags != 0) __kmp_push_proc_bind(loc, gtid, (kmp_proc_bind_t)flags); rc = __kmp_fork_call(loc, gtid, fork_context_gnu, argc, wrapper, __kmp_invoke_task_func, kmp_va_addr_of(ap)); va_end(ap); if (rc) { __kmp_run_before_invoked_task(gtid, tid, thr, team); } #if OMPT_SUPPORT int ompt_team_size; if (ompt_enabled.enabled) { ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); ompt_task_info_t *task_info = __ompt_get_task_info_object(0); // implicit task callback if (ompt_enabled.ompt_callback_implicit_task) { ompt_team_size = __kmp_team_from_gtid(gtid)->t.t_nproc; ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( ompt_scope_begin, &(team_info->parallel_data), &(task_info->task_data), ompt_team_size, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? task_info->thread_num = __kmp_tid_from_gtid(gtid); } thr->th.ompt_thread_info.state = ompt_state_work_parallel; } #endif } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_START)(void (*task)(void *), void *data, unsigned num_threads) { int gtid = __kmp_entry_gtid(); #if OMPT_SUPPORT ompt_frame_t *parent_frame, *frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &parent_frame, NULL, NULL); parent_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif MKLOC(loc, "GOMP_parallel_start"); KA_TRACE(20, ("GOMP_parallel_start: T#%d\n", gtid)); __kmp_GOMP_fork_call(&loc, gtid, num_threads, 0u, task, (microtask_t)__kmp_GOMP_microtask_wrapper, 2, task, data); #if OMPT_SUPPORT if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &frame, NULL, NULL); frame->exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } #endif #if OMPD_SUPPORT if (ompd_state & OMPD_ENABLE_BP) ompd_bp_parallel_begin(); #endif } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_END)(void) { int gtid = __kmp_get_gtid(); kmp_info_t *thr; thr = __kmp_threads[gtid]; MKLOC(loc, "GOMP_parallel_end"); KA_TRACE(20, ("GOMP_parallel_end: T#%d\n", gtid)); if (!thr->th.th_team->t.t_serialized) { __kmp_run_after_invoked_task(gtid, __kmp_tid_from_gtid(gtid), thr, thr->th.th_team); } #if OMPT_SUPPORT if (ompt_enabled.enabled) { // Implicit task is finished here, in the barrier we might schedule // deferred tasks, // these don't see the implicit task on the stack OMPT_CUR_TASK_INFO(thr)->frame.exit_frame = ompt_data_none; } #endif __kmp_join_call(&loc, gtid #if OMPT_SUPPORT , fork_context_gnu #endif ); #if OMPD_SUPPORT if (ompd_state & OMPD_ENABLE_BP) ompd_bp_parallel_end(); #endif } // Loop worksharing constructs // The Gnu codegen passes in an exclusive upper bound for the overall range, // but the libguide dispatch code expects an inclusive upper bound, hence the // "end - incr" 5th argument to KMP_DISPATCH_INIT (and the " ub - str" 11th // argument to __kmp_GOMP_fork_call). // // Conversely, KMP_DISPATCH_NEXT returns and inclusive upper bound in *p_ub, // but the Gnu codegen expects an exclusive upper bound, so the adjustment // "*p_ub += stride" compensates for the discrepancy. // // Correction: the gnu codegen always adjusts the upper bound by +-1, not the // stride value. We adjust the dispatch parameters accordingly (by +-1), but // we still adjust p_ub by the actual stride value. // // The "runtime" versions do not take a chunk_sz parameter. // // The profile lib cannot support construct checking of unordered loops that // are predetermined by the compiler to be statically scheduled, as the gcc // codegen will not always emit calls to GOMP_loop_static_next() to get the // next iteration. Instead, it emits inline code to call omp_get_thread_num() // num and calculate the iteration space using the result. It doesn't do this // with ordered static loop, so they can be checked. #if OMPT_SUPPORT #define IF_OMPT_SUPPORT(code) code #else #define IF_OMPT_SUPPORT(code) #endif #define LOOP_START(func, schedule) \ int func(long lb, long ub, long str, long chunk_sz, long *p_lb, \ long *p_ub) { \ int status; \ long stride; \ int gtid = __kmp_entry_gtid(); \ MKLOC(loc, KMP_STR(func)); \ KA_TRACE( \ 20, \ (KMP_STR( \ func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz 0x%lx\n", \ gtid, lb, ub, str, chunk_sz)); \ \ if ((str > 0) ? (lb < ub) : (lb > ub)) { \ { \ IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \ KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \ (schedule) != kmp_sch_static); \ } \ { \ IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \ status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \ (kmp_int *)p_ub, (kmp_int *)&stride); \ } \ if (status) { \ KMP_DEBUG_ASSERT(stride == str); \ *p_ub += (str > 0) ? 1 : -1; \ } \ } else { \ status = 0; \ } \ \ KA_TRACE( \ 20, \ (KMP_STR( \ func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, returning %d\n", \ gtid, *p_lb, *p_ub, status)); \ return status; \ } #define LOOP_RUNTIME_START(func, schedule) \ int func(long lb, long ub, long str, long *p_lb, long *p_ub) { \ int status; \ long stride; \ long chunk_sz = 0; \ int gtid = __kmp_entry_gtid(); \ MKLOC(loc, KMP_STR(func)); \ KA_TRACE( \ 20, \ (KMP_STR(func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz %d\n", \ gtid, lb, ub, str, chunk_sz)); \ \ if ((str > 0) ? (lb < ub) : (lb > ub)) { \ { \ IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \ KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \ TRUE); \ } \ { \ IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \ status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \ (kmp_int *)p_ub, (kmp_int *)&stride); \ } \ if (status) { \ KMP_DEBUG_ASSERT(stride == str); \ *p_ub += (str > 0) ? 1 : -1; \ } \ } else { \ status = 0; \ } \ \ KA_TRACE( \ 20, \ (KMP_STR( \ func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, returning %d\n", \ gtid, *p_lb, *p_ub, status)); \ return status; \ } #define KMP_DOACROSS_FINI(status, gtid) \ if (!status && __kmp_threads[gtid]->th.th_dispatch->th_doacross_flags) { \ __kmpc_doacross_fini(NULL, gtid); \ } #define LOOP_NEXT(func, fini_code) \ int func(long *p_lb, long *p_ub) { \ int status; \ long stride; \ int gtid = __kmp_get_gtid(); \ MKLOC(loc, KMP_STR(func)); \ KA_TRACE(20, (KMP_STR(func) ": T#%d\n", gtid)); \ \ IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \ fini_code status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \ (kmp_int *)p_ub, (kmp_int *)&stride); \ if (status) { \ *p_ub += (stride > 0) ? 1 : -1; \ } \ KMP_DOACROSS_FINI(status, gtid) \ \ KA_TRACE( \ 20, \ (KMP_STR(func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, stride 0x%lx, " \ "returning %d\n", \ gtid, *p_lb, *p_ub, stride, status)); \ return status; \ } LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_STATIC_START), kmp_sch_static) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_STATIC_NEXT), {}) LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DYNAMIC_START), kmp_sch_dynamic_chunked) LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_DYNAMIC_START), kmp_sch_dynamic_chunked) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DYNAMIC_NEXT), {}) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_DYNAMIC_NEXT), {}) LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_GUIDED_START), kmp_sch_guided_chunked) LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_GUIDED_START), kmp_sch_guided_chunked) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_GUIDED_NEXT), {}) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_GUIDED_NEXT), {}) LOOP_RUNTIME_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_RUNTIME_START), kmp_sch_runtime) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_RUNTIME_NEXT), {}) LOOP_RUNTIME_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_MAYBE_NONMONOTONIC_RUNTIME_START), kmp_sch_runtime) LOOP_RUNTIME_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_RUNTIME_START), kmp_sch_runtime) LOOP_NEXT( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_MAYBE_NONMONOTONIC_RUNTIME_NEXT), {}) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_RUNTIME_NEXT), {}) LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_STATIC_START), kmp_ord_static) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_STATIC_NEXT), { KMP_DISPATCH_FINI_CHUNK(&loc, gtid); }) LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_DYNAMIC_START), kmp_ord_dynamic_chunked) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_DYNAMIC_NEXT), { KMP_DISPATCH_FINI_CHUNK(&loc, gtid); }) LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_GUIDED_START), kmp_ord_guided_chunked) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_GUIDED_NEXT), { KMP_DISPATCH_FINI_CHUNK(&loc, gtid); }) LOOP_RUNTIME_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_RUNTIME_START), kmp_ord_runtime) LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_RUNTIME_NEXT), { KMP_DISPATCH_FINI_CHUNK(&loc, gtid); }) #define LOOP_DOACROSS_START(func, schedule) \ bool func(unsigned ncounts, long *counts, long chunk_sz, long *p_lb, \ long *p_ub) { \ int status; \ long stride, lb, ub, str; \ int gtid = __kmp_entry_gtid(); \ struct kmp_dim *dims = \ (struct kmp_dim *)__kmp_allocate(sizeof(struct kmp_dim) * ncounts); \ MKLOC(loc, KMP_STR(func)); \ for (unsigned i = 0; i < ncounts; ++i) { \ dims[i].lo = 0; \ dims[i].up = counts[i] - 1; \ dims[i].st = 1; \ } \ __kmpc_doacross_init(&loc, gtid, (int)ncounts, dims); \ lb = 0; \ ub = counts[0]; \ str = 1; \ KA_TRACE(20, (KMP_STR(func) ": T#%d, ncounts %u, lb 0x%lx, ub 0x%lx, str " \ "0x%lx, chunk_sz " \ "0x%lx\n", \ gtid, ncounts, lb, ub, str, chunk_sz)); \ \ if ((str > 0) ? (lb < ub) : (lb > ub)) { \ KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \ (schedule) != kmp_sch_static); \ status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \ (kmp_int *)p_ub, (kmp_int *)&stride); \ if (status) { \ KMP_DEBUG_ASSERT(stride == str); \ *p_ub += (str > 0) ? 