/*
* kmp_csupport.cpp -- kfront linkage support for OpenMP.
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#define __KMP_IMP
#include "omp.h" /* extern "C" declarations of user-visible routines */
#include "kmp.h"
#include "kmp_error.h"
#include "kmp_i18n.h"
#include "kmp_itt.h"
#include "kmp_lock.h"
#include "kmp_stats.h"
#include "ompt-specific.h"
#define MAX_MESSAGE 512
// flags will be used in future, e.g. to implement openmp_strict library
// restrictions
/*!
* @ingroup STARTUP_SHUTDOWN
* @param loc in source location information
* @param flags in for future use (currently ignored)
*
* Initialize the runtime library. This call is optional; if it is not made then
* it will be implicitly called by attempts to use other library functions.
*/
void __kmpc_begin(ident_t *loc, kmp_int32 flags) {
// By default __kmpc_begin() is no-op.
char *env;
if ((env = getenv("KMP_INITIAL_THREAD_BIND")) != NULL &&
__kmp_str_match_true(env)) {
__kmp_middle_initialize();
KC_TRACE(10, ("__kmpc_begin: middle initialization called\n"));
} else if (__kmp_ignore_mppbeg() == FALSE) {
// By default __kmp_ignore_mppbeg() returns TRUE.
__kmp_internal_begin();
KC_TRACE(10, ("__kmpc_begin: called\n"));
}
}
/*!
* @ingroup STARTUP_SHUTDOWN
* @param loc source location information
*
* Shutdown the runtime library. This is also optional, and even if called will
* not do anything unless the `KMP_IGNORE_MPPEND` environment variable is set to
* zero.
*/
void __kmpc_end(ident_t *loc) {
// By default, __kmp_ignore_mppend() returns TRUE which makes __kmpc_end()
// call no-op. However, this can be overridden with KMP_IGNORE_MPPEND
// environment variable. If KMP_IGNORE_MPPEND is 0, __kmp_ignore_mppend()
// returns FALSE and __kmpc_end() will unregister this root (it can cause
// library shut down).
if (__kmp_ignore_mppend() == FALSE) {
KC_TRACE(10, ("__kmpc_end: called\n"));
KA_TRACE(30, ("__kmpc_end\n"));
__kmp_internal_end_thread(-1);
}
#if KMP_OS_WINDOWS && OMPT_SUPPORT
// Normal exit process on Windows does not allow worker threads of the final
// parallel region to finish reporting their events, so shutting down the
// library here fixes the issue at least for the cases where __kmpc_end() is
// placed properly.
if (ompt_enabled.enabled)
__kmp_internal_end_library(__kmp_gtid_get_specific());
#endif
}
/*!
@ingroup THREAD_STATES
@param loc Source location information.
@return The global thread index of the active thread.
This function can be called in any context.
If the runtime has ony been entered at the outermost level from a
single (necessarily non-OpenMP*) thread, then the thread number is
that which would be returned by omp_get_thread_num() in the outermost
active parallel construct. (Or zero if there is no active parallel
construct, since the master thread is necessarily thread zero).
If multiple non-OpenMP threads all enter an OpenMP construct then this
will be a unique thread identifier among all the threads created by
the OpenMP runtime (but the value cannote be defined in terms of
OpenMP thread ids returned by omp_get_thread_num()).
*/
kmp_int32 __kmpc_global_thread_num(ident_t *loc) {
kmp_int32 gtid = __kmp_entry_gtid();
KC_TRACE(10, ("__kmpc_global_thread_num: T#%d\n", gtid));
return gtid;
}
/*!
@ingroup THREAD_STATES
@param loc Source location information.
@return The number of threads under control of the OpenMP* runtime
This function can be called in any context.
It returns the total number of threads under the control of the OpenMP runtime.
That is not a number that can be determined by any OpenMP standard calls, since
the library may be called from more than one non-OpenMP thread, and this
reflects the total over all such calls. Similarly the runtime maintains
underlying threads even when they are not active (since the cost of creating
and destroying OS threads is high), this call counts all such threads even if
they are not waiting for work.
*/
kmp_int32 __kmpc_global_num_threads(ident_t *loc) {
KC_TRACE(10,
("__kmpc_global_num_threads: num_threads = %d\n", __kmp_all_nth));
return TCR_4(__kmp_all_nth);
}
/*!
@ingroup THREAD_STATES
@param loc Source location information.
@return The thread number of the calling thread in the innermost active parallel
construct.
*/
kmp_int32 __kmpc_bound_thread_num(ident_t *loc) {
KC_TRACE(10, ("__kmpc_bound_thread_num: called\n"));
return __kmp_tid_from_gtid(__kmp_entry_gtid());
}
/*!
@ingroup THREAD_STATES
@param loc Source location information.
@return The number of threads in the innermost active parallel construct.
*/
kmp_int32 __kmpc_bound_num_threads(ident_t *loc) {
KC_TRACE(10, ("__kmpc_bound_num_threads: called\n"));
return __kmp_entry_thread()->th.th_team->t.t_nproc;
}
/*!
* @ingroup DEPRECATED
* @param loc location description
*
* This function need not be called. It always returns TRUE.
*/
kmp_int32 __kmpc_ok_to_fork(ident_t *loc) {
#ifndef KMP_DEBUG
return TRUE;
#else
const char *semi2;
const char *semi3;
int line_no;
if (__kmp_par_range == 0) {
return TRUE;
}
semi2 = loc->psource;
if (semi2 == NULL) {
return TRUE;
}
semi2 = strchr(semi2, ';');
if (semi2 == NULL) {
return TRUE;
}
semi2 = strchr(semi2 + 1, ';');
if (semi2 == NULL) {
return TRUE;
}
if (__kmp_par_range_filename[0]) {
const char *name = semi2 - 1;
while ((name > loc->psource) && (*name != '/') && (*name != ';')) {
name--;
}
if ((*name == '/') || (*name == ';')) {
name++;
}
if (strncmp(__kmp_par_range_filename, name, semi2 - name)) {
return __kmp_par_range < 0;
}
}
semi3 = strchr(semi2 + 1, ';');
if (__kmp_par_range_routine[0]) {
if ((semi3 != NULL) && (semi3 > semi2) &&
(strncmp(__kmp_par_range_routine, semi2 + 1, semi3 - semi2 - 1))) {
return __kmp_par_range < 0;
}
}
if (KMP_SSCANF(semi3 + 1, "%d", &line_no) == 1) {
if ((line_no >= __kmp_par_range_lb) && (line_no <= __kmp_par_range_ub)) {
return __kmp_par_range > 0;
}
return __kmp_par_range < 0;
}
return TRUE;
#endif /* KMP_DEBUG */
}
/*!
@ingroup THREAD_STATES
@param loc Source location information.
@return 1 if this thread is executing inside an active parallel region, zero if
not.
*/
kmp_int32 __kmpc_in_parallel(ident_t *loc) {
return __kmp_entry_thread()->th.th_root->r.r_active;
}
/*!
@ingroup PARALLEL
@param loc source location information
@param global_tid global thread number
@param num_threads number of threads requested for this parallel construct
Set the number of threads to be used by the next fork spawned by this thread.
This call is only required if the parallel construct has a `num_threads` clause.
*/
void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
kmp_int32 num_threads) {
KA_TRACE(20, ("__kmpc_push_num_threads: enter T#%d num_threads=%d\n",
global_tid, num_threads));
__kmp_push_num_threads(loc, global_tid, num_threads);
}
void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid) {
KA_TRACE(20, ("__kmpc_pop_num_threads: enter\n"));
/* the num_threads are automatically popped */
}
void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
kmp_int32 proc_bind) {
KA_TRACE(20, ("__kmpc_push_proc_bind: enter T#%d proc_bind=%d\n", global_tid,
proc_bind));
__kmp_push_proc_bind(loc, global_tid, (kmp_proc_bind_t)proc_bind);
}
/*!
@ingroup PARALLEL
@param loc source location information
@param argc total number of arguments in the ellipsis
@param microtask pointer to callback routine consisting of outlined parallel
construct
@param ... pointers to shared variables that aren't global
Do the actual fork and call the microtask in the relevant number of threads.
*/
void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro microtask, ...) {
int gtid = __kmp_entry_gtid();
#if (KMP_STATS_ENABLED)
// If we were in a serial region, then stop the serial timer, record
// the event, and start parallel region timer
stats_state_e previous_state = KMP_GET_THREAD_STATE();
if (previous_state == stats_state_e::SERIAL_REGION) {
KMP_EXCHANGE_PARTITIONED_TIMER(OMP_parallel_overhead);
} else {
KMP_PUSH_PARTITIONED_TIMER(OMP_parallel_overhead);
}
int inParallel = __kmpc_in_parallel(loc);
if (inParallel) {
KMP_COUNT_BLOCK(OMP_NESTED_PARALLEL);
} else {
KMP_COUNT_BLOCK(OMP_PARALLEL);
}
#endif
// maybe to save thr_state is enough here
{
va_list ap;
va_start(ap, microtask);
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
kmp_info_t *master_th = __kmp_threads[gtid];
kmp_team_t *parent_team = master_th->th.th_team;
ompt_lw_taskteam_t *lwt = parent_team->t.ompt_serialized_team_info;
if (lwt)
ompt_frame = &(lwt->ompt_task_info.frame);
else {
int tid = __kmp_tid_from_gtid(gtid);
ompt_frame = &(
parent_team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame);
}
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
#if INCLUDE_SSC_MARKS
SSC_MARK_FORKING();
#endif
__kmp_fork_call(loc, gtid, fork_context_intel, argc,
VOLATILE_CAST(microtask_t) microtask, // "wrapped" task
VOLATILE_CAST(launch_t) __kmp_invoke_task_func,
/* TODO: revert workaround for Intel(R) 64 tracker #96 */
#if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX
&ap
#else
ap
#endif
);
#if INCLUDE_SSC_MARKS
SSC_MARK_JOINING();
#endif
__kmp_join_call(loc, gtid
#if OMPT_SUPPORT
,
fork_context_intel
#endif
);
va_end(ap);
}
#if KMP_STATS_ENABLED
if (previous_state == stats_state_e::SERIAL_REGION) {
KMP_EXCHANGE_PARTITIONED_TIMER(OMP_serial);
} else {
KMP_POP_PARTITIONED_TIMER();
}
#endif // KMP_STATS_ENABLED
}
/*!
@ingroup PARALLEL
@param loc source location information
@param global_tid global thread number
@param num_teams number of teams requested for the teams construct
@param num_threads number of threads per team requested for the teams construct
Set the number of teams to be used by the teams construct.
This call is only required if the teams construct has a `num_teams` clause
or a `thread_limit` clause (or both).
*/
void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
kmp_int32 num_teams, kmp_int32 num_threads) {
KA_TRACE(20,
("__kmpc_push_num_teams: enter T#%d num_teams=%d num_threads=%d\n",
global_tid, num_teams, num_threads));
__kmp_push_num_teams(loc, global_tid, num_teams, num_threads);
}
/*!
@ingroup PARALLEL
@param loc source location information
@param argc total number of arguments in the ellipsis
@param microtask pointer to callback routine consisting of outlined teams
construct
@param ... pointers to shared variables that aren't global
Do the actual fork and call the microtask in the relevant number of threads.