1 : -1; \ } \ } else { \ status = 0; \ } \ KMP_DOACROSS_FINI(status, gtid); \ \ KA_TRACE( \ 20, \ (KMP_STR( \ func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, returning %d\n", \ gtid, *p_lb, *p_ub, status)); \ __kmp_free(dims); \ return status; \ } #define LOOP_DOACROSS_RUNTIME_START(func, schedule) \ int func(unsigned ncounts, long *counts, long *p_lb, long *p_ub) { \ int status; \ long stride, lb, ub, str; \ long chunk_sz = 0; \ int gtid = __kmp_entry_gtid(); \ struct kmp_dim *dims = \ (struct kmp_dim *)__kmp_allocate(sizeof(struct kmp_dim) * ncounts); \ MKLOC(loc, KMP_STR(func)); \ for (unsigned i = 0; i < ncounts; ++i) { \ dims[i].lo = 0; \ dims[i].up = counts[i] - 1; \ dims[i].st = 1; \ } \ __kmpc_doacross_init(&loc, gtid, (int)ncounts, dims); \ lb = 0; \ ub = counts[0]; \ str = 1; \ KA_TRACE( \ 20, \ (KMP_STR(func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz %d\n", \ gtid, lb, ub, str, chunk_sz)); \ \ if ((str > 0) ? (lb < ub) : (lb > ub)) { \ KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, TRUE); \ status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \ (kmp_int *)p_ub, (kmp_int *)&stride); \ if (status) { \ KMP_DEBUG_ASSERT(stride == str); \ *p_ub += (str > 0) ? 1 : -1; \ } \ } else { \ status = 0; \ } \ KMP_DOACROSS_FINI(status, gtid); \ \ KA_TRACE( \ 20, \ (KMP_STR( \ func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, returning %d\n", \ gtid, *p_lb, *p_ub, status)); \ __kmp_free(dims); \ return status; \ } LOOP_DOACROSS_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_STATIC_START), kmp_sch_static) LOOP_DOACROSS_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_DYNAMIC_START), kmp_sch_dynamic_chunked) LOOP_DOACROSS_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_GUIDED_START), kmp_sch_guided_chunked) LOOP_DOACROSS_RUNTIME_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_RUNTIME_START), kmp_sch_runtime) void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_END)(void) { int gtid = __kmp_get_gtid(); KA_TRACE(20, ("GOMP_loop_end: T#%d\n", gtid)) #if OMPT_SUPPORT && OMPT_OPTIONAL ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); OMPT_STORE_RETURN_ADDRESS(gtid); } #endif __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); #if OMPT_SUPPORT && OMPT_OPTIONAL if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif KA_TRACE(20, ("GOMP_loop_end exit: T#%d\n", gtid)) } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_END_NOWAIT)(void) { KA_TRACE(20, ("GOMP_loop_end_nowait: T#%d\n", __kmp_get_gtid())) } // Unsigned long long loop worksharing constructs // // These are new with gcc 4.4 #define LOOP_START_ULL(func, schedule) \ int func(int up, unsigned long long lb, unsigned long long ub, \ unsigned long long str, unsigned long long chunk_sz, \ unsigned long long *p_lb, unsigned long long *p_ub) { \ int status; \ long long str2 = up ? ((long long)str) : -((long long)str); \ long long stride; \ int gtid = __kmp_entry_gtid(); \ MKLOC(loc, KMP_STR(func)); \ \ KA_TRACE(20, (KMP_STR(func) ": T#%d, up %d, lb 0x%llx, ub 0x%llx, str " \ "0x%llx, chunk_sz 0x%llx\n", \ gtid, up, lb, ub, str, chunk_sz)); \ \ if ((str > 0) ? (lb < ub) : (lb > ub)) { \ KMP_DISPATCH_INIT_ULL(&loc, gtid, (schedule), lb, \ (str2 > 0) ? (ub - 1) : (ub + 1), str2, chunk_sz, \ (schedule) != kmp_sch_static); \ status = \ KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \ (kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \ if (status) { \ KMP_DEBUG_ASSERT(stride == str2); \ *p_ub += (str > 0) ? 1 : -1; \ } \ } else { \ status = 0; \ } \ \ KA_TRACE( \ 20, \ (KMP_STR( \ func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, returning %d\n", \ gtid, *p_lb, *p_ub, status)); \ return status; \ } #define LOOP_RUNTIME_START_ULL(func, schedule) \ int func(int up, unsigned long long lb, unsigned long long ub, \ unsigned long long str, unsigned long long *p_lb, \ unsigned long long *p_ub) { \ int status; \ long long str2 = up ? ((long long)str) : -((long long)str); \ unsigned long long stride; \ unsigned long long chunk_sz = 0; \ int gtid = __kmp_entry_gtid(); \ MKLOC(loc, KMP_STR(func)); \ \ KA_TRACE(20, (KMP_STR(func) ": T#%d, up %d, lb 0x%llx, ub 0x%llx, str " \ "0x%llx, chunk_sz 0x%llx\n", \ gtid, up, lb, ub, str, chunk_sz)); \ \ if ((str > 0) ? (lb < ub) : (lb > ub)) { \ KMP_DISPATCH_INIT_ULL(&loc, gtid, (schedule), lb, \ (str2 > 0) ? (ub - 1) : (ub + 1), str2, chunk_sz, \ TRUE); \ status = \ KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \ (kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \ if (status) { \ KMP_DEBUG_ASSERT((long long)stride == str2); \ *p_ub += (str > 0) ? 1 : -1; \ } \ } else { \ status = 0; \ } \ \ KA_TRACE( \ 20, \ (KMP_STR( \ func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, returning %d\n", \ gtid, *p_lb, *p_ub, status)); \ return status; \ } #define LOOP_NEXT_ULL(func, fini_code) \ int func(unsigned long long *p_lb, unsigned long long *p_ub) { \ int status; \ long long stride; \ int gtid = __kmp_get_gtid(); \ MKLOC(loc, KMP_STR(func)); \ KA_TRACE(20, (KMP_STR(func) ": T#%d\n", gtid)); \ \ fini_code status = \ KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \ (kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \ if (status) { \ *p_ub += (stride > 0) ? 1 : -1; \ } \ \ KA_TRACE( \ 20, \ (KMP_STR( \ func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, stride 0x%llx, " \ "returning %d\n", \ gtid, *p_lb, *p_ub, stride, status)); \ return status; \ } LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_STATIC_START), kmp_sch_static) LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_STATIC_NEXT), {}) LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DYNAMIC_START), kmp_sch_dynamic_chunked) LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DYNAMIC_NEXT), {}) LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_GUIDED_START), kmp_sch_guided_chunked) LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_GUIDED_NEXT), {}) LOOP_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_DYNAMIC_START), kmp_sch_dynamic_chunked) LOOP_NEXT_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_DYNAMIC_NEXT), {}) LOOP_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_GUIDED_START), kmp_sch_guided_chunked) LOOP_NEXT_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_GUIDED_NEXT), {}) LOOP_RUNTIME_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_RUNTIME_START), kmp_sch_runtime) LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_RUNTIME_NEXT), {}) LOOP_RUNTIME_START_ULL( KMP_EXPAND_NAME( KMP_API_NAME_GOMP_LOOP_ULL_MAYBE_NONMONOTONIC_RUNTIME_START), kmp_sch_runtime) LOOP_RUNTIME_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_RUNTIME_START), kmp_sch_runtime) LOOP_NEXT_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_MAYBE_NONMONOTONIC_RUNTIME_NEXT), {}) LOOP_NEXT_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_RUNTIME_NEXT), {}) LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_STATIC_START), kmp_ord_static) LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_STATIC_NEXT), { KMP_DISPATCH_FINI_CHUNK_ULL(&loc, gtid); }) LOOP_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_DYNAMIC_START), kmp_ord_dynamic_chunked) LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_DYNAMIC_NEXT), { KMP_DISPATCH_FINI_CHUNK_ULL(&loc, gtid); }) LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_GUIDED_START), kmp_ord_guided_chunked) LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_GUIDED_NEXT), { KMP_DISPATCH_FINI_CHUNK_ULL(&loc, gtid); }) LOOP_RUNTIME_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_RUNTIME_START), kmp_ord_runtime) LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_RUNTIME_NEXT), { KMP_DISPATCH_FINI_CHUNK_ULL(&loc, gtid); }) #define LOOP_DOACROSS_START_ULL(func, schedule) \ int func(unsigned ncounts, unsigned long long *counts, \ unsigned long long chunk_sz, unsigned long long *p_lb, \ unsigned long long *p_ub) { \ int status; \ long long stride, str, lb, ub; \ int gtid = __kmp_entry_gtid(); \ struct kmp_dim *dims = \ (struct kmp_dim *)__kmp_allocate(sizeof(struct kmp_dim) * ncounts); \ MKLOC(loc, KMP_STR(func)); \ for (unsigned i = 0; i < ncounts; ++i) { \ dims[i].lo = 0; \ dims[i].up = counts[i] - 1; \ dims[i].st = 1; \ } \ __kmpc_doacross_init(&loc, gtid, (int)ncounts, dims); \ lb = 0; \ ub = counts[0]; \ str = 1; \ \ KA_TRACE(20, (KMP_STR(func) ": T#%d, lb 0x%llx, ub 0x%llx, str " \ "0x%llx, chunk_sz 0x%llx\n", \ gtid, lb, ub, str, chunk_sz)); \ \ if ((str > 0) ? (lb < ub) : (lb > ub)) { \ KMP_DISPATCH_INIT_ULL(&loc, gtid, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \ (schedule) != kmp_sch_static); \ status = \ KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \ (kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \ if (status) { \ KMP_DEBUG_ASSERT(stride == str); \ *p_ub += (str > 0) ? 1 : -1; \ } \ } else { \ status = 0; \ } \ KMP_DOACROSS_FINI(status, gtid); \ \ KA_TRACE( \ 20, \ (KMP_STR( \ func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, returning %d\n", \ gtid, *p_lb, *p_ub, status)); \ __kmp_free(dims); \ return status; \ } #define LOOP_DOACROSS_RUNTIME_START_ULL(func, schedule) \ int func(unsigned ncounts, unsigned long long *counts, \ unsigned long long *p_lb, unsigned long long *p_ub) { \ int status; \ unsigned long long stride, str, lb, ub; \ unsigned long long chunk_sz = 0; \ int gtid = __kmp_entry_gtid(); \ struct kmp_dim *dims = \ (struct kmp_dim *)__kmp_allocate(sizeof(struct kmp_dim) * ncounts); \ MKLOC(loc, KMP_STR(func)); \ for (unsigned i = 0; i < ncounts; ++i) { \ dims[i].lo = 0; \ dims[i].up = counts[i] - 1; \ dims[i].st = 1; \ } \ __kmpc_doacross_init(&loc, gtid, (int)ncounts, dims); \ lb = 0; \ ub = counts[0]; \ str = 1; \ KA_TRACE(20, (KMP_STR(func) ": T#%d, lb 0x%llx, ub 0x%llx, str " \ "0x%llx, chunk_sz 0x%llx\n", \ gtid, lb, ub, str, chunk_sz)); \ \ if ((str > 0) ? (lb < ub) : (lb > ub)) { \ KMP_DISPATCH_INIT_ULL(&loc, gtid, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \ TRUE); \ status = \ KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \ (kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \ if (status) { \ KMP_DEBUG_ASSERT(stride == str); \ *p_ub += (str > 0) ? 1 : -1; \ } \ } else { \ status = 0; \ } \ KMP_DOACROSS_FINI(status, gtid); \ \ KA_TRACE( \ 20, \ (KMP_STR( \ func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, returning %d\n", \ gtid, *p_lb, *p_ub, status)); \ __kmp_free(dims); \ return status; \ } LOOP_DOACROSS_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_STATIC_START), kmp_sch_static) LOOP_DOACROSS_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_DYNAMIC_START), kmp_sch_dynamic_chunked) LOOP_DOACROSS_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_GUIDED_START), kmp_sch_guided_chunked) LOOP_DOACROSS_RUNTIME_START_ULL( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_RUNTIME_START), kmp_sch_runtime) // Combined parallel / loop worksharing constructs // // There are no ull versions (yet). #define PARALLEL_LOOP_START(func, schedule, ompt_pre, ompt_post) \ void func(void (*task)(void *), void *data, unsigned num_threads, long lb, \ long ub, long str, long chunk_sz) { \ int gtid = __kmp_entry_gtid(); \ MKLOC(loc, KMP_STR(func)); \ KA_TRACE( \ 20, \ (KMP_STR( \ func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz 0x%lx\n", \ gtid, lb, ub, str, chunk_sz)); \ \ ompt_pre(); \ \ __kmp_GOMP_fork_call(&loc, gtid, num_threads, 0u, task, \ (microtask_t)__kmp_GOMP_parallel_microtask_wrapper, \ 9, task, data, num_threads, &loc, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz); \ IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid)); \ \ KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \ (schedule) != kmp_sch_static); \ \ ompt_post(); \ \ KA_TRACE(20, (KMP_STR(func) " exit: T#%d\n", gtid)); \ } #if OMPT_SUPPORT && OMPT_OPTIONAL #define OMPT_LOOP_PRE() \ ompt_frame_t *parent_frame; \ if (ompt_enabled.enabled) { \ __ompt_get_task_info_internal(0, NULL, NULL, &parent_frame, NULL, NULL); \ parent_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); \ OMPT_STORE_RETURN_ADDRESS(gtid); \ } #define OMPT_LOOP_POST() \ if (ompt_enabled.enabled) { \ parent_frame->enter_frame = ompt_data_none; \ } #else #define OMPT_LOOP_PRE() #define OMPT_LOOP_POST() #endif PARALLEL_LOOP_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_STATIC_START), kmp_sch_static, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_DYNAMIC_START), kmp_sch_dynamic_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_GUIDED_START), kmp_sch_guided_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP_START( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_RUNTIME_START), kmp_sch_runtime, OMPT_LOOP_PRE, OMPT_LOOP_POST) // Tasking constructs void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASK)(void (*func)(void *), void *data, void (*copy_func)(void *, void *), long arg_size, long arg_align, bool if_cond, unsigned gomp_flags, void **depend) { MKLOC(loc, "GOMP_task"); int gtid = __kmp_entry_gtid(); kmp_int32 flags = 0; kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; KA_TRACE(20, ("GOMP_task: T#%d\n", gtid)); // The low-order bit is the "untied" flag if (!(gomp_flags & KMP_GOMP_TASK_UNTIED_FLAG)) { input_flags->tiedness = TASK_TIED; } // The second low-order bit is the "final" flag if (gomp_flags & KMP_GOMP_TASK_FINAL_FLAG) { input_flags->final = 1; } input_flags->native = 1; // __kmp_task_alloc() sets up all other flags if (!if_cond) { arg_size = 0; } kmp_task_t *task = __kmp_task_alloc( &loc, gtid, input_flags, sizeof(kmp_task_t), arg_size ? arg_size + arg_align - 1 : 0, (kmp_routine_entry_t)func); if (arg_size > 0) { if (arg_align > 0) { task->shareds = (void *)((((size_t)task->shareds) + arg_align - 1) / arg_align * arg_align); } // else error?? if (copy_func) { (*copy_func)(task->shareds, data); } else { KMP_MEMCPY(task->shareds, data, arg_size); } } #if OMPT_SUPPORT kmp_taskdata_t *current_task; if (ompt_enabled.enabled) { current_task = __kmp_threads[gtid]->th.th_current_task; current_task->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif if (if_cond) { if (gomp_flags & KMP_GOMP_TASK_DEPENDS_FLAG) { KMP_ASSERT(depend); kmp_gomp_depends_info_t gomp_depends(depend); kmp_int32 ndeps = gomp_depends.get_num_deps(); SimpleVLA dep_list(ndeps); for (kmp_int32 i = 0; i < ndeps; i++) dep_list[i] = gomp_depends.get_kmp_depend(i); kmp_int32 ndeps_cnv; __kmp_type_convert(ndeps, &ndeps_cnv); __kmpc_omp_task_with_deps(&loc, gtid, task, ndeps_cnv, dep_list, 0, NULL); } else { __kmpc_omp_task(&loc, gtid, task); } } else { #if OMPT_SUPPORT ompt_thread_info_t oldInfo; kmp_info_t *thread; kmp_taskdata_t *taskdata; if (ompt_enabled.enabled) { // Store the threads states and restore them after the task thread = __kmp_threads[gtid]; taskdata = KMP_TASK_TO_TASKDATA(task); oldInfo = thread->th.ompt_thread_info; thread->th.ompt_thread_info.wait_id = 0; thread->th.ompt_thread_info.state = ompt_state_work_parallel; taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif if (gomp_flags & KMP_GOMP_TASK_DEPENDS_FLAG) { KMP_ASSERT(depend); kmp_gomp_depends_info_t gomp_depends(depend); kmp_int32 ndeps = gomp_depends.get_num_deps(); SimpleVLA dep_list(ndeps); for (kmp_int32 i = 0; i < ndeps; i++) dep_list[i] = gomp_depends.get_kmp_depend(i); __kmpc_omp_wait_deps(&loc, gtid, ndeps, dep_list, 0, NULL); } __kmpc_omp_task_begin_if0(&loc, gtid, task); func(data); __kmpc_omp_task_complete_if0(&loc, gtid, task); #if OMPT_SUPPORT if (ompt_enabled.enabled) { thread->th.ompt_thread_info = oldInfo; taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; } #endif } #if OMPT_SUPPORT if (ompt_enabled.enabled) { current_task->ompt_task_info.frame.enter_frame = ompt_data_none; } #endif KA_TRACE(20, ("GOMP_task exit: T#%d\n", gtid)); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKWAIT)(void) { MKLOC(loc, "GOMP_taskwait"); int gtid = __kmp_entry_gtid(); #if OMPT_SUPPORT OMPT_STORE_RETURN_ADDRESS(gtid); #endif KA_TRACE(20, ("GOMP_taskwait: T#%d\n", gtid)); __kmpc_omp_taskwait(&loc, gtid); KA_TRACE(20, ("GOMP_taskwait exit: T#%d\n", gtid)); } // Sections worksharing constructs // // For the sections construct, we initialize a dynamically scheduled loop // worksharing construct with lb 1 and stride 1, and use the iteration #'s // that its returns as sections ids. // // There are no special entry points for ordered sections, so we always use // the dynamically scheduled workshare, even if the sections aren't ordered. unsigned KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_START)(unsigned count) { int status; kmp_int lb, ub, stride; int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_sections_start"); KA_TRACE(20, ("GOMP_sections_start: T#%d\n", gtid)); KMP_DISPATCH_INIT(&loc, gtid, kmp_nm_dynamic_chunked, 