*/
void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,
...) {
int gtid = __kmp_entry_gtid();
kmp_info_t *this_thr = __kmp_threads[gtid];
va_list ap;
va_start(ap, microtask);
#if KMP_STATS_ENABLED
KMP_COUNT_BLOCK(OMP_TEAMS);
stats_state_e previous_state = KMP_GET_THREAD_STATE();
if (previous_state == stats_state_e::SERIAL_REGION) {
KMP_EXCHANGE_PARTITIONED_TIMER(OMP_teams_overhead);
} else {
KMP_PUSH_PARTITIONED_TIMER(OMP_teams_overhead);
}
#endif
// remember teams entry point and nesting level
this_thr->th.th_teams_microtask = microtask;
this_thr->th.th_teams_level =
this_thr->th.th_team->t.t_level; // AC: can be >0 on host
#if OMPT_SUPPORT
kmp_team_t *parent_team = this_thr->th.th_team;
int tid = __kmp_tid_from_gtid(gtid);
if (ompt_enabled.enabled) {
parent_team->t.t_implicit_task_taskdata[tid]
.ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
}
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
// check if __kmpc_push_num_teams called, set default number of teams
// otherwise
if (this_thr->th.th_teams_size.nteams == 0) {
__kmp_push_num_teams(loc, gtid, 0, 0);
}
KMP_DEBUG_ASSERT(this_thr->th.th_set_nproc >= 1);
KMP_DEBUG_ASSERT(this_thr->th.th_teams_size.nteams >= 1);
KMP_DEBUG_ASSERT(this_thr->th.th_teams_size.nth >= 1);
__kmp_fork_call(loc, gtid, fork_context_intel, argc,
VOLATILE_CAST(microtask_t)
__kmp_teams_master, // "wrapped" task
VOLATILE_CAST(launch_t) __kmp_invoke_teams_master,
#if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX
&ap
#else
ap
#endif
);
__kmp_join_call(loc, gtid
#if OMPT_SUPPORT
,
fork_context_intel
#endif
);
// Pop current CG root off list
KMP_DEBUG_ASSERT(this_thr->th.th_cg_roots);
kmp_cg_root_t *tmp = this_thr->th.th_cg_roots;
this_thr->th.th_cg_roots = tmp->up;
KA_TRACE(100, ("__kmpc_fork_teams: Thread %p popping node %p and moving up"
" to node %p. cg_nthreads was %d\n",
this_thr, tmp, this_thr->th.th_cg_roots, tmp->cg_nthreads));
KMP_DEBUG_ASSERT(tmp->cg_nthreads);
int i = tmp->cg_nthreads--;
if (i == 1) { // check is we are the last thread in CG (not always the case)
__kmp_free(tmp);
}
// Restore current task's thread_limit from CG root
KMP_DEBUG_ASSERT(this_thr->th.th_cg_roots);
this_thr->th.th_current_task->td_icvs.thread_limit =
this_thr->th.th_cg_roots->cg_thread_limit;
this_thr->th.th_teams_microtask = NULL;
this_thr->th.th_teams_level = 0;
*(kmp_int64 *)(&this_thr->th.th_teams_size) = 0L;
va_end(ap);
#if KMP_STATS_ENABLED
if (previous_state == stats_state_e::SERIAL_REGION) {
KMP_EXCHANGE_PARTITIONED_TIMER(OMP_serial);
} else {
KMP_POP_PARTITIONED_TIMER();
}
#endif // KMP_STATS_ENABLED
}
// I don't think this function should ever have been exported.
// The __kmpc_ prefix was misapplied. I'm fairly certain that no generated
// openmp code ever called it, but it's been exported from the RTL for so
// long that I'm afraid to remove the definition.
int __kmpc_invoke_task_func(int gtid) { return __kmp_invoke_task_func(gtid); }
/*!
@ingroup PARALLEL
@param loc source location information
@param global_tid global thread number
Enter a serialized parallel construct. This interface is used to handle a
conditional parallel region, like this,
@code
#pragma omp parallel if (condition)
@endcode
when the condition is false.
*/
void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 global_tid) {
// The implementation is now in kmp_runtime.cpp so that it can share static
// functions with kmp_fork_call since the tasks to be done are similar in
// each case.
#if OMPT_SUPPORT
OMPT_STORE_RETURN_ADDRESS(global_tid);
#endif
__kmp_serialized_parallel(loc, global_tid);
}
/*!
@ingroup PARALLEL
@param loc source location information
@param global_tid global thread number
Leave a serialized parallel construct.
*/
void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 global_tid) {
kmp_internal_control_t *top;
kmp_info_t *this_thr;
kmp_team_t *serial_team;
KC_TRACE(10,
("__kmpc_end_serialized_parallel: called by T#%d\n", global_tid));
/* skip all this code for autopar serialized loops since it results in
unacceptable overhead */
if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR))
return;
// Not autopar code
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
this_thr = __kmp_threads[global_tid];
serial_team = this_thr->th.th_serial_team;
kmp_task_team_t *task_team = this_thr->th.th_task_team;
// we need to wait for the proxy tasks before finishing the thread
if (task_team != NULL && task_team->tt.tt_found_proxy_tasks)
__kmp_task_team_wait(this_thr, serial_team USE_ITT_BUILD_ARG(NULL));
KMP_MB();
KMP_DEBUG_ASSERT(serial_team);
KMP_ASSERT(serial_team->t.t_serialized);
KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team);
KMP_DEBUG_ASSERT(serial_team != this_thr->th.th_root->r.r_root_team);
KMP_DEBUG_ASSERT(serial_team->t.t_threads);
KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
#if OMPT_SUPPORT
if (ompt_enabled.enabled &&
this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = ompt_data_none;
if (ompt_enabled.ompt_callback_implicit_task) {
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
ompt_scope_end, NULL, OMPT_CUR_TASK_DATA(this_thr), 1,
OMPT_CUR_TASK_INFO(this_thr)->thread_num, ompt_task_implicit);
}
// reset clear the task id only after unlinking the task
ompt_data_t *parent_task_data;
__ompt_get_task_info_internal(1, NULL, &parent_task_data, NULL, NULL, NULL);
if (ompt_enabled.ompt_callback_parallel_end) {
ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
&(serial_team->t.ompt_team_info.parallel_data), parent_task_data,
ompt_parallel_invoker_program | ompt_parallel_team,
OMPT_LOAD_RETURN_ADDRESS(global_tid));
}
__ompt_lw_taskteam_unlink(this_thr);
this_thr->th.ompt_thread_info.state = ompt_state_overhead;
}
#endif
/* If necessary, pop the internal control stack values and replace the team
* values */
top = serial_team->t.t_control_stack_top;
if (top && top->serial_nesting_level == serial_team->t.t_serialized) {
copy_icvs(&serial_team->t.t_threads[0]->th.th_current_task->td_icvs, top);
serial_team->t.t_control_stack_top = top->next;
__kmp_free(top);
}
// if( serial_team -> t.t_serialized > 1 )
serial_team->t.t_level--;
/* pop dispatch buffers stack */
KMP_DEBUG_ASSERT(serial_team->t.t_dispatch->th_disp_buffer);
{
dispatch_private_info_t *disp_buffer =
serial_team->t.t_dispatch->th_disp_buffer;
serial_team->t.t_dispatch->th_disp_buffer =
serial_team->t.t_dispatch->th_disp_buffer->next;
__kmp_free(disp_buffer);
}
this_thr->th.th_def_allocator = serial_team->t.t_def_allocator; // restore
--serial_team->t.t_serialized;
if (serial_team->t.t_serialized == 0) {
/* return to the parallel section */
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
if (__kmp_inherit_fp_control && serial_team->t.t_fp_control_saved) {
__kmp_clear_x87_fpu_status_word();
__kmp_load_x87_fpu_control_word(&serial_team->t.t_x87_fpu_control_word);
__kmp_load_mxcsr(&serial_team->t.t_mxcsr);
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
this_thr->th.th_team = serial_team->t.t_parent;
this_thr->th.th_info.ds.ds_tid = serial_team->t.t_master_tid;
/* restore values cached in the thread */
this_thr->th.th_team_nproc = serial_team->t.t_parent->t.t_nproc; /* JPH */
this_thr->th.th_team_master =
serial_team->t.t_parent->t.t_threads[0]; /* JPH */
this_thr->th.th_team_serialized = this_thr->th.th_team->t.t_serialized;
/* TODO the below shouldn't need to be adjusted for serialized teams */
this_thr->th.th_dispatch =
&this_thr->th.th_team->t.t_dispatch[serial_team->t.t_master_tid];
__kmp_pop_current_task_from_thread(this_thr);
KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 0);
this_thr->th.th_current_task->td_flags.executing = 1;
if (__kmp_tasking_mode != tskm_immediate_exec) {
// Copy the task team from the new child / old parent team to the thread.
this_thr->th.th_task_team =
this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state];
KA_TRACE(20,
("__kmpc_end_serialized_parallel: T#%d restoring task_team %p / "
"team %p\n",
global_tid, this_thr->th.th_task_team, this_thr->th.th_team));
}
} else {
if (__kmp_tasking_mode != tskm_immediate_exec) {
KA_TRACE(20, ("__kmpc_end_serialized_parallel: T#%d decreasing nesting "
"depth of serial team %p to %d\n",
global_tid, serial_team, serial_team->t.t_serialized));
}
}
if (__kmp_env_consistency_check)
__kmp_pop_parallel(global_tid, NULL);
#if OMPT_SUPPORT
if (ompt_enabled.enabled)
this_thr->th.ompt_thread_info.state =
((this_thr->th.th_team_serialized) ? ompt_state_work_serial
: ompt_state_work_parallel);
#endif
}
/*!
@ingroup SYNCHRONIZATION
@param loc source location information.
Execute flush. This is implemented as a full memory fence. (Though
depending on the memory ordering convention obeyed by the compiler
even that may not be necessary).
*/
void __kmpc_flush(ident_t *loc) {
KC_TRACE(10, ("__kmpc_flush: called\n"));
/* need explicit __mf() here since use volatile instead in library */
KMP_MB(); /* Flush all pending memory write invalidates. */
#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
#if KMP_MIC
// fence-style instructions do not exist, but lock; xaddl $0,(%rsp) can be used.
// We shouldn't need it, though, since the ABI rules require that
// * If the compiler generates NGO stores it also generates the fence
// * If users hand-code NGO stores they should insert the fence
// therefore no incomplete unordered stores should be visible.
#else
// C74404
// This is to address non-temporal store instructions (sfence needed).
// The clflush instruction is addressed either (mfence needed).
// Probably the non-temporal load monvtdqa instruction should also be
// addressed.
// mfence is a SSE2 instruction. Do not execute it if CPU is not SSE2.
if (!__kmp_cpuinfo.initialized) {
__kmp_query_cpuid(&__kmp_cpuinfo);
}
if (!__kmp_cpuinfo.sse2) {
// CPU cannot execute SSE2 instructions.
} else {
#if KMP_COMPILER_ICC
_mm_mfence();
#elif KMP_COMPILER_MSVC
MemoryBarrier();
#else
__sync_synchronize();
#endif // KMP_COMPILER_ICC
}
#endif // KMP_MIC
#elif (KMP_ARCH_ARM || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS || KMP_ARCH_MIPS64 || \
KMP_ARCH_RISCV64)
// Nothing to see here move along
#elif KMP_ARCH_PPC64
// Nothing needed here (we have a real MB above).
#if KMP_OS_CNK
// The flushing thread needs to yield here; this prevents a
// busy-waiting thread from saturating the pipeline. flush is
// often used in loops like this:
// while (!flag) {
// #pragma omp flush(flag)
// }
// and adding the yield here is good for at least a 10x speedup
// when running >2 threads per core (on the NAS LU benchmark).