1, count, 1, 1, TRUE); status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, &lb, &ub, &stride); if (status) { KMP_DEBUG_ASSERT(stride == 1); KMP_DEBUG_ASSERT(lb > 0); KMP_ASSERT(lb == ub); } else { lb = 0; } KA_TRACE(20, ("GOMP_sections_start exit: T#%d returning %u\n", gtid, (unsigned)lb)); return (unsigned)lb; } unsigned KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_NEXT)(void) { int status; kmp_int lb, ub, stride; int gtid = __kmp_get_gtid(); MKLOC(loc, "GOMP_sections_next"); KA_TRACE(20, ("GOMP_sections_next: T#%d\n", gtid)); #if OMPT_SUPPORT OMPT_STORE_RETURN_ADDRESS(gtid); #endif status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, &lb, &ub, &stride); if (status) { KMP_DEBUG_ASSERT(stride == 1); KMP_DEBUG_ASSERT(lb > 0); KMP_ASSERT(lb == ub); } else { lb = 0; } KA_TRACE( 20, ("GOMP_sections_next exit: T#%d returning %u\n", gtid, (unsigned)lb)); return (unsigned)lb; } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_SECTIONS_START)( void (*task)(void *), void *data, unsigned num_threads, unsigned count) { int gtid = __kmp_entry_gtid(); #if OMPT_SUPPORT ompt_frame_t *parent_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &parent_frame, NULL, NULL); parent_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif MKLOC(loc, "GOMP_parallel_sections_start"); KA_TRACE(20, ("GOMP_parallel_sections_start: T#%d\n", gtid)); __kmp_GOMP_fork_call(&loc, gtid, num_threads, 0u, task, (microtask_t)__kmp_GOMP_parallel_microtask_wrapper, 9, task, data, num_threads, &loc, kmp_nm_dynamic_chunked, (kmp_int)1, (kmp_int)count, (kmp_int)1, (kmp_int)1); #if OMPT_SUPPORT if (ompt_enabled.enabled) { parent_frame->enter_frame = ompt_data_none; } #endif KMP_DISPATCH_INIT(&loc, gtid, kmp_nm_dynamic_chunked, 1, count, 1, 1, TRUE); KA_TRACE(20, ("GOMP_parallel_sections_start exit: T#%d\n", gtid)); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_END)(void) { int gtid = __kmp_get_gtid(); KA_TRACE(20, ("GOMP_sections_end: T#%d\n", gtid)) #if OMPT_SUPPORT ompt_frame_t *ompt_frame; if (ompt_enabled.enabled) { __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); #if OMPT_SUPPORT if (ompt_enabled.enabled) { ompt_frame->enter_frame = ompt_data_none; } #endif KA_TRACE(20, ("GOMP_sections_end exit: T#%d\n", gtid)) } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_END_NOWAIT)(void) { KA_TRACE(20, ("GOMP_sections_end_nowait: T#%d\n", __kmp_get_gtid())) } // libgomp has an empty function for GOMP_taskyield as of 2013-10-10 void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKYIELD)(void) { KA_TRACE(20, ("GOMP_taskyield: T#%d\n", __kmp_get_gtid())) return; } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL)(void (*task)(void *), void *data, unsigned num_threads, unsigned int flags) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_parallel"); KA_TRACE(20, ("GOMP_parallel: T#%d\n", gtid)); #if OMPT_SUPPORT ompt_task_info_t *parent_task_info, *task_info; if (ompt_enabled.enabled) { parent_task_info = __ompt_get_task_info_object(0); parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmp_GOMP_fork_call(&loc, gtid, num_threads, flags, task, (microtask_t)__kmp_GOMP_microtask_wrapper, 2, task, data); #if OMPT_SUPPORT if (ompt_enabled.enabled) { task_info = __ompt_get_task_info_object(0); task_info->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } #endif task(data); { #if OMPT_SUPPORT OMPT_STORE_RETURN_ADDRESS(gtid); #endif KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_END)(); } #if OMPT_SUPPORT if (ompt_enabled.enabled) { task_info->frame.exit_frame = ompt_data_none; parent_task_info->frame.enter_frame = ompt_data_none; } #endif } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_SECTIONS)(void (*task)(void *), void *data, unsigned num_threads, unsigned count, unsigned flags) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_parallel_sections"); KA_TRACE(20, ("GOMP_parallel_sections: T#%d\n", gtid)); #if OMPT_SUPPORT ompt_frame_t *task_frame; kmp_info_t *thr; if (ompt_enabled.enabled) { thr = __kmp_threads[gtid]; task_frame = &(thr->th.th_current_task->ompt_task_info.frame); task_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmp_GOMP_fork_call(&loc, gtid, num_threads, flags, task, (microtask_t)__kmp_GOMP_parallel_microtask_wrapper, 9, task, data, num_threads, &loc, kmp_nm_dynamic_chunked, (kmp_int)1, (kmp_int)count, (kmp_int)1, (kmp_int)1); { #if OMPT_SUPPORT OMPT_STORE_RETURN_ADDRESS(gtid); #endif KMP_DISPATCH_INIT(&loc, gtid, kmp_nm_dynamic_chunked, 1, count, 1, 1, TRUE); } #if OMPT_SUPPORT ompt_frame_t *child_frame; if (ompt_enabled.enabled) { child_frame = &(thr->th.th_current_task->ompt_task_info.frame); child_frame->exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } #endif task(data); #if OMPT_SUPPORT if (ompt_enabled.enabled) { child_frame->exit_frame = ompt_data_none; } #endif KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_END)(); KA_TRACE(20, ("GOMP_parallel_sections exit: T#%d\n", gtid)); #if OMPT_SUPPORT if (ompt_enabled.enabled) { task_frame->enter_frame = ompt_data_none; } #endif } #define PARALLEL_LOOP(func, schedule, ompt_pre, ompt_post) \ void func(void (*task)(void *), void *data, unsigned num_threads, long lb, \ long ub, long str, long chunk_sz, unsigned flags) { \ int gtid = __kmp_entry_gtid(); \ MKLOC(loc, KMP_STR(func)); \ KA_TRACE( \ 20, \ (KMP_STR( \ func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz 0x%lx\n", \ gtid, lb, ub, str, chunk_sz)); \ \ ompt_pre(); \ IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \ __kmp_GOMP_fork_call(&loc, gtid, num_threads, flags, task, \ (microtask_t)__kmp_GOMP_parallel_microtask_wrapper, \ 9, task, data, num_threads, &loc, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz); \ \ { \ IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \ KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \ (str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \ (schedule) != kmp_sch_static); \ } \ task(data); \ KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_END)(); \ ompt_post(); \ \ KA_TRACE(20, (KMP_STR(func) " exit: T#%d\n", gtid)); \ } PARALLEL_LOOP(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_STATIC), kmp_sch_static, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_DYNAMIC), kmp_sch_dynamic_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_GUIDED), kmp_sch_guided_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_DYNAMIC), kmp_sch_dynamic_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_GUIDED), kmp_sch_guided_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_RUNTIME), kmp_sch_runtime, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_MAYBE_NONMONOTONIC_RUNTIME), kmp_sch_runtime, OMPT_LOOP_PRE, OMPT_LOOP_POST) PARALLEL_LOOP( KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_RUNTIME), kmp_sch_runtime, OMPT_LOOP_PRE, OMPT_LOOP_POST) void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKGROUP_START)(void) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_taskgroup_start"); KA_TRACE(20, ("GOMP_taskgroup_start: T#%d\n", gtid)); #if OMPT_SUPPORT OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_taskgroup(&loc, gtid); return; } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKGROUP_END)(void) { int gtid = __kmp_get_gtid(); MKLOC(loc, "GOMP_taskgroup_end"); KA_TRACE(20, ("GOMP_taskgroup_end: T#%d\n", gtid)); #if OMPT_SUPPORT OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_end_taskgroup(&loc, gtid); return; } static kmp_int32 __kmp_gomp_to_omp_cancellation_kind(int gomp_kind) { kmp_int32 cncl_kind = 0; switch (gomp_kind) { case 1: cncl_kind = cancel_parallel; break; case 2: cncl_kind = cancel_loop; break; case 4: cncl_kind = cancel_sections; break; case 8: cncl_kind = cancel_taskgroup; break; } return cncl_kind; } // Return true if cancellation should take place, false otherwise bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CANCELLATION_POINT)(int which) { int gtid = __kmp_get_gtid(); MKLOC(loc, "GOMP_cancellation_point"); KA_TRACE(20, ("GOMP_cancellation_point: T#%d which:%d\n", gtid, which)); kmp_int32 cncl_kind = __kmp_gomp_to_omp_cancellation_kind(which); return __kmpc_cancellationpoint(&loc, gtid, cncl_kind); } // Return true if cancellation should take place, false otherwise bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CANCEL)(int which, bool do_cancel) { int gtid = __kmp_get_gtid(); MKLOC(loc, "GOMP_cancel"); KA_TRACE(20, ("GOMP_cancel: T#%d which:%d do_cancel:%d\n", gtid, which, (int)do_cancel)); kmp_int32 cncl_kind = __kmp_gomp_to_omp_cancellation_kind(which); if (do_cancel == FALSE) { return __kmpc_cancellationpoint(&loc, gtid, cncl_kind); } else { return __kmpc_cancel(&loc, gtid, cncl_kind); } } // Return true if cancellation should take place, false otherwise bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_BARRIER_CANCEL)(void) { int gtid = __kmp_get_gtid(); KA_TRACE(20, ("GOMP_barrier_cancel: T#%d\n", gtid)); return __kmp_barrier_gomp_cancel(gtid); } // Return true if cancellation should take place, false otherwise bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_END_CANCEL)(void) { int gtid = __kmp_get_gtid(); KA_TRACE(20, ("GOMP_sections_end_cancel: T#%d\n", gtid)); return __kmp_barrier_gomp_cancel(gtid); } // Return true if cancellation should take place, false otherwise bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_END_CANCEL)(void) { int gtid = __kmp_get_gtid(); KA_TRACE(20, ("GOMP_loop_end_cancel: T#%d\n", gtid)); return __kmp_barrier_gomp_cancel(gtid); } // All target functions are empty as of 2014-05-29 void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TARGET)(int device, void (*fn)(void *), const void *openmp_target, size_t mapnum, void **hostaddrs, size_t *sizes, unsigned char *kinds) { return; } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TARGET_DATA)( int device, const void *openmp_target, size_t mapnum, void **hostaddrs, size_t *sizes, unsigned char *kinds) { return; } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TARGET_END_DATA)(void) { return; } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TARGET_UPDATE)( int device, const void *openmp_target, size_t mapnum, void **hostaddrs, size_t *sizes, unsigned char *kinds) { return; } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TEAMS)(unsigned int num_teams, unsigned int thread_limit) { return; } // Task duplication function which copies src to dest (both are // preallocated task structures) static void __kmp_gomp_task_dup(kmp_task_t *dest, kmp_task_t *src, kmp_int32 last_private) { kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(src); if (taskdata->td_copy_func) { (taskdata->td_copy_func)(dest->shareds, src->shareds); } } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKGROUP_REDUCTION_REGISTER)( uintptr_t *); #ifdef __cplusplus } // extern "C" #endif template void __GOMP_taskloop(void (*func)(void *), void *data, void (*copy_func)(void *, void *), long arg_size, long arg_align, unsigned gomp_flags, unsigned long num_tasks, int priority, T start, T end, T step) { typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); MKLOC(loc, "GOMP_taskloop"); int sched; T *loop_bounds; int gtid = __kmp_entry_gtid(); kmp_int32 flags = 0; int if_val = gomp_flags & (1u << 10); int nogroup = gomp_flags & (1u << 11); int up = gomp_flags & (1u << 8); int reductions = gomp_flags & (1u << 12); p_task_dup_t task_dup = NULL; kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; #ifdef KMP_DEBUG { char *buff; buff = __kmp_str_format( "GOMP_taskloop: T#%%d: func:%%p data:%%p copy_func:%%p " "arg_size:%%ld arg_align:%%ld gomp_flags:0x%%x num_tasks:%%lu " "priority:%%d start:%%%s end:%%%s step:%%%s\n", traits_t::spec, traits_t::spec, traits_t::spec); KA_TRACE(20, (buff, gtid, func, data, copy_func, arg_size, arg_align, gomp_flags, num_tasks, priority, start, end, step)); __kmp_str_free(&buff); } #endif KMP_ASSERT((size_t)arg_size >= 2 * sizeof(T)); KMP_ASSERT(arg_align > 0); // The low-order bit is the "untied" flag if (!(gomp_flags & 1)) { input_flags->tiedness = TASK_TIED; } // The second low-order bit is the "final" flag if (gomp_flags & 2) { input_flags->final = 1; } // Negative step flag if (!up) { // If step is flagged as negative, but isn't properly sign extended // Then manually sign extend it. Could be a short, int, char embedded // in a long. So cannot assume any cast. if (step > 0) { for (int i = sizeof(T) * CHAR_BIT - 1; i >= 0L; --i) { // break at the first 1 bit if (step & ((T)1 << i)) break; step |= ((T)1 << i); } } } input_flags->native = 1; // Figure out if none/grainsize/num_tasks clause specified if (num_tasks > 0) { if (gomp_flags & (1u << 9)) sched = 1; // grainsize specified else sched = 2; // num_tasks specified // neither grainsize nor num_tasks specified } else { sched = 0; } // __kmp_task_alloc() sets up all other flags kmp_task_t *task = __kmp_task_alloc(&loc, gtid, input_flags, sizeof(kmp_task_t), arg_size + arg_align - 1, (kmp_routine_entry_t)func); kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); taskdata->td_copy_func = copy_func; taskdata->td_size_loop_bounds = sizeof(T); // re-align shareds if needed and setup firstprivate copy constructors // through the task_dup mechanism task->shareds = (void *)((((size_t)task->shareds) + arg_align - 1) / arg_align * arg_align); if (copy_func) { task_dup = __kmp_gomp_task_dup; } KMP_MEMCPY(task->shareds, data, arg_size); loop_bounds = (T *)task->shareds; loop_bounds[0] = start; loop_bounds[1] = end + (up ? -1 : 1); if (!nogroup) { #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_taskgroup(&loc, gtid); if (reductions) { // The data pointer points to lb, ub, then reduction data struct data_t { T a, b; uintptr_t *d; }; uintptr_t *d = ((data_t *)data)->d; KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKGROUP_REDUCTION_REGISTER)(d); } } __kmpc_taskloop(&loc, gtid, task, if_val, (kmp_uint64 *)&(loop_bounds[0]), (kmp_uint64 *)&(loop_bounds[1]), (kmp_int64)step, 1, sched, (kmp_uint64)num_tasks, (void *)task_dup); if (!nogroup) { #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_end_taskgroup(&loc, gtid); } } // 4 byte version of GOMP_doacross_post // This verison needs to create a temporary array which converts 4 byte // integers into 8 byte integers template void __kmp_GOMP_doacross_post(T *count); template <> void __kmp_GOMP_doacross_post(long *count) { int gtid = __kmp_entry_gtid(); kmp_info_t *th = __kmp_threads[gtid]; MKLOC(loc, "GOMP_doacross_post"); kmp_int64 num_dims = th->th.th_dispatch->th_doacross_info[0]; kmp_int64 *vec = (kmp_int64 *)__kmp_thread_malloc( th, (size_t)(sizeof(kmp_int64) * num_dims)); for (kmp_int64 i = 0; i < num_dims; ++i) { vec[i] = (kmp_int64)count[i]; } __kmpc_doacross_post(&loc, gtid, vec); __kmp_thread_free(th, vec); } // 8 byte versions of GOMP_doacross_post // This version can just pass in the count array directly instead of creating // a temporary array template <> void __kmp_GOMP_doacross_post(long *count) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_doacross_post"); __kmpc_doacross_post(&loc, gtid, RCAST(kmp_int64 *, count)); } template void __kmp_GOMP_doacross_wait(T first, va_list args) { int gtid = __kmp_entry_gtid(); kmp_info_t *th = __kmp_threads[gtid]; MKLOC(loc, "GOMP_doacross_wait"); kmp_int64 num_dims = th->th.th_dispatch->th_doacross_info[0]; kmp_int64 *vec = (kmp_int64 *)__kmp_thread_malloc( th, (size_t)(sizeof(kmp_int64) * num_dims)); vec[0] = (kmp_int64)first; for (kmp_int64 i = 1; i < num_dims; ++i) { T item = va_arg(args, T); vec[i] = (kmp_int64)item; } __kmpc_doacross_wait(&loc, gtid, vec); __kmp_thread_free(th, vec); return; } #ifdef __cplusplus extern "C" { #endif // __cplusplus void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKLOOP)( void (*func)(void *), void *data, void (*copy_func)(void *, void *), long arg_size, long arg_align, unsigned gomp_flags, unsigned long num_tasks, int priority, long start, long end, long step) { __GOMP_taskloop(func, data, copy_func, arg_size, arg_align, gomp_flags, num_tasks, priority, start, end, step); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKLOOP_ULL)( void (*func)(void *), void *data, void (*copy_func)(void *, void *), long arg_size, long arg_align, unsigned gomp_flags, unsigned long num_tasks, int priority, unsigned long long start, unsigned long long end, unsigned long long step) { __GOMP_taskloop(func, data, copy_func, arg_size, arg_align, gomp_flags, num_tasks, priority, start, end, step); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_DOACROSS_POST)(long *count) { __kmp_GOMP_doacross_post(count); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_DOACROSS_WAIT)(long first, ...) { va_list args; va_start(args, first); __kmp_GOMP_doacross_wait(first, args); va_end(args); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_DOACROSS_ULL_POST)( unsigned long long *count) { int gtid = __kmp_entry_gtid(); MKLOC(loc, "GOMP_doacross_ull_post"); __kmpc_doacross_post(&loc, gtid, RCAST(kmp_int64 *, count)); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_DOACROSS_ULL_WAIT)( unsigned long long first, ...) { va_list args; va_start(args, first); __kmp_GOMP_doacross_wait(first, args); va_end(args); } // fn: the function each primary thread of new team will call // data: argument to fn // num_teams, thread_limit: max bounds on respective ICV // flags: unused void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TEAMS_REG)(void (*fn)(void *), void *data, unsigned num_teams, unsigned thread_limit, unsigned flags) { MKLOC(loc, "GOMP_teams_reg"); int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_teams_reg: T#%d num_teams=%u thread_limit=%u