__kmp_yield();
#endif
#else
#error Unknown or unsupported architecture
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.ompt_callback_flush) {
ompt_callbacks.ompt_callback(ompt_callback_flush)(
__ompt_get_thread_data_internal(), OMPT_GET_RETURN_ADDRESS(0));
}
#endif
}
/* -------------------------------------------------------------------------- */
/*!
@ingroup SYNCHRONIZATION
@param loc source location information
@param global_tid thread id.
Execute a barrier.
*/
void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid) {
KMP_COUNT_BLOCK(OMP_BARRIER);
KC_TRACE(10, ("__kmpc_barrier: called T#%d\n", global_tid));
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
if (__kmp_env_consistency_check) {
if (loc == 0) {
KMP_WARNING(ConstructIdentInvalid); // ??? What does it mean for the user?
}
__kmp_check_barrier(global_tid, ct_barrier, loc);
}
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
if (ompt_frame->enter_frame.ptr == NULL)
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(global_tid);
}
#endif
__kmp_threads[global_tid]->th.th_ident = loc;
// TODO: explicit barrier_wait_id:
// this function is called when 'barrier' directive is present or
// implicit barrier at the end of a worksharing construct.
// 1) better to add a per-thread barrier counter to a thread data structure
// 2) set to 0 when a new team is created
// 4) no sync is required
__kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
}
/* The BARRIER for a MASTER section is always explicit */
/*!
@ingroup WORK_SHARING
@param loc source location information.
@param global_tid global thread number .
@return 1 if this thread should execute the master block, 0 otherwise.
*/
kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid) {
int status = 0;
KC_TRACE(10, ("__kmpc_master: called T#%d\n", global_tid));
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
if (KMP_MASTER_GTID(global_tid)) {
KMP_COUNT_BLOCK(OMP_MASTER);
KMP_PUSH_PARTITIONED_TIMER(OMP_master);
status = 1;
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (status) {
if (ompt_enabled.ompt_callback_master) {
kmp_info_t *this_thr = __kmp_threads[global_tid];
kmp_team_t *team = this_thr->th.th_team;
int tid = __kmp_tid_from_gtid(global_tid);
ompt_callbacks.ompt_callback(ompt_callback_master)(
ompt_scope_begin, &(team->t.ompt_team_info.parallel_data),
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data),
OMPT_GET_RETURN_ADDRESS(0));
}
}
#endif
if (__kmp_env_consistency_check) {
#if KMP_USE_DYNAMIC_LOCK
if (status)
__kmp_push_sync(global_tid, ct_master, loc, NULL, 0);
else
__kmp_check_sync(global_tid, ct_master, loc, NULL, 0);
#else
if (status)
__kmp_push_sync(global_tid, ct_master, loc, NULL);
else
__kmp_check_sync(global_tid, ct_master, loc, NULL);
#endif
}
return status;
}
/*!
@ingroup WORK_SHARING
@param loc source location information.
@param global_tid global thread number .
Mark the end of a master region. This should only be called by the
thread that executes the master region.
*/
void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid) {
KC_TRACE(10, ("__kmpc_end_master: called T#%d\n", global_tid));
KMP_DEBUG_ASSERT(KMP_MASTER_GTID(global_tid));
KMP_POP_PARTITIONED_TIMER();
#if OMPT_SUPPORT && OMPT_OPTIONAL
kmp_info_t *this_thr = __kmp_threads[global_tid];
kmp_team_t *team = this_thr->th.th_team;
if (ompt_enabled.ompt_callback_master) {
int tid = __kmp_tid_from_gtid(global_tid);
ompt_callbacks.ompt_callback(ompt_callback_master)(
ompt_scope_end, &(team->t.ompt_team_info.parallel_data),
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data),
OMPT_GET_RETURN_ADDRESS(0));
}
#endif
if (__kmp_env_consistency_check) {
if (global_tid < 0)
KMP_WARNING(ThreadIdentInvalid);
if (KMP_MASTER_GTID(global_tid))
__kmp_pop_sync(global_tid, ct_master, loc);
}
}
/*!
@ingroup WORK_SHARING
@param loc source location information.
@param gtid global thread number.
Start execution of an ordered construct.
*/
void __kmpc_ordered(ident_t *loc, kmp_int32 gtid) {
int cid = 0;
kmp_info_t *th;
KMP_DEBUG_ASSERT(__kmp_init_serial);
KC_TRACE(10, ("__kmpc_ordered: called T#%d\n", gtid));
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
#if USE_ITT_BUILD
__kmp_itt_ordered_prep(gtid);
// TODO: ordered_wait_id
#endif /* USE_ITT_BUILD */
th = __kmp_threads[gtid];
#if OMPT_SUPPORT && OMPT_OPTIONAL
kmp_team_t *team;
ompt_wait_id_t lck;
void *codeptr_ra;
if (ompt_enabled.enabled) {
OMPT_STORE_RETURN_ADDRESS(gtid);
team = __kmp_team_from_gtid(gtid);
lck = (ompt_wait_id_t)(uintptr_t)&team->t.t_ordered.dt.t_value;
/* OMPT state update */
th->th.ompt_thread_info.wait_id = lck;
th->th.ompt_thread_info.state = ompt_state_wait_ordered;
/* OMPT event callback */
codeptr_ra = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_ordered, omp_lock_hint_none, kmp_mutex_impl_spin, lck,
codeptr_ra);
}
}
#endif
if (th->th.th_dispatch->th_deo_fcn != 0)
(*th->th.th_dispatch->th_deo_fcn)(>id, &cid, loc);
else
__kmp_parallel_deo(>id, &cid, loc);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
/* OMPT state update */
th->th.ompt_thread_info.state = ompt_state_work_parallel;
th->th.ompt_thread_info.wait_id = 0;
/* OMPT event callback */
if (ompt_enabled.ompt_callback_mutex_acquired) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_ordered, (ompt_wait_id_t)(uintptr_t)lck, codeptr_ra);
}
}
#endif
#if USE_ITT_BUILD
__kmp_itt_ordered_start(gtid);
#endif /* USE_ITT_BUILD */
}
/*!
@ingroup WORK_SHARING
@param loc source location information.
@param gtid global thread number.
End execution of an ordered construct.
*/
void __kmpc_end_ordered(ident_t *loc, kmp_int32 gtid) {
int cid = 0;
kmp_info_t *th;
KC_TRACE(10, ("__kmpc_end_ordered: called T#%d\n", gtid));
#if USE_ITT_BUILD
__kmp_itt_ordered_end(gtid);
// TODO: ordered_wait_id
#endif /* USE_ITT_BUILD */
th = __kmp_threads[gtid];
if (th->th.th_dispatch->th_dxo_fcn != 0)
(*th->th.th_dispatch->th_dxo_fcn)(>id, &cid, loc);
else
__kmp_parallel_dxo(>id, &cid, loc);
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_STORE_RETURN_ADDRESS(gtid);
if (ompt_enabled.ompt_callback_mutex_released) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_released)(
ompt_mutex_ordered,
(ompt_wait_id_t)(uintptr_t)&__kmp_team_from_gtid(gtid)
->t.t_ordered.dt.t_value,
OMPT_LOAD_RETURN_ADDRESS(gtid));
}
#endif
}
#if KMP_USE_DYNAMIC_LOCK
static __forceinline void
__kmp_init_indirect_csptr(kmp_critical_name *crit, ident_t const *loc,
kmp_int32 gtid, kmp_indirect_locktag_t tag) {
// Pointer to the allocated indirect lock is written to crit, while indexing
// is ignored.
void *idx;
kmp_indirect_lock_t **lck;
lck = (kmp_indirect_lock_t **)crit;
kmp_indirect_lock_t *ilk = __kmp_allocate_indirect_lock(&idx, gtid, tag);
KMP_I_LOCK_FUNC(ilk, init)(ilk->lock);
KMP_SET_I_LOCK_LOCATION(ilk, loc);
KMP_SET_I_LOCK_FLAGS(ilk, kmp_lf_critical_section);
KA_TRACE(20,
("__kmp_init_indirect_csptr: initialized indirect lock #%d\n", tag));
#if USE_ITT_BUILD
__kmp_itt_critical_creating(ilk->lock, loc);
#endif
int status = KMP_COMPARE_AND_STORE_PTR(lck, nullptr, ilk);
if (status == 0) {
#if USE_ITT_BUILD
__kmp_itt_critical_destroyed(ilk->lock);
#endif
// We don't really need to destroy the unclaimed lock here since it will be
// cleaned up at program exit.
// KMP_D_LOCK_FUNC(&idx, destroy)((kmp_dyna_lock_t *)&idx);
}
KMP_DEBUG_ASSERT(*lck != NULL);
}
// Fast-path acquire tas lock
#define KMP_ACQUIRE_TAS_LOCK(lock, gtid) \
{ \
kmp_tas_lock_t *l = (kmp_tas_lock_t *)lock; \
kmp_int32 tas_free = KMP_LOCK_FREE(tas); \
kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); \
if (KMP_ATOMIC_LD_RLX(&l->lk.poll) != tas_free || \
!__kmp_atomic_compare_store_acq(&l->lk.poll, tas_free, tas_busy)) { \
kmp_uint32 spins; \
KMP_FSYNC_PREPARE(l); \
KMP_INIT_YIELD(spins); \
kmp_backoff_t backoff = __kmp_spin_backoff_params; \
do { \
if (TCR_4(__kmp_nth) > \
(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { \
KMP_YIELD(TRUE); \
} else { \
KMP_YIELD_SPIN(spins); \
} \
__kmp_spin_backoff(&backoff); \
} while ( \
KMP_ATOMIC_LD_RLX(&l->lk.poll) != tas_free || \
!__kmp_atomic_compare_store_acq(&l->lk.poll, tas_free, tas_busy)); \
} \
KMP_FSYNC_ACQUIRED(l); \
}
// Fast-path test tas lock
#define KMP_TEST_TAS_LOCK(lock, gtid, rc) \
{ \
kmp_tas_lock_t *l = (kmp_tas_lock_t *)lock; \
kmp_int32 tas_free = KMP_LOCK_FREE(tas); \
kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); \
rc = KMP_ATOMIC_LD_RLX(&l->lk.poll) == tas_free && \
__kmp_atomic_compare_store_acq(&l->lk.poll, tas_free, tas_busy); \
}
// Fast-path release tas lock
#define KMP_RELEASE_TAS_LOCK(lock, gtid) \
{ KMP_ATOMIC_ST_REL(&((kmp_tas_lock_t *)lock)->lk.poll, KMP_LOCK_FREE(tas)); }
#if KMP_USE_FUTEX
#include
#include
#ifndef FUTEX_WAIT
#define FUTEX_WAIT 0
#endif
#ifndef FUTEX_WAKE
#define FUTEX_WAKE 1
#endif
// Fast-path acquire futex lock
#define KMP_ACQUIRE_FUTEX_LOCK(lock, gtid) \
{ \
kmp_futex_lock_t *ftx = (kmp_futex_lock_t *)lock; \
kmp_int32 gtid_code = (gtid + 1) << 1; \
KMP_MB(); \
KMP_FSYNC_PREPARE(ftx); \
kmp_int32 poll_val; \
while ((poll_val = KMP_COMPARE_AND_STORE_RET32( \
&(ftx->lk.poll), KMP_LOCK_FREE(futex), \
KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) { \
kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1; \
if (!cond) { \
if (!KMP_COMPARE_AND_STORE_RET32(&(ftx->lk.poll), poll_val, \
poll_val | \
KMP_LOCK_BUSY(1, futex))) { \
continue; \
} \
poll_val |= KMP_LOCK_BUSY(1, futex); \
} \
kmp_int32 rc; \
if ((rc = syscall(__NR_futex, &(ftx->lk.poll), FUTEX_WAIT, poll_val, \
NULL, NULL, 0)) != 0) { \
continue; \
} \
gtid_code |= 1; \
} \
KMP_FSYNC_ACQUIRED(ftx); \
}
// Fast-path test futex lock
#define KMP_TEST_FUTEX_LOCK(lock, gtid, rc) \
{ \
kmp_futex_lock_t *ftx = (kmp_futex_lock_t *)lock; \
if (KMP_COMPARE_AND_STORE_ACQ32(&(ftx->lk.poll), KMP_LOCK_FREE(futex), \
KMP_LOCK_BUSY(gtid + 1 << 1, futex))) { \
KMP_FSYNC_ACQUIRED(ftx); \
rc = TRUE; \
} else { \
rc = FALSE; \
} \
}
// Fast-path release futex lock
#define KMP_RELEASE_FUTEX_LOCK(lock, gtid) \
{ \
kmp_futex_lock_t *ftx = (kmp_futex_lock_t *)lock; \
KMP_MB(); \
KMP_FSYNC_RELEASING(ftx); \
kmp_int32 poll_val = \
KMP_XCHG_FIXED32(&(ftx->lk.poll), KMP_LOCK_FREE(futex)); \
if (KMP_LOCK_STRIP(poll_val) & 1) { \
syscall(__NR_futex, &(ftx->lk.poll), FUTEX_WAKE, \
KMP_LOCK_BUSY(1, futex), NULL, NULL, 0); \
} \
KMP_MB(); \
KMP_YIELD_OVERSUB(); \
}
#endif // KMP_USE_FUTEX
#else // KMP_USE_DYNAMIC_LOCK
static kmp_user_lock_p __kmp_get_critical_section_ptr(kmp_critical_name *crit,
ident_t const *loc,
kmp_int32 gtid) {
kmp_user_lock_p *lck_pp = (kmp_user_lock_p *)crit;
// Because of the double-check, the following load doesn't need to be volatile
kmp_user_lock_p lck = (kmp_user_lock_p)TCR_PTR(*lck_pp);
if (lck == NULL) {
void *idx;
// Allocate & initialize the lock.
// Remember alloc'ed locks in table in order to free them in __kmp_cleanup()
lck = __kmp_user_lock_allocate(&idx, gtid, kmp_lf_critical_section);
__kmp_init_user_lock_with_checks(lck);
__kmp_set_user_lock_location(lck, loc);
#if USE_ITT_BUILD
__kmp_itt_critical_creating(lck);
// __kmp_itt_critical_creating() should be called *before* the first usage
// of underlying lock. It is the only place where we can guarantee it. There
// are chances the lock will destroyed with no usage, but it is not a
// problem, because this is not real event seen by user but rather setting
// name for object (lock). See more details in kmp_itt.h.
#endif /* USE_ITT_BUILD */
// Use a cmpxchg instruction to slam the start of the critical section with
// the lock pointer. If another thread beat us to it, deallocate the lock,
// and use the lock that the other thread allocated.
int status = KMP_COMPARE_AND_STORE_PTR(lck_pp, 0, lck);
if (status == 0) {
// Deallocate the lock and reload the value.
#if USE_ITT_BUILD
__kmp_itt_critical_destroyed(lck);
// Let ITT know the lock is destroyed and the same memory location may be reused
// for another purpose.
#endif /* USE_ITT_BUILD */
__kmp_destroy_user_lock_with_checks(lck);
__kmp_user_lock_free(&idx, gtid, lck);
lck = (kmp_user_lock_p)TCR_PTR(*lck_pp);
KMP_DEBUG_ASSERT(lck != NULL);
}
}
return lck;
}
#endif // KMP_USE_DYNAMIC_LOCK
/*!
@ingroup WORK_SHARING
@param loc source location information.
@param global_tid global thread number .
@param crit identity of the critical section. This could be a pointer to a lock
associated with the critical section, or some other suitably unique value.
Enter code protected by a `critical` construct.
This function blocks until the executing thread can enter the critical section.
*/
void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
kmp_critical_name *crit) {
#if KMP_USE_DYNAMIC_LOCK
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_STORE_RETURN_ADDRESS(global_tid);
#endif // OMPT_SUPPORT
__kmpc_critical_with_hint(loc, global_tid, crit, omp_lock_hint_none);
#else
KMP_COUNT_BLOCK(OMP_CRITICAL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
ompt_state_t prev_state = ompt_state_undefined;
ompt_thread_info_t ti;
#endif
kmp_user_lock_p lck;
KC_TRACE(10, ("__kmpc_critical: called T#%d\n", global_tid));
// TODO: add THR_OVHD_STATE
KMP_PUSH_PARTITIONED_TIMER(OMP_critical_wait);
KMP_CHECK_USER_LOCK_INIT();
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) <= OMP_CRITICAL_SIZE)) {
lck = (kmp_user_lock_p)crit;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) <= OMP_CRITICAL_SIZE)) {
lck = (kmp_user_lock_p)crit;
}
#endif
else { // ticket, queuing or drdpa
lck = __kmp_get_critical_section_ptr(crit, loc, global_tid);
}
if (__kmp_env_consistency_check)
__kmp_push_sync(global_tid, ct_critical, loc, lck);
// since the critical directive binds to all threads, not just the current
// team we have to check this even if we are in a serialized team.
// also, even if we are the uber thread, we still have to conduct the lock,
// as we have to contend with sibling threads.
#if USE_ITT_BUILD
__kmp_itt_critical_acquiring(lck);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_STORE_RETURN_ADDRESS(gtid);
void *codeptr_ra = NULL;
if (ompt_enabled.enabled) {
ti = __kmp_threads[global_tid]->th.ompt_thread_info;
/* OMPT state update */
prev_state = ti.state;
ti.wait_id = (ompt_wait_id_t)(uintptr_t)lck;
ti.state = ompt_state_wait_critical;
/* OMPT event callback */
codeptr_ra = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_critical, omp_lock_hint_none, __ompt_get_mutex_impl_type(),
(ompt_wait_id_t)(uintptr_t)lck, codeptr_ra);
}
}
#endif
// Value of 'crit' should be good for using as a critical_id of the critical
// section directive.
__kmp_acquire_user_lock_with_checks(lck, global_tid);
#if USE_ITT_BUILD
__kmp_itt_critical_acquired(lck);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
/* OMPT state update */
ti.state = prev_state;
ti.wait_id = 0;
/* OMPT event callback */
if (ompt_enabled.ompt_callback_mutex_acquired) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_critical, (ompt_wait_id_t)(uintptr_t)lck, codeptr_ra);
}
}
#endif
KMP_POP_PARTITIONED_TIMER();
KMP_PUSH_PARTITIONED_TIMER(OMP_critical);
KA_TRACE(15, ("__kmpc_critical: done T#%d\n", global_tid));
#endif // KMP_USE_DYNAMIC_LOCK
}
#if KMP_USE_DYNAMIC_LOCK
// Converts the given hint to an internal lock implementation
static __forceinline kmp_dyna_lockseq_t __kmp_map_hint_to_lock(uintptr_t hint) {
#if KMP_USE_TSX
#define KMP_TSX_LOCK(seq) lockseq_##seq
#else
#define KMP_TSX_LOCK(seq) __kmp_user_lock_seq
#endif
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
#define KMP_CPUINFO_RTM (__kmp_cpuinfo.rtm)
#else
#define KMP_CPUINFO_RTM 0
#endif
// Hints that do not require further logic
if (hint & kmp_lock_hint_hle)
return KMP_TSX_LOCK(hle);
if (hint & kmp_lock_hint_rtm)
return KMP_CPUINFO_RTM ? KMP_TSX_LOCK(rtm) : __kmp_user_lock_seq;
if (hint & kmp_lock_hint_adaptive)
return KMP_CPUINFO_RTM ? KMP_TSX_LOCK(adaptive) : __kmp_user_lock_seq;
// Rule out conflicting hints first by returning the default lock
if ((hint & omp_lock_hint_contended) && (hint & omp_lock_hint_uncontended))
return __kmp_user_lock_seq;
if ((hint & omp_lock_hint_speculative) &&
(hint & omp_lock_hint_nonspeculative))
return __kmp_user_lock_seq;
// Do not even consider speculation when it appears to be contended
if (hint & omp_lock_hint_contended)
return lockseq_queuing;
// Uncontended lock without speculation
if ((hint & omp_lock_hint_uncontended) && !(hint & omp_lock_hint_speculative))
return lockseq_tas;
// HLE lock for speculation
if (hint & omp_lock_hint_speculative)
return KMP_TSX_LOCK(hle);
return __kmp_user_lock_seq;
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
#if KMP_USE_DYNAMIC_LOCK
static kmp_mutex_impl_t
__ompt_get_mutex_impl_type(void *user_lock, kmp_indirect_lock_t *ilock = 0) {
if (user_lock) {
switch (KMP_EXTRACT_D_TAG(user_lock)) {
case 0:
break;
#if KMP_USE_FUTEX
case locktag_futex:
return kmp_mutex_impl_queuing;
#endif
case locktag_tas:
return kmp_mutex_impl_spin;
#if KMP_USE_TSX
case locktag_hle:
return kmp_mutex_impl_speculative;
#endif
default:
return kmp_mutex_impl_none;
}
ilock = KMP_LOOKUP_I_LOCK(user_lock);
}
KMP_ASSERT(ilock);
switch (ilock->type) {
#if KMP_USE_TSX
case locktag_adaptive:
case locktag_rtm:
return kmp_mutex_impl_speculative;
#endif
case locktag_nested_tas:
return kmp_mutex_impl_spin;
#if KMP_USE_FUTEX
case locktag_nested_futex:
#endif
case locktag_ticket:
case locktag_queuing:
case locktag_drdpa:
case locktag_nested_ticket:
case locktag_nested_queuing:
case locktag_nested_drdpa:
return kmp_mutex_impl_queuing;
default:
return kmp_mutex_impl_none;
}
}
#else
// For locks without dynamic binding
static kmp_mutex_impl_t __ompt_get_mutex_impl_type() {
switch (__kmp_user_lock_kind) {
case lk_tas:
return kmp_mutex_impl_spin;
#if KMP_USE_FUTEX
case lk_futex:
#endif
case lk_ticket:
case lk_queuing:
case lk_drdpa:
return kmp_mutex_impl_queuing;
#if KMP_USE_TSX
case lk_hle:
case lk_rtm:
case lk_adaptive:
return kmp_mutex_impl_speculative;
#endif
default:
return kmp_mutex_impl_none;
}
}
#endif // KMP_USE_DYNAMIC_LOCK
#endif // OMPT_SUPPORT && OMPT_OPTIONAL
/*!
@ingroup WORK_SHARING
@param loc source location information.
@param global_tid global thread number.
@param crit identity of the critical section. This could be a pointer to a lock
associated with the critical section, or some other suitably unique value.
@param hint the lock hint.
Enter code protected by a `critical` construct with a hint. The hint value is
used to suggest a lock implementation. This function blocks until the executing
thread can enter the critical section unless the hint suggests use of
speculative execution and the hardware supports it.