flag=%u\n", gtid, num_teams, thread_limit, flags)); __kmpc_push_num_teams(&loc, gtid, num_teams, thread_limit); __kmpc_fork_teams(&loc, 2, (microtask_t)__kmp_GOMP_microtask_wrapper, fn, data); KA_TRACE(20, ("GOMP_teams_reg exit: T#%d\n", gtid)); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKWAIT_DEPEND)(void **depend) { MKLOC(loc, "GOMP_taskwait_depend"); int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_taskwait_depend: T#%d\n", gtid)); kmp_gomp_depends_info_t gomp_depends(depend); kmp_int32 ndeps = gomp_depends.get_num_deps(); SimpleVLA dep_list(ndeps); for (kmp_int32 i = 0; i < ndeps; i++) dep_list[i] = gomp_depends.get_kmp_depend(i); #if OMPT_SUPPORT OMPT_STORE_RETURN_ADDRESS(gtid); #endif __kmpc_omp_wait_deps(&loc, gtid, ndeps, dep_list, 0, NULL); KA_TRACE(20, ("GOMP_taskwait_depend exit: T#%d\n", gtid)); } static inline void __kmp_GOMP_taskgroup_reduction_register(uintptr_t *data, kmp_taskgroup_t *tg, int nthreads, uintptr_t *allocated = nullptr) { KMP_ASSERT(data); KMP_ASSERT(nthreads > 0); // Have private copy pointers point to previously allocated // reduction data or allocate new data here if (allocated) { data[2] = allocated[2]; data[6] = allocated[6]; } else { data[2] = (uintptr_t)__kmp_allocate(nthreads * data[1]); data[6] = data[2] + (nthreads * data[1]); } if (tg) tg->gomp_data = data; } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKGROUP_REDUCTION_REGISTER)( uintptr_t *data) { int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_taskgroup_reduction_register: T#%d\n", gtid)); kmp_info_t *thread = __kmp_threads[gtid]; kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; int nthreads = thread->th.th_team_nproc; __kmp_GOMP_taskgroup_reduction_register(data, tg, nthreads); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKGROUP_REDUCTION_UNREGISTER)( uintptr_t *data) { KA_TRACE(20, ("GOMP_taskgroup_reduction_unregister: T#%d\n", __kmp_get_gtid())); KMP_ASSERT(data && data[2]); __kmp_free((void *)data[2]); } // Search through reduction data and set ptrs[] elements // to proper privatized copy address void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASK_REDUCTION_REMAP)(size_t cnt, size_t cntorig, void **ptrs) { int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_task_reduction_remap: T#%d\n", gtid)); kmp_info_t *thread = __kmp_threads[gtid]; kmp_int32 tid = __kmp_get_tid(); for (size_t i = 0; i < cnt; ++i) { uintptr_t address = (uintptr_t)ptrs[i]; void *propagated_address = NULL; void *mapped_address = NULL; // Check taskgroups reduce data kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; while (tg) { uintptr_t *gomp_data = tg->gomp_data; if (!gomp_data) { tg = tg->parent; continue; } // Check the shared addresses list size_t num_vars = (size_t)gomp_data[0]; uintptr_t per_thread_size = gomp_data[1]; uintptr_t reduce_data = gomp_data[2]; uintptr_t end_reduce_data = gomp_data[6]; for (size_t j = 0; j < num_vars; ++j) { uintptr_t *entry = gomp_data + 7 + 3 * j; if (entry[0] == address) { uintptr_t offset = entry[1]; mapped_address = (void *)(reduce_data + tid * per_thread_size + offset); if (i < cntorig) propagated_address = (void *)entry[0]; break; } } if (mapped_address) break; // Check if address is within privatized copies range if (!mapped_address && address >= reduce_data && address < end_reduce_data) { uintptr_t offset = (address - reduce_data) % per_thread_size; mapped_address = (void *)(reduce_data + tid * per_thread_size + offset); if (i < cntorig) { for (size_t j = 0; j < num_vars; ++j) { uintptr_t *entry = gomp_data + 7 + 3 * j; if (entry[1] == offset) { propagated_address = (void *)entry[0]; break; } } } } if (mapped_address) break; tg = tg->parent; } KMP_ASSERT(mapped_address); ptrs[i] = mapped_address; if (i < cntorig) { KMP_ASSERT(propagated_address); ptrs[cnt + i] = propagated_address; } } } static void __kmp_GOMP_init_reductions(int gtid, uintptr_t *data, int is_ws) { kmp_info_t *thr = __kmp_threads[gtid]; kmp_team_t *team = thr->th.th_team; // First start a taskgroup __kmpc_taskgroup(NULL, gtid); // Then setup reduction data void *reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); if (reduce_data == NULL && __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, (void *)1)) { // Single thread enters this block to initialize common reduction data KMP_DEBUG_ASSERT(reduce_data == NULL); __kmp_GOMP_taskgroup_reduction_register(data, NULL, thr->th.th_team_nproc); KMP_ATOMIC_ST_REL(&team->t.t_tg_fini_counter[is_ws], 0); KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], (void *)data); } else { // Wait for task reduction initialization while ((reduce_data = KMP_ATOMIC_LD_ACQ( &team->t.t_tg_reduce_data[is_ws])) == (void *)1) { KMP_CPU_PAUSE(); } KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here } // For worksharing constructs, each thread has its own reduction structure. // Have each reduction structure point to same privatized copies of vars. // For parallel, each thread points to same reduction structure and privatized // copies of vars if (is_ws) { __kmp_GOMP_taskgroup_reduction_register( data, NULL, thr->th.th_team_nproc, (uintptr_t *)KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])); } kmp_taskgroup_t *tg = thr->th.th_current_task->td_taskgroup; tg->gomp_data = data; } static unsigned __kmp_GOMP_par_reductions_microtask_wrapper(int *gtid, int *npr, void (*task)(void *), void *data) { kmp_info_t *thr = __kmp_threads[*gtid]; kmp_team_t *team = thr->th.th_team; uintptr_t *reduce_data = *(uintptr_t **)data; __kmp_GOMP_init_reductions(*gtid, reduce_data, 0); #if OMPT_SUPPORT ompt_frame_t *ompt_frame; ompt_state_t enclosing_state; if (ompt_enabled.enabled) { // save enclosing task state; set current state for task enclosing_state = thr->th.ompt_thread_info.state; thr->th.ompt_thread_info.state = ompt_state_work_parallel; // set task frame __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); ompt_frame->exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); } #endif task(data); #if OMPT_SUPPORT if (ompt_enabled.enabled) { // clear task frame ompt_frame->exit_frame = ompt_data_none; // restore enclosing state thr->th.ompt_thread_info.state = enclosing_state; } #endif __kmpc_end_taskgroup(NULL, *gtid); // if last thread out, then reset the team's reduce data // the GOMP_taskgroup_reduction_unregister() function will deallocate // private copies after reduction calculations take place. int count = KMP_ATOMIC_INC(&team->t.t_tg_fini_counter[0]); if (count == thr->th.th_team_nproc - 1) { KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[0], NULL); KMP_ATOMIC_ST_REL(&team->t.t_tg_fini_counter[0], 0); } return (unsigned)thr->th.th_team_nproc; } unsigned KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_REDUCTIONS)( void (*task)(void *), void *data, unsigned num_threads, unsigned int flags) { MKLOC(loc, "GOMP_parallel_reductions"); int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_parallel_reductions: T#%d\n", gtid)); __kmp_GOMP_fork_call(&loc, gtid, num_threads, flags, task, (microtask_t)__kmp_GOMP_par_reductions_microtask_wrapper, 2, task, data); unsigned retval = __kmp_GOMP_par_reductions_microtask_wrapper(>id, NULL, task, data); KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_END)(); KA_TRACE(20, ("GOMP_parallel_reductions exit: T#%d\n", gtid)); return retval; } bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_START)( long start, long end, long incr, long sched, long chunk_size, long *istart, long *iend, uintptr_t *reductions, void **mem) { int status = 0; int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_loop_start: T#%d, reductions: %p\n", gtid, reductions)); if (reductions) __kmp_GOMP_init_reductions(gtid, reductions, 1); if (mem) KMP_FATAL(GompFeatureNotSupported, "scan"); if (istart == NULL) return true; const long MONOTONIC_FLAG = (long)(kmp_sched_monotonic); long monotonic = sched & MONOTONIC_FLAG; sched &= ~MONOTONIC_FLAG; if (sched == 0) { if (monotonic) status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_RUNTIME_START)( start, end, incr, istart, iend); else status = KMP_EXPAND_NAME( KMP_API_NAME_GOMP_LOOP_MAYBE_NONMONOTONIC_RUNTIME_START)( start, end, incr, istart, iend); } else if (sched == 1) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_STATIC_START)( start, end, incr, chunk_size, istart, iend); } else if (sched == 2) { if (monotonic) status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DYNAMIC_START)( start, end, incr, chunk_size, istart, iend); else status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_DYNAMIC_START)( start, end, incr, chunk_size, istart, iend); } else if (sched == 3) { if (monotonic) status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_GUIDED_START)( start, end, incr, chunk_size, istart, iend); else status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_GUIDED_START)( start, end, incr, chunk_size, istart, iend); } else