*/
void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
kmp_critical_name *crit, uint32_t hint) {
KMP_COUNT_BLOCK(OMP_CRITICAL);
kmp_user_lock_p lck;
#if OMPT_SUPPORT && OMPT_OPTIONAL
ompt_state_t prev_state = ompt_state_undefined;
ompt_thread_info_t ti;
// This is the case, if called from __kmpc_critical:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
#endif
KC_TRACE(10, ("__kmpc_critical: called T#%d\n", global_tid));
kmp_dyna_lock_t *lk = (kmp_dyna_lock_t *)crit;
// Check if it is initialized.
KMP_PUSH_PARTITIONED_TIMER(OMP_critical_wait);
if (*lk == 0) {
kmp_dyna_lockseq_t lckseq = __kmp_map_hint_to_lock(hint);
if (KMP_IS_D_LOCK(lckseq)) {
KMP_COMPARE_AND_STORE_ACQ32((volatile kmp_int32 *)crit, 0,
KMP_GET_D_TAG(lckseq));
} else {
__kmp_init_indirect_csptr(crit, loc, global_tid, KMP_GET_I_TAG(lckseq));
}
}
// Branch for accessing the actual lock object and set operation. This
// branching is inevitable since this lock initialization does not follow the
// normal dispatch path (lock table is not used).
if (KMP_EXTRACT_D_TAG(lk) != 0) {
lck = (kmp_user_lock_p)lk;
if (__kmp_env_consistency_check) {
__kmp_push_sync(global_tid, ct_critical, loc, lck,
__kmp_map_hint_to_lock(hint));
}
#if USE_ITT_BUILD
__kmp_itt_critical_acquiring(lck);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ti = __kmp_threads[global_tid]->th.ompt_thread_info;
/* OMPT state update */
prev_state = ti.state;
ti.wait_id = (ompt_wait_id_t)(uintptr_t)lck;
ti.state = ompt_state_wait_critical;
/* OMPT event callback */
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_critical, (unsigned int)hint,
__ompt_get_mutex_impl_type(crit), (ompt_wait_id_t)(uintptr_t)lck,
codeptr);
}
}
#endif
#if KMP_USE_INLINED_TAS
if (__kmp_user_lock_seq == lockseq_tas && !__kmp_env_consistency_check) {
KMP_ACQUIRE_TAS_LOCK(lck, global_tid);
} else
#elif KMP_USE_INLINED_FUTEX
if (__kmp_user_lock_seq == lockseq_futex && !__kmp_env_consistency_check) {
KMP_ACQUIRE_FUTEX_LOCK(lck, global_tid);
} else
#endif
{
KMP_D_LOCK_FUNC(lk, set)(lk, global_tid);
}
} else {
kmp_indirect_lock_t *ilk = *((kmp_indirect_lock_t **)lk);
lck = ilk->lock;
if (__kmp_env_consistency_check) {
__kmp_push_sync(global_tid, ct_critical, loc, lck,
__kmp_map_hint_to_lock(hint));
}
#if USE_ITT_BUILD
__kmp_itt_critical_acquiring(lck);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ti = __kmp_threads[global_tid]->th.ompt_thread_info;
/* OMPT state update */
prev_state = ti.state;
ti.wait_id = (ompt_wait_id_t)(uintptr_t)lck;
ti.state = ompt_state_wait_critical;
/* OMPT event callback */
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_critical, (unsigned int)hint,
__ompt_get_mutex_impl_type(0, ilk), (ompt_wait_id_t)(uintptr_t)lck,
codeptr);
}
}
#endif
KMP_I_LOCK_FUNC(ilk, set)(lck, global_tid);
}
KMP_POP_PARTITIONED_TIMER();
#if USE_ITT_BUILD
__kmp_itt_critical_acquired(lck);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
/* OMPT state update */
ti.state = prev_state;
ti.wait_id = 0;
/* OMPT event callback */
if (ompt_enabled.ompt_callback_mutex_acquired) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_critical, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
}
#endif
KMP_PUSH_PARTITIONED_TIMER(OMP_critical);
KA_TRACE(15, ("__kmpc_critical: done T#%d\n", global_tid));
} // __kmpc_critical_with_hint
#endif // KMP_USE_DYNAMIC_LOCK
/*!
@ingroup WORK_SHARING
@param loc source location information.
@param global_tid global thread number .
@param crit identity of the critical section. This could be a pointer to a lock
associated with the critical section, or some other suitably unique value.
Leave a critical section, releasing any lock that was held during its execution.
*/
void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
kmp_critical_name *crit) {
kmp_user_lock_p lck;
KC_TRACE(10, ("__kmpc_end_critical: called T#%d\n", global_tid));
#if KMP_USE_DYNAMIC_LOCK
if (KMP_IS_D_LOCK(__kmp_user_lock_seq)) {
lck = (kmp_user_lock_p)crit;
KMP_ASSERT(lck != NULL);
if (__kmp_env_consistency_check) {
__kmp_pop_sync(global_tid, ct_critical, loc);
}
#if USE_ITT_BUILD
__kmp_itt_critical_releasing(lck);
#endif
#if KMP_USE_INLINED_TAS
if (__kmp_user_lock_seq == lockseq_tas && !__kmp_env_consistency_check) {
KMP_RELEASE_TAS_LOCK(lck, global_tid);
} else
#elif KMP_USE_INLINED_FUTEX
if (__kmp_user_lock_seq == lockseq_futex && !__kmp_env_consistency_check) {
KMP_RELEASE_FUTEX_LOCK(lck, global_tid);
} else
#endif
{
KMP_D_LOCK_FUNC(lck, unset)((kmp_dyna_lock_t *)lck, global_tid);
}
} else {
kmp_indirect_lock_t *ilk =
(kmp_indirect_lock_t *)TCR_PTR(*((kmp_indirect_lock_t **)crit));
KMP_ASSERT(ilk != NULL);
lck = ilk->lock;
if (__kmp_env_consistency_check) {
__kmp_pop_sync(global_tid, ct_critical, loc);
}
#if USE_ITT_BUILD
__kmp_itt_critical_releasing(lck);
#endif
KMP_I_LOCK_FUNC(ilk, unset)(lck, global_tid);
}
#else // KMP_USE_DYNAMIC_LOCK
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) <= OMP_CRITICAL_SIZE)) {
lck = (kmp_user_lock_p)crit;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) <= OMP_CRITICAL_SIZE)) {
lck = (kmp_user_lock_p)crit;
}
#endif
else { // ticket, queuing or drdpa
lck = (kmp_user_lock_p)TCR_PTR(*((kmp_user_lock_p *)crit));
}
KMP_ASSERT(lck != NULL);
if (__kmp_env_consistency_check)
__kmp_pop_sync(global_tid, ct_critical, loc);
#if USE_ITT_BUILD
__kmp_itt_critical_releasing(lck);
#endif /* USE_ITT_BUILD */
// Value of 'crit' should be good for using as a critical_id of the critical
// section directive.
__kmp_release_user_lock_with_checks(lck, global_tid);
#endif // KMP_USE_DYNAMIC_LOCK
#if OMPT_SUPPORT && OMPT_OPTIONAL
/* OMPT release event triggers after lock is released; place here to trigger
* for all #if branches */
OMPT_STORE_RETURN_ADDRESS(global_tid);
if (ompt_enabled.ompt_callback_mutex_released) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_released)(
ompt_mutex_critical, (ompt_wait_id_t)(uintptr_t)lck,
OMPT_LOAD_RETURN_ADDRESS(0));
}
#endif
KMP_POP_PARTITIONED_TIMER();
KA_TRACE(15, ("__kmpc_end_critical: done T#%d\n", global_tid));
}
/*!
@ingroup SYNCHRONIZATION
@param loc source location information
@param global_tid thread id.
@return one if the thread should execute the master block, zero otherwise
Start execution of a combined barrier and master. The barrier is executed inside
this function.
*/
kmp_int32 __kmpc_barrier_master(ident_t *loc, kmp_int32 global_tid) {
int status;
KC_TRACE(10, ("__kmpc_barrier_master: called T#%d\n", global_tid));
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
if (__kmp_env_consistency_check)
__kmp_check_barrier(global_tid, ct_barrier, loc);
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
if (ompt_frame->enter_frame.ptr == NULL)
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(global_tid);
}
#endif
#if USE_ITT_NOTIFY
__kmp_threads[global_tid]->th.th_ident = loc;
#endif
status = __kmp_barrier(bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
return (status != 0) ? 0 : 1;
}
/*!
@ingroup SYNCHRONIZATION
@param loc source location information
@param global_tid thread id.
Complete the execution of a combined barrier and master. This function should
only be called at the completion of the master code. Other threads will
still be waiting at the barrier and this call releases them.
*/
void __kmpc_end_barrier_master(ident_t *loc, kmp_int32 global_tid) {
KC_TRACE(10, ("__kmpc_end_barrier_master: called T#%d\n", global_tid));
__kmp_end_split_barrier(bs_plain_barrier, global_tid);
}
/*!
@ingroup SYNCHRONIZATION
@param loc source location information
@param global_tid thread id.
@return one if the thread should execute the master block, zero otherwise
Start execution of a combined barrier and master(nowait) construct.
The barrier is executed inside this function.
There is no equivalent "end" function, since the
*/
kmp_int32 __kmpc_barrier_master_nowait(ident_t *loc, kmp_int32 global_tid) {
kmp_int32 ret;
KC_TRACE(10, ("__kmpc_barrier_master_nowait: called T#%d\n", global_tid));
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
if (__kmp_env_consistency_check) {
if (loc == 0) {
KMP_WARNING(ConstructIdentInvalid); // ??? What does it mean for the user?
}
__kmp_check_barrier(global_tid, ct_barrier, loc);
}
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
if (ompt_frame->enter_frame.ptr == NULL)
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(global_tid);
}
#endif
#if USE_ITT_NOTIFY
__kmp_threads[global_tid]->th.th_ident = loc;
#endif
__kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
ret = __kmpc_master(loc, global_tid);
if (__kmp_env_consistency_check) {
/* there's no __kmpc_end_master called; so the (stats) */
/* actions of __kmpc_end_master are done here */
if (global_tid < 0) {
KMP_WARNING(ThreadIdentInvalid);
}
if (ret) {
/* only one thread should do the pop since only */
/* one did the push (see __kmpc_master()) */
__kmp_pop_sync(global_tid, ct_master, loc);
}
}
return (ret);
}
/* The BARRIER for a SINGLE process section is always explicit */
/*!
@ingroup WORK_SHARING
@param loc source location information
@param global_tid global thread number
@return One if this thread should execute the single construct, zero otherwise.
Test whether to execute a single construct.
There are no implicit barriers in the two "single" calls, rather the compiler
should introduce an explicit barrier if it is required.
*/
kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid) {
kmp_int32 rc = __kmp_enter_single(global_tid, loc, TRUE);
if (rc) {
// We are going to execute the single statement, so we should count it.
KMP_COUNT_BLOCK(OMP_SINGLE);
KMP_PUSH_PARTITIONED_TIMER(OMP_single);
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
kmp_info_t *this_thr = __kmp_threads[global_tid];
kmp_team_t *team = this_thr->th.th_team;
int tid = __kmp_tid_from_gtid(global_tid);
if (ompt_enabled.enabled) {
if (rc) {
if (ompt_enabled.ompt_callback_work) {
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_single_executor, ompt_scope_begin,
&(team->t.ompt_team_info.parallel_data),
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data),
1, OMPT_GET_RETURN_ADDRESS(0));
}
} else {
if (ompt_enabled.ompt_callback_work) {
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_single_other, ompt_scope_begin,
&(team->t.ompt_team_info.parallel_data),
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data),
1, OMPT_GET_RETURN_ADDRESS(0));
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_single_other, ompt_scope_end,
&(team->t.ompt_team_info.parallel_data),
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data),
1, OMPT_GET_RETURN_ADDRESS(0));
}
}
}
#endif
return rc;
}
/*!
@ingroup WORK_SHARING
@param loc source location information
@param global_tid global thread number
Mark the end of a single construct. This function should
only be called by the thread that executed the block of code protected
by the `single` construct.
*/
void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid) {
__kmp_exit_single(global_tid);
KMP_POP_PARTITIONED_TIMER();
#if OMPT_SUPPORT && OMPT_OPTIONAL
kmp_info_t *this_thr = __kmp_threads[global_tid];
kmp_team_t *team = this_thr->th.th_team;
int tid = __kmp_tid_from_gtid(global_tid);
if (ompt_enabled.ompt_callback_work) {
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_single_executor, ompt_scope_end,
&(team->t.ompt_team_info.parallel_data),
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), 1,
OMPT_GET_RETURN_ADDRESS(0));
}
#endif
}
/*!
@ingroup WORK_SHARING
@param loc Source location
@param global_tid Global thread id
Mark the end of a statically scheduled loop.
*/
void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid) {
KMP_POP_PARTITIONED_TIMER();
KE_TRACE(10, ("__kmpc_for_static_fini called T#%d\n", global_tid));
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.ompt_callback_work) {
ompt_work_t ompt_work_type = ompt_work_loop;
ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
// Determine workshare type
if (loc != NULL) {
if ((loc->flags & KMP_IDENT_WORK_LOOP) != 0) {
ompt_work_type = ompt_work_loop;
} else if ((loc->flags & KMP_IDENT_WORK_SECTIONS) != 0) {
ompt_work_type = ompt_work_sections;
} else if ((loc->flags & KMP_IDENT_WORK_DISTRIBUTE) != 0) {
ompt_work_type = ompt_work_distribute;
} else {
// use default set above.
// a warning about this case is provided in __kmpc_for_static_init
}
KMP_DEBUG_ASSERT(ompt_work_type);
}
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_type, ompt_scope_end, &(team_info->parallel_data),
&(task_info->task_data), 0, OMPT_GET_RETURN_ADDRESS(0));
}
#endif
if (__kmp_env_consistency_check)
__kmp_pop_workshare(global_tid, ct_pdo, loc);
}
// User routines which take C-style arguments (call by value)
// different from the Fortran equivalent routines
void ompc_set_num_threads(int arg) {
// !!!!! TODO: check the per-task binding
__kmp_set_num_threads(arg, __kmp_entry_gtid());
}
void ompc_set_dynamic(int flag) {
kmp_info_t *thread;
/* For the thread-private implementation of the internal controls */
thread = __kmp_entry_thread();
__kmp_save_internal_controls(thread);
set__dynamic(thread, flag ? TRUE : FALSE);
}
void ompc_set_nested(int flag) {
kmp_info_t *thread;
/* For the thread-private internal controls implementation */
thread = __kmp_entry_thread();
__kmp_save_internal_controls(thread);
set__max_active_levels(thread, flag ? __kmp_dflt_max_active_levels : 1);
}
void ompc_set_max_active_levels(int max_active_levels) {
/* TO DO */
/* we want per-task implementation of this internal control */
/* For the per-thread internal controls implementation */
__kmp_set_max_active_levels(__kmp_entry_gtid(), max_active_levels);
}
void ompc_set_schedule(omp_sched_t kind, int modifier) {
// !!!!! TODO: check the per-task binding
__kmp_set_schedule(__kmp_entry_gtid(), (kmp_sched_t)kind, modifier);
}
int ompc_get_ancestor_thread_num(int level) {
return __kmp_get_ancestor_thread_num(__kmp_entry_gtid(), level);
}
int ompc_get_team_size(int level) {
return __kmp_get_team_size(__kmp_entry_gtid(), level);
}
/* OpenMP 5.0 Affinity Format API */
void ompc_set_affinity_format(char const *format) {
if (!__kmp_init_serial) {
__kmp_serial_initialize();
}
__kmp_strncpy_truncate(__kmp_affinity_format, KMP_AFFINITY_FORMAT_SIZE,
format, KMP_STRLEN(format) + 1);
}
size_t ompc_get_affinity_format(char *buffer, size_t size) {
size_t format_size;
if (!__kmp_init_serial) {
__kmp_serial_initialize();
}
format_size = KMP_STRLEN(__kmp_affinity_format);
if (buffer && size) {
__kmp_strncpy_truncate(buffer, size, __kmp_affinity_format,
format_size + 1);
}
return format_size;
}
void ompc_display_affinity(char const *format) {
int gtid;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
gtid = __kmp_get_gtid();
__kmp_aux_display_affinity(gtid, format);
}
size_t ompc_capture_affinity(char *buffer, size_t buf_size,
char const *format) {
int gtid;
size_t num_required;
kmp_str_buf_t capture_buf;
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
gtid = __kmp_get_gtid();
__kmp_str_buf_init(&capture_buf);
num_required = __kmp_aux_capture_affinity(gtid, format, &capture_buf);
if (buffer && buf_size) {
__kmp_strncpy_truncate(buffer, buf_size, capture_buf.str,
capture_buf.used + 1);
}
__kmp_str_buf_free(&capture_buf);
return num_required;
}
void kmpc_set_stacksize(int arg) {
// __kmp_aux_set_stacksize initializes the library if needed
__kmp_aux_set_stacksize(arg);
}
void kmpc_set_stacksize_s(size_t arg) {
// __kmp_aux_set_stacksize initializes the library if needed
__kmp_aux_set_stacksize(arg);
}
void kmpc_set_blocktime(int arg) {
int gtid, tid;
kmp_info_t *thread;
gtid = __kmp_entry_gtid();
tid = __kmp_tid_from_gtid(gtid);
thread = __kmp_thread_from_gtid(gtid);
__kmp_aux_set_blocktime(arg, thread, tid);
}
void kmpc_set_library(int arg) {
// __kmp_user_set_library initializes the library if needed
__kmp_user_set_library((enum library_type)arg);
}
void kmpc_set_defaults(char const *str) {
// __kmp_aux_set_defaults initializes the library if needed
__kmp_aux_set_defaults(str, KMP_STRLEN(str));
}
void kmpc_set_disp_num_buffers(int arg) {
// ignore after initialization because some teams have already
// allocated dispatch buffers
if (__kmp_init_serial == 0 && arg > 0)
__kmp_dispatch_num_buffers = arg;
}
int kmpc_set_affinity_mask_proc(int proc, void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return -1;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_aux_set_affinity_mask_proc(proc, mask);
#endif
}
int kmpc_unset_affinity_mask_proc(int proc, void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return -1;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_aux_unset_affinity_mask_proc(proc, mask);
#endif
}
int kmpc_get_affinity_mask_proc(int proc, void **mask) {
#if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED
return -1;
#else
if (!TCR_4(__kmp_init_middle)) {
__kmp_middle_initialize();
}
return __kmp_aux_get_affinity_mask_proc(proc, mask);
#endif
}
/* -------------------------------------------------------------------------- */
/*!
@ingroup THREADPRIVATE
@param loc source location information
@param gtid global thread number
@param cpy_size size of the cpy_data buffer
@param cpy_data pointer to data to be copied
@param cpy_func helper function to call for copying data
@param didit flag variable: 1=single thread; 0=not single thread
__kmpc_copyprivate implements the interface for the private data broadcast
needed for the copyprivate clause associated with a single region in an
OpenMP* program (both C and Fortran).
All threads participating in the parallel region call this routine.
One of the threads (called the single thread) should have the didit
variable set to 1 and all other threads should have that variable set to 0.
All threads pass a pointer to a data buffer (cpy_data) that they have built.
The OpenMP specification forbids the use of nowait on the single region when a
copyprivate clause is present. However, @ref __kmpc_copyprivate implements a
barrier internally to avoid race conditions, so the code generation for the
single region should avoid generating a barrier after the call to @ref
__kmpc_copyprivate.
The gtid parameter is the global thread id for the current thread.
The loc parameter is a pointer to source location information.
Internal implementation: The single thread will first copy its descriptor
address (cpy_data) to a team-private location, then the other threads will each
call the function pointed to by the parameter cpy_func, which carries out the
copy by copying the data using the cpy_data buffer.
The cpy_func routine used for the copy and the contents of the data area defined
by cpy_data and cpy_size may be built in any fashion that will allow the copy
to be done. For instance, the cpy_data buffer can hold the actual data to be
copied or it may hold a list of pointers to the data. The cpy_func routine must
interpret the cpy_data buffer appropriately.
The interface to cpy_func is as follows:
@code
void cpy_func( void *destination, void *source )
@endcode
where void *destination is the cpy_data pointer for the thread being copied to
and void *source is the cpy_data pointer for the thread being copied from.
*/
void __kmpc_copyprivate(ident_t *loc, kmp_int32 gtid, size_t cpy_size,
void *cpy_data, void (*cpy_func)(void *, void *),
kmp_int32 didit) {
void **data_ptr;
KC_TRACE(10, ("__kmpc_copyprivate: called T#%d\n", gtid));
KMP_MB();
data_ptr = &__kmp_team_from_gtid(gtid)->t.t_copypriv_data;
if (__kmp_env_consistency_check) {
if (loc == 0) {
KMP_WARNING(ConstructIdentInvalid);
}
}
// ToDo: Optimize the following two barriers into some kind of split barrier
if (didit)
*data_ptr = cpy_data;
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
if (ompt_frame->enter_frame.ptr == NULL)
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
/* This barrier is not a barrier region boundary */
#if USE_ITT_NOTIFY
__kmp_threads[gtid]->th.th_ident = loc;
#endif
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
if (!didit)
(*cpy_func)(cpy_data, *data_ptr);