if (sched == 4) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_RUNTIME_START)( start, end, incr, istart, iend); } else { KMP_ASSERT(0); } return status; } bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_START)( bool up, unsigned long long start, unsigned long long end, unsigned long long incr, long sched, unsigned long long chunk_size, unsigned long long *istart, unsigned long long *iend, uintptr_t *reductions, void **mem) { int status = 0; int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_loop_ull_start: T#%d, reductions: %p\n", gtid, reductions)); if (reductions) __kmp_GOMP_init_reductions(gtid, reductions, 1); if (mem) KMP_FATAL(GompFeatureNotSupported, "scan"); if (istart == NULL) return true; const long MONOTONIC_FLAG = (long)(kmp_sched_monotonic); long monotonic = sched & MONOTONIC_FLAG; sched &= ~MONOTONIC_FLAG; if (sched == 0) { if (monotonic) status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_RUNTIME_START)( up, start, end, incr, istart, iend); else status = KMP_EXPAND_NAME( KMP_API_NAME_GOMP_LOOP_ULL_MAYBE_NONMONOTONIC_RUNTIME_START)( up, start, end, incr, istart, iend); } else if (sched == 1) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_STATIC_START)( up, start, end, incr, chunk_size, istart, iend); } else if (sched == 2) { if (monotonic) status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DYNAMIC_START)( up, start, end, incr, chunk_size, istart, iend); else status = KMP_EXPAND_NAME( KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_DYNAMIC_START)( up, start, end, incr, chunk_size, istart, iend); } else if (sched == 3) { if (monotonic) status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_GUIDED_START)( up, start, end, incr, chunk_size, istart, iend); else status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_GUIDED_START)( up, start, end, incr, chunk_size, istart, iend); } else if (sched == 4) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_RUNTIME_START)( up, start, end, incr, istart, iend); } else { KMP_ASSERT(0); } return status; } bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_START)( unsigned ncounts, long *counts, long sched, long chunk_size, long *istart, long *iend, uintptr_t *reductions, void **mem) { int status = 0; int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_loop_doacross_start: T#%d, reductions: %p\n", gtid, reductions)); if (reductions) __kmp_GOMP_init_reductions(gtid, reductions, 1); if (mem) KMP_FATAL(GompFeatureNotSupported, "scan"); if (istart == NULL) return true; // Ignore any monotonic flag const long MONOTONIC_FLAG = (long)(kmp_sched_monotonic); sched &= ~MONOTONIC_FLAG; if (sched == 0) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_RUNTIME_START)( ncounts, counts, istart, iend); } else if (sched == 1) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_STATIC_START)( ncounts, counts, chunk_size, istart, iend); } else if (sched == 2) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_DYNAMIC_START)( ncounts, counts, chunk_size, istart, iend); } else if (sched == 3) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_GUIDED_START)( ncounts, counts, chunk_size, istart, iend); } else { KMP_ASSERT(0); } return status; } bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_START)( unsigned ncounts, unsigned long long *counts, long sched, unsigned long long chunk_size, unsigned long long *istart, unsigned long long *iend, uintptr_t *reductions, void **mem) { int status = 0; int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_loop_ull_doacross_start: T#%d, reductions: %p\n", gtid, reductions)); if (reductions) __kmp_GOMP_init_reductions(gtid, reductions, 1); if (mem) KMP_FATAL(GompFeatureNotSupported, "scan"); if (istart == NULL) return true; // Ignore any monotonic flag const long MONOTONIC_FLAG = (long)(kmp_sched_monotonic); sched &= ~MONOTONIC_FLAG; if (sched == 0) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_RUNTIME_START)( ncounts, counts, istart, iend); } else if (sched == 1) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_STATIC_START)( ncounts, counts, chunk_size, istart, iend); } else if (sched == 2) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_DYNAMIC_START)( ncounts, counts, chunk_size, istart, iend); } else if (sched == 3) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_GUIDED_START)( ncounts, counts, chunk_size, istart, iend); } else { KMP_ASSERT(0); } return status; } bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_START)( long start, long end, long incr, long sched, long chunk_size, long *istart, long *iend, uintptr_t *reductions, void **mem) { int status = 0; int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_loop_ordered_start: T#%d, reductions: %p\n", gtid, reductions)); if (reductions) __kmp_GOMP_init_reductions(gtid, reductions, 1); if (mem) KMP_FATAL(GompFeatureNotSupported, "scan"); if (istart == NULL) return true; // Ignore any monotonic flag const long MONOTONIC_FLAG = (long)(kmp_sched_monotonic); sched &= ~MONOTONIC_FLAG; if (sched == 0) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_RUNTIME_START)( start, end, incr, istart, iend); } else if (sched == 1) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_STATIC_START)( start, end, incr, chunk_size, istart, iend); } else if (sched == 2) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_DYNAMIC_START)( start, end, incr, chunk_size, istart, iend); } else if (sched == 3) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_GUIDED_START)( start, end, incr, chunk_size, istart, iend); } else { KMP_ASSERT(0); } return status; } bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_START)( bool up, unsigned long long start, unsigned long long end, unsigned long long incr, long sched, unsigned long long chunk_size, unsigned long long *istart, unsigned long long *iend, uintptr_t *reductions, void **mem) { int status = 0; int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_loop_ull_ordered_start: T#%d, reductions: %p\n", gtid, reductions)); if (reductions) __kmp_GOMP_init_reductions(gtid, reductions, 1); if (mem) KMP_FATAL(GompFeatureNotSupported, "scan"); if (istart == NULL) return true; // Ignore any monotonic flag const long MONOTONIC_FLAG = (long)(kmp_sched_monotonic); sched &= ~MONOTONIC_FLAG; if (sched == 0) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_RUNTIME_START)( up, start, end, incr, istart, iend); } else if (sched == 1) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_STATIC_START)( up, start, end, incr, chunk_size, istart, iend); } else if (sched == 2) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_DYNAMIC_START)( up, start, end, incr, chunk_size, istart, iend); } else if (sched == 3) { status = KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_GUIDED_START)( up, start, end, incr, chunk_size, istart, iend); } else { KMP_ASSERT(0); } return status; } unsigned KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS2_START)( unsigned count, uintptr_t *reductions, void **mem) { int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_sections2_start: T#%d, reductions: %p\n", gtid, reductions)); if (reductions) __kmp_GOMP_init_reductions(gtid, reductions, 1); if (mem) KMP_FATAL(GompFeatureNotSupported, "scan"); return KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_START)(count); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_WORKSHARE_TASK_REDUCTION_UNREGISTER)( bool cancelled) { int gtid = __kmp_get_gtid(); MKLOC(loc, "GOMP_workshare_task_reduction_unregister"); KA_TRACE(20, ("GOMP_workshare_task_reduction_unregister: T#%d\n", gtid)); kmp_info_t *thr = __kmp_threads[gtid]; kmp_team_t *team = thr->th.th_team; __kmpc_end_taskgroup(NULL, gtid); // If last thread out of workshare, then reset the team's reduce data // the GOMP_taskgroup_reduction_unregister() function will deallocate // private copies after reduction calculations take place. int count = KMP_ATOMIC_INC(&team->t.t_tg_fini_counter[1]); if (count == thr->th.th_team_nproc - 1) { KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKGROUP_REDUCTION_UNREGISTER) ((uintptr_t *)KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[1])); KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[1], NULL); KMP_ATOMIC_ST_REL(&team->t.t_tg_fini_counter[1], 0); } if (!cancelled) { __kmpc_barrier(&loc, gtid); } } // allocator construct void *KMP_EXPAND_NAME(KMP_API_NAME_GOMP_ALLOC)(size_t alignment, size_t size, uintptr_t allocator) { int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_alloc: T#%d\n", gtid)); #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif return __kmp_alloc(gtid, alignment, size, (omp_allocator_handle_t)allocator); } void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_FREE)(void *ptr, uintptr_t allocator) { int gtid = __kmp_entry_gtid(); KA_TRACE(20, ("GOMP_free: T#%d\n", gtid)); #if OMPT_SUPPORT && OMPT_OPTIONAL OMPT_STORE_RETURN_ADDRESS(gtid); #endif return ___kmpc_free(gtid, ptr, (omp_allocator_handle_t)allocator); } /* The following sections of code create aliases for the GOMP_* functions, then create versioned symbols using the assembler directive .symver. This is only pertinent for ELF .so library. The KMP_VERSION_SYMBOL macro is defined in kmp_os.h */ #ifdef KMP_USE_VERSION_SYMBOLS // GOMP_1.0 versioned symbols KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_ATOMIC_END, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_ATOMIC_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_BARRIER, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CRITICAL_END, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CRITICAL_NAME_END, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CRITICAL_NAME_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CRITICAL_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DYNAMIC_NEXT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DYNAMIC_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_END, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_END_NOWAIT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_GUIDED_NEXT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_GUIDED_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_DYNAMIC_NEXT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_DYNAMIC_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_GUIDED_NEXT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_GUIDED_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_RUNTIME_NEXT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_RUNTIME_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_STATIC_NEXT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_STATIC_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_RUNTIME_NEXT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_RUNTIME_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_STATIC_NEXT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_STATIC_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_ORDERED_END, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_ORDERED_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_END, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_DYNAMIC_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_GUIDED_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_RUNTIME_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_STATIC_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_SECTIONS_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_END, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_END_NOWAIT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_NEXT, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SINGLE_COPY_END, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SINGLE_COPY_START, 10, "GOMP_1.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SINGLE_START, 10, "GOMP_1.0"); // GOMP_2.0 versioned symbols KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASK, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKWAIT, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DYNAMIC_NEXT, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DYNAMIC_START, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_GUIDED_NEXT, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_GUIDED_START, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_DYNAMIC_NEXT, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_DYNAMIC_START, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_GUIDED_NEXT, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_GUIDED_START, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_RUNTIME_NEXT, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_RUNTIME_START, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_STATIC_NEXT, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_STATIC_START, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_RUNTIME_NEXT, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_RUNTIME_START, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_STATIC_NEXT, 20, "GOMP_2.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_STATIC_START, 20, "GOMP_2.0"); // GOMP_3.0 versioned symbols KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKYIELD, 30, "GOMP_3.0"); // GOMP_4.0 versioned symbols KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_SECTIONS, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_DYNAMIC, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_GUIDED, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_RUNTIME, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_STATIC, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKGROUP_START, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKGROUP_END, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_BARRIER_CANCEL, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CANCEL, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CANCELLATION_POINT, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_END_CANCEL, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_END_CANCEL, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TARGET, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TARGET_DATA, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TARGET_END_DATA, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TARGET_UPDATE, 40, "GOMP_4.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TEAMS, 40, "GOMP_4.0"); // GOMP_4.5 versioned symbols KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKLOOP, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKLOOP_ULL, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_DOACROSS_POST, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_DOACROSS_WAIT, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DOACROSS_STATIC_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DOACROSS_DYNAMIC_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DOACROSS_GUIDED_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DOACROSS_RUNTIME_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_DOACROSS_ULL_POST, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_DOACROSS_ULL_WAIT, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_STATIC_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_DYNAMIC_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_GUIDED_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_RUNTIME_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_DYNAMIC_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_DYNAMIC_NEXT, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_GUIDED_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_GUIDED_NEXT, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_DYNAMIC_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_DYNAMIC_NEXT, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_GUIDED_START, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_GUIDED_NEXT, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_DYNAMIC, 45, "GOMP_4.5"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_GUIDED, 45, "GOMP_4.5"); // GOMP_5.0 versioned symbols KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_MAYBE_NONMONOTONIC_RUNTIME_NEXT, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_MAYBE_NONMONOTONIC_RUNTIME_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_RUNTIME_NEXT, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_RUNTIME_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_MAYBE_NONMONOTONIC_RUNTIME_NEXT, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_MAYBE_NONMONOTONIC_RUNTIME_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_RUNTIME_NEXT, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_RUNTIME_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_RUNTIME, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_MAYBE_NONMONOTONIC_RUNTIME, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TEAMS_REG, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKWAIT_DEPEND, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKGROUP_REDUCTION_REGISTER, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKGROUP_REDUCTION_UNREGISTER, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASK_REDUCTION_REMAP, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_REDUCTIONS, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DOACROSS_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS2_START, 50, "GOMP_5.0"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_WORKSHARE_TASK_REDUCTION_UNREGISTER, 50, "GOMP_5.0"); // GOMP_5.0.1 versioned symbols KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_ALLOC, 501, "GOMP_5.0.1"); KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_FREE, 501, "GOMP_5.0.1"); #endif // KMP_USE_VERSION_SYMBOLS #ifdef __cplusplus } // extern "C" #endif // __cplusplus