// Consider next barrier a user-visible barrier for barrier region boundaries
// Nesting checks are already handled by the single construct checks
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
#if USE_ITT_NOTIFY
__kmp_threads[gtid]->th.th_ident = loc; // TODO: check if it is needed (e.g.
// tasks can overwrite the location)
#endif
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
}
/* -------------------------------------------------------------------------- */
#define INIT_LOCK __kmp_init_user_lock_with_checks
#define INIT_NESTED_LOCK __kmp_init_nested_user_lock_with_checks
#define ACQUIRE_LOCK __kmp_acquire_user_lock_with_checks
#define ACQUIRE_LOCK_TIMED __kmp_acquire_user_lock_with_checks_timed
#define ACQUIRE_NESTED_LOCK __kmp_acquire_nested_user_lock_with_checks
#define ACQUIRE_NESTED_LOCK_TIMED \
__kmp_acquire_nested_user_lock_with_checks_timed
#define RELEASE_LOCK __kmp_release_user_lock_with_checks
#define RELEASE_NESTED_LOCK __kmp_release_nested_user_lock_with_checks
#define TEST_LOCK __kmp_test_user_lock_with_checks
#define TEST_NESTED_LOCK __kmp_test_nested_user_lock_with_checks
#define DESTROY_LOCK __kmp_destroy_user_lock_with_checks
#define DESTROY_NESTED_LOCK __kmp_destroy_nested_user_lock_with_checks
// TODO: Make check abort messages use location info & pass it into
// with_checks routines
#if KMP_USE_DYNAMIC_LOCK
// internal lock initializer
static __forceinline void __kmp_init_lock_with_hint(ident_t *loc, void **lock,
kmp_dyna_lockseq_t seq) {
if (KMP_IS_D_LOCK(seq)) {
KMP_INIT_D_LOCK(lock, seq);
#if USE_ITT_BUILD
__kmp_itt_lock_creating((kmp_user_lock_p)lock, NULL);
#endif
} else {
KMP_INIT_I_LOCK(lock, seq);
#if USE_ITT_BUILD
kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock);
__kmp_itt_lock_creating(ilk->lock, loc);
#endif
}
}
// internal nest lock initializer
static __forceinline void
__kmp_init_nest_lock_with_hint(ident_t *loc, void **lock,
kmp_dyna_lockseq_t seq) {
#if KMP_USE_TSX
// Don't have nested lock implementation for speculative locks
if (seq == lockseq_hle || seq == lockseq_rtm || seq == lockseq_adaptive)
seq = __kmp_user_lock_seq;
#endif
switch (seq) {
case lockseq_tas:
seq = lockseq_nested_tas;
break;
#if KMP_USE_FUTEX
case lockseq_futex:
seq = lockseq_nested_futex;
break;
#endif
case lockseq_ticket:
seq = lockseq_nested_ticket;
break;
case lockseq_queuing:
seq = lockseq_nested_queuing;
break;
case lockseq_drdpa:
seq = lockseq_nested_drdpa;
break;
default:
seq = lockseq_nested_queuing;
}
KMP_INIT_I_LOCK(lock, seq);
#if USE_ITT_BUILD
kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock);
__kmp_itt_lock_creating(ilk->lock, loc);
#endif
}
/* initialize the lock with a hint */
void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid, void **user_lock,
uintptr_t hint) {
KMP_DEBUG_ASSERT(__kmp_init_serial);
if (__kmp_env_consistency_check && user_lock == NULL) {
KMP_FATAL(LockIsUninitialized, "omp_init_lock_with_hint");
}
__kmp_init_lock_with_hint(loc, user_lock, __kmp_map_hint_to_lock(hint));
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_init) {
ompt_callbacks.ompt_callback(ompt_callback_lock_init)(
ompt_mutex_lock, (omp_lock_hint_t)hint,
__ompt_get_mutex_impl_type(user_lock),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
}
/* initialize the lock with a hint */
void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
void **user_lock, uintptr_t hint) {
KMP_DEBUG_ASSERT(__kmp_init_serial);
if (__kmp_env_consistency_check && user_lock == NULL) {
KMP_FATAL(LockIsUninitialized, "omp_init_nest_lock_with_hint");
}
__kmp_init_nest_lock_with_hint(loc, user_lock, __kmp_map_hint_to_lock(hint));
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_init) {
ompt_callbacks.ompt_callback(ompt_callback_lock_init)(
ompt_mutex_nest_lock, (omp_lock_hint_t)hint,
__ompt_get_mutex_impl_type(user_lock),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
}
#endif // KMP_USE_DYNAMIC_LOCK
/* initialize the lock */
void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
#if KMP_USE_DYNAMIC_LOCK
KMP_DEBUG_ASSERT(__kmp_init_serial);
if (__kmp_env_consistency_check && user_lock == NULL) {
KMP_FATAL(LockIsUninitialized, "omp_init_lock");
}
__kmp_init_lock_with_hint(loc, user_lock, __kmp_user_lock_seq);
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_init) {
ompt_callbacks.ompt_callback(ompt_callback_lock_init)(
ompt_mutex_lock, omp_lock_hint_none,
__ompt_get_mutex_impl_type(user_lock),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#else // KMP_USE_DYNAMIC_LOCK
static char const *const func = "omp_init_lock";
kmp_user_lock_p lck;
KMP_DEBUG_ASSERT(__kmp_init_serial);
if (__kmp_env_consistency_check) {
if (user_lock == NULL) {
KMP_FATAL(LockIsUninitialized, func);
}
}
KMP_CHECK_USER_LOCK_INIT();
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_user_lock_allocate(user_lock, gtid, 0);
}
INIT_LOCK(lck);
__kmp_set_user_lock_location(lck, loc);
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_init) {
ompt_callbacks.ompt_callback(ompt_callback_lock_init)(
ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#if USE_ITT_BUILD
__kmp_itt_lock_creating(lck);
#endif /* USE_ITT_BUILD */
#endif // KMP_USE_DYNAMIC_LOCK
} // __kmpc_init_lock
/* initialize the lock */
void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
#if KMP_USE_DYNAMIC_LOCK
KMP_DEBUG_ASSERT(__kmp_init_serial);
if (__kmp_env_consistency_check && user_lock == NULL) {
KMP_FATAL(LockIsUninitialized, "omp_init_nest_lock");
}
__kmp_init_nest_lock_with_hint(loc, user_lock, __kmp_user_lock_seq);
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_init) {
ompt_callbacks.ompt_callback(ompt_callback_lock_init)(
ompt_mutex_nest_lock, omp_lock_hint_none,
__ompt_get_mutex_impl_type(user_lock),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#else // KMP_USE_DYNAMIC_LOCK
static char const *const func = "omp_init_nest_lock";
kmp_user_lock_p lck;
KMP_DEBUG_ASSERT(__kmp_init_serial);
if (__kmp_env_consistency_check) {
if (user_lock == NULL) {
KMP_FATAL(LockIsUninitialized, func);
}
}
KMP_CHECK_USER_LOCK_INIT();
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_user_lock_allocate(user_lock, gtid, 0);
}
INIT_NESTED_LOCK(lck);
__kmp_set_user_lock_location(lck, loc);
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_init) {
ompt_callbacks.ompt_callback(ompt_callback_lock_init)(
ompt_mutex_nest_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#if USE_ITT_BUILD
__kmp_itt_lock_creating(lck);
#endif /* USE_ITT_BUILD */
#endif // KMP_USE_DYNAMIC_LOCK
} // __kmpc_init_nest_lock
void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
#if KMP_USE_DYNAMIC_LOCK
#if USE_ITT_BUILD
kmp_user_lock_p lck;
if (KMP_EXTRACT_D_TAG(user_lock) == 0) {
lck = ((kmp_indirect_lock_t *)KMP_LOOKUP_I_LOCK(user_lock))->lock;
} else {
lck = (kmp_user_lock_p)user_lock;
}
__kmp_itt_lock_destroyed(lck);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_destroy) {
kmp_user_lock_p lck;
if (KMP_EXTRACT_D_TAG(user_lock) == 0) {
lck = ((kmp_indirect_lock_t *)KMP_LOOKUP_I_LOCK(user_lock))->lock;
} else {
lck = (kmp_user_lock_p)user_lock;
}
ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)(
ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
KMP_D_LOCK_FUNC(user_lock, destroy)((kmp_dyna_lock_t *)user_lock);
#else
kmp_user_lock_p lck;
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_lookup_user_lock(user_lock, "omp_destroy_lock");
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_destroy) {
ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)(
ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#if USE_ITT_BUILD
__kmp_itt_lock_destroyed(lck);
#endif /* USE_ITT_BUILD */
DESTROY_LOCK(lck);
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) {
;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) {
;
}
#endif
else {
__kmp_user_lock_free(user_lock, gtid, lck);
}
#endif // KMP_USE_DYNAMIC_LOCK
} // __kmpc_destroy_lock
/* destroy the lock */
void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
#if KMP_USE_DYNAMIC_LOCK
#if USE_ITT_BUILD
kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(user_lock);
__kmp_itt_lock_destroyed(ilk->lock);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_destroy) {
ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)(
ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
KMP_D_LOCK_FUNC(user_lock, destroy)((kmp_dyna_lock_t *)user_lock);
#else // KMP_USE_DYNAMIC_LOCK
kmp_user_lock_p lck;
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_lookup_user_lock(user_lock, "omp_destroy_nest_lock");
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_lock_destroy) {
ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)(
ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#if USE_ITT_BUILD
__kmp_itt_lock_destroyed(lck);
#endif /* USE_ITT_BUILD */
DESTROY_NESTED_LOCK(lck);
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
;
}
#endif
else {
__kmp_user_lock_free(user_lock, gtid, lck);
}
#endif // KMP_USE_DYNAMIC_LOCK
} // __kmpc_destroy_nest_lock
void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
KMP_COUNT_BLOCK(OMP_set_lock);
#if KMP_USE_DYNAMIC_LOCK
int tag = KMP_EXTRACT_D_TAG(user_lock);
#if USE_ITT_BUILD
__kmp_itt_lock_acquiring(
(kmp_user_lock_p)
user_lock); // itt function will get to the right lock object.
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_lock, omp_lock_hint_none,
__ompt_get_mutex_impl_type(user_lock),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#if KMP_USE_INLINED_TAS
if (tag == locktag_tas && !__kmp_env_consistency_check) {
KMP_ACQUIRE_TAS_LOCK(user_lock, gtid);
} else
#elif KMP_USE_INLINED_FUTEX
if (tag == locktag_futex && !__kmp_env_consistency_check) {
KMP_ACQUIRE_FUTEX_LOCK(user_lock, gtid);
} else
#endif
{
__kmp_direct_set[tag]((kmp_dyna_lock_t *)user_lock, gtid);
}
#if USE_ITT_BUILD
__kmp_itt_lock_acquired((kmp_user_lock_p)user_lock);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.ompt_callback_mutex_acquired) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#else // KMP_USE_DYNAMIC_LOCK
kmp_user_lock_p lck;
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_lookup_user_lock(user_lock, "omp_set_lock");
}
#if USE_ITT_BUILD
__kmp_itt_lock_acquiring(lck);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(),
(ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
#endif
ACQUIRE_LOCK(lck, gtid);
#if USE_ITT_BUILD
__kmp_itt_lock_acquired(lck);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.ompt_callback_mutex_acquired) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
#endif
#endif // KMP_USE_DYNAMIC_LOCK
}
void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
#if KMP_USE_DYNAMIC_LOCK
#if USE_ITT_BUILD
__kmp_itt_lock_acquiring((kmp_user_lock_p)user_lock);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.enabled) {
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_nest_lock, omp_lock_hint_none,
__ompt_get_mutex_impl_type(user_lock),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
}
#endif
int acquire_status =
KMP_D_LOCK_FUNC(user_lock, set)((kmp_dyna_lock_t *)user_lock, gtid);
(void) acquire_status;
#if USE_ITT_BUILD
__kmp_itt_lock_acquired((kmp_user_lock_p)user_lock);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
if (acquire_status == KMP_LOCK_ACQUIRED_FIRST) {
if (ompt_enabled.ompt_callback_mutex_acquired) {
// lock_first
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock,
codeptr);
}
} else {
if (ompt_enabled.ompt_callback_nest_lock) {
// lock_next
ompt_callbacks.ompt_callback(ompt_callback_nest_lock)(
ompt_scope_begin, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
}
}
#endif
#else // KMP_USE_DYNAMIC_LOCK
int acquire_status;
kmp_user_lock_p lck;
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_lookup_user_lock(user_lock, "omp_set_nest_lock");
}
#if USE_ITT_BUILD
__kmp_itt_lock_acquiring(lck);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.enabled) {
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_nest_lock, omp_lock_hint_none,
__ompt_get_mutex_impl_type(), (ompt_wait_id_t)(uintptr_t)lck,
codeptr);
}
}
#endif
ACQUIRE_NESTED_LOCK(lck, gtid, &acquire_status);
#if USE_ITT_BUILD
__kmp_itt_lock_acquired(lck);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
if (acquire_status == KMP_LOCK_ACQUIRED_FIRST) {
if (ompt_enabled.ompt_callback_mutex_acquired) {
// lock_first
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
} else {
if (ompt_enabled.ompt_callback_nest_lock) {
// lock_next
ompt_callbacks.ompt_callback(ompt_callback_nest_lock)(
ompt_scope_begin, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
}
}
#endif
#endif // KMP_USE_DYNAMIC_LOCK
}
void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
#if KMP_USE_DYNAMIC_LOCK
int tag = KMP_EXTRACT_D_TAG(user_lock);
#if USE_ITT_BUILD
__kmp_itt_lock_releasing((kmp_user_lock_p)user_lock);
#endif
#if KMP_USE_INLINED_TAS
if (tag == locktag_tas && !__kmp_env_consistency_check) {
KMP_RELEASE_TAS_LOCK(user_lock, gtid);
} else
#elif KMP_USE_INLINED_FUTEX
if (tag == locktag_futex && !__kmp_env_consistency_check) {
KMP_RELEASE_FUTEX_LOCK(user_lock, gtid);
} else
#endif
{
__kmp_direct_unset[tag]((kmp_dyna_lock_t *)user_lock, gtid);
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_mutex_released) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_released)(
ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#else // KMP_USE_DYNAMIC_LOCK
kmp_user_lock_p lck;
/* Can't use serial interval since not block structured */
/* release the lock */
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) {
#if KMP_OS_LINUX && \
(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
// "fast" path implemented to fix customer performance issue
#if USE_ITT_BUILD
__kmp_itt_lock_releasing((kmp_user_lock_p)user_lock);
#endif /* USE_ITT_BUILD */
TCW_4(((kmp_user_lock_p)user_lock)->tas.lk.poll, 0);
KMP_MB();
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_mutex_released) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_released)(
ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
#endif
return;
#else
lck = (kmp_user_lock_p)user_lock;
#endif
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_lookup_user_lock(user_lock, "omp_unset_lock");
}
#if USE_ITT_BUILD
__kmp_itt_lock_releasing(lck);
#endif /* USE_ITT_BUILD */
RELEASE_LOCK(lck, gtid);
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_mutex_released) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_released)(
ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
#endif
#endif // KMP_USE_DYNAMIC_LOCK
}
/* release the lock */
void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
#if KMP_USE_DYNAMIC_LOCK
#if USE_ITT_BUILD
__kmp_itt_lock_releasing((kmp_user_lock_p)user_lock);
#endif
int release_status =
KMP_D_LOCK_FUNC(user_lock, unset)((kmp_dyna_lock_t *)user_lock, gtid);
(void) release_status;
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.enabled) {
if (release_status == KMP_LOCK_RELEASED) {
if (ompt_enabled.ompt_callback_mutex_released) {
// release_lock_last
ompt_callbacks.ompt_callback(ompt_callback_mutex_released)(
ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock,
codeptr);
}
} else if (ompt_enabled.ompt_callback_nest_lock) {
// release_lock_prev
ompt_callbacks.ompt_callback(ompt_callback_nest_lock)(
ompt_scope_end, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
}
#endif
#else // KMP_USE_DYNAMIC_LOCK
kmp_user_lock_p lck;
/* Can't use serial interval since not block structured */
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
#if KMP_OS_LINUX && \
(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
// "fast" path implemented to fix customer performance issue
kmp_tas_lock_t *tl = (kmp_tas_lock_t *)user_lock;
#if USE_ITT_BUILD
__kmp_itt_lock_releasing((kmp_user_lock_p)user_lock);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
int release_status = KMP_LOCK_STILL_HELD;
#endif
if (--(tl->lk.depth_locked) == 0) {
TCW_4(tl->lk.poll, 0);
#if OMPT_SUPPORT && OMPT_OPTIONAL
release_status = KMP_LOCK_RELEASED;
#endif
}
KMP_MB();
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.enabled) {
if (release_status == KMP_LOCK_RELEASED) {
if (ompt_enabled.ompt_callback_mutex_released) {
// release_lock_last
ompt_callbacks.ompt_callback(ompt_callback_mutex_released)(
ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
} else if (ompt_enabled.ompt_callback_nest_lock) {
// release_lock_previous
ompt_callbacks.ompt_callback(ompt_callback_nest_lock)(
ompt_mutex_scope_end, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
}
#endif
return;
#else
lck = (kmp_user_lock_p)user_lock;
#endif
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_lookup_user_lock(user_lock, "omp_unset_nest_lock");
}
#if USE_ITT_BUILD
__kmp_itt_lock_releasing(lck);
#endif /* USE_ITT_BUILD */
int release_status;
release_status = RELEASE_NESTED_LOCK(lck, gtid);
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.enabled) {
if (release_status == KMP_LOCK_RELEASED) {
if (ompt_enabled.ompt_callback_mutex_released) {
// release_lock_last
ompt_callbacks.ompt_callback(ompt_callback_mutex_released)(
ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
} else if (ompt_enabled.ompt_callback_nest_lock) {
// release_lock_previous
ompt_callbacks.ompt_callback(ompt_callback_nest_lock)(
ompt_mutex_scope_end, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
}
#endif
#endif // KMP_USE_DYNAMIC_LOCK
}
/* try to acquire the lock */
int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
KMP_COUNT_BLOCK(OMP_test_lock);
#if KMP_USE_DYNAMIC_LOCK
int rc;
int tag = KMP_EXTRACT_D_TAG(user_lock);
#if USE_ITT_BUILD
__kmp_itt_lock_acquiring((kmp_user_lock_p)user_lock);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_lock, omp_lock_hint_none,
__ompt_get_mutex_impl_type(user_lock),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
#if KMP_USE_INLINED_TAS
if (tag == locktag_tas && !__kmp_env_consistency_check) {
KMP_TEST_TAS_LOCK(user_lock, gtid, rc);
} else
#elif KMP_USE_INLINED_FUTEX
if (tag == locktag_futex && !__kmp_env_consistency_check) {
KMP_TEST_FUTEX_LOCK(user_lock, gtid, rc);
} else
#endif
{
rc = __kmp_direct_test[tag]((kmp_dyna_lock_t *)user_lock, gtid);
}
if (rc) {
#if USE_ITT_BUILD
__kmp_itt_lock_acquired((kmp_user_lock_p)user_lock);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.ompt_callback_mutex_acquired) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
return FTN_TRUE;
} else {
#if USE_ITT_BUILD
__kmp_itt_lock_cancelled((kmp_user_lock_p)user_lock);
#endif
return FTN_FALSE;
}
#else // KMP_USE_DYNAMIC_LOCK
kmp_user_lock_p lck;
int rc;
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_lookup_user_lock(user_lock, "omp_test_lock");
}
#if USE_ITT_BUILD
__kmp_itt_lock_acquiring(lck);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(),
(ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
#endif
rc = TEST_LOCK(lck, gtid);
#if USE_ITT_BUILD
if (rc) {
__kmp_itt_lock_acquired(lck);
} else {
__kmp_itt_lock_cancelled(lck);
}
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (rc && ompt_enabled.ompt_callback_mutex_acquired) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
#endif
return (rc ? FTN_TRUE : FTN_FALSE);
/* Can't use serial interval since not block structured */
#endif // KMP_USE_DYNAMIC_LOCK
}
/* try to acquire the lock */
int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) {
#if KMP_USE_DYNAMIC_LOCK
int rc;
#if USE_ITT_BUILD
__kmp_itt_lock_acquiring((kmp_user_lock_p)user_lock);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_nest_lock, omp_lock_hint_none,
__ompt_get_mutex_impl_type(user_lock),
(ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
#endif
rc = KMP_D_LOCK_FUNC(user_lock, test)((kmp_dyna_lock_t *)user_lock, gtid);
#if USE_ITT_BUILD
if (rc) {
__kmp_itt_lock_acquired((kmp_user_lock_p)user_lock);
} else {
__kmp_itt_lock_cancelled((kmp_user_lock_p)user_lock);
}
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled && rc) {
if (rc == 1) {
if (ompt_enabled.ompt_callback_mutex_acquired) {
// lock_first
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)user_lock,
codeptr);
}
} else {
if (ompt_enabled.ompt_callback_nest_lock) {
// lock_next
ompt_callbacks.ompt_callback(ompt_callback_nest_lock)(
ompt_scope_begin, (ompt_wait_id_t)(uintptr_t)user_lock, codeptr);
}
}
}
#endif
return rc;
#else // KMP_USE_DYNAMIC_LOCK
kmp_user_lock_p lck;
int rc;
if ((__kmp_user_lock_kind == lk_tas) &&
(sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#if KMP_USE_FUTEX
else if ((__kmp_user_lock_kind == lk_futex) &&
(sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <=
OMP_NEST_LOCK_T_SIZE)) {
lck = (kmp_user_lock_p)user_lock;
}
#endif
else {
lck = __kmp_lookup_user_lock(user_lock, "omp_test_nest_lock");
}
#if USE_ITT_BUILD
__kmp_itt_lock_acquiring(lck);
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
// This is the case, if called from omp_init_lock_with_hint:
void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
if (!codeptr)
codeptr = OMPT_GET_RETURN_ADDRESS(0);
if (ompt_enabled.enabled) &&
ompt_enabled.ompt_callback_mutex_acquire) {
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)(
ompt_mutex_nest_lock, omp_lock_hint_none,
__ompt_get_mutex_impl_type(), (ompt_wait_id_t)(uintptr_t)lck,
codeptr);
}
#endif
rc = TEST_NESTED_LOCK(lck, gtid);
#if USE_ITT_BUILD
if (rc) {
__kmp_itt_lock_acquired(lck);
} else {
__kmp_itt_lock_cancelled(lck);
}
#endif /* USE_ITT_BUILD */
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled && rc) {
if (rc == 1) {
if (ompt_enabled.ompt_callback_mutex_acquired) {
// lock_first
ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)(
ompt_mutex_nest_lock, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
} else {
if (ompt_enabled.ompt_callback_nest_lock) {
// lock_next
ompt_callbacks.ompt_callback(ompt_callback_nest_lock)(
ompt_mutex_scope_begin, (ompt_wait_id_t)(uintptr_t)lck, codeptr);
}
}
}
#endif
return rc;
/* Can't use serial interval since not block structured */
#endif // KMP_USE_DYNAMIC_LOCK
}
// Interface to fast scalable reduce methods routines
// keep the selected method in a thread local structure for cross-function
// usage: will be used in __kmpc_end_reduce* functions;
// another solution: to re-determine the method one more time in
// __kmpc_end_reduce* functions (new prototype required then)
// AT: which solution is better?
#define __KMP_SET_REDUCTION_METHOD(gtid, rmethod) \
((__kmp_threads[(gtid)]->th.th_local.packed_reduction_method) = (rmethod))
#define __KMP_GET_REDUCTION_METHOD(gtid) \
(__kmp_threads[(gtid)]->th.th_local.packed_reduction_method)
// description of the packed_reduction_method variable: look at the macros in
// kmp.h
// used in a critical section reduce block
static __forceinline void
__kmp_enter_critical_section_reduce_block(ident_t *loc, kmp_int32 global_tid,
kmp_critical_name *crit) {
// this lock was visible to a customer and to the threading profile tool as a
// serial overhead span (although it's used for an internal purpose only)
// why was it visible in previous implementation?
// should we keep it visible in new reduce block?
kmp_user_lock_p lck;
#if KMP_USE_DYNAMIC_LOCK
kmp_dyna_lock_t *lk = (kmp_dyna_lock_t *)crit;
// Check if it is initialized.
if (*lk == 0) {
if (KMP_IS_D_LOCK(__kmp_user_lock_seq)) {
KMP_COMPARE_AND_STORE_ACQ32((volatile kmp_int32 *)crit, 0,
KMP_GET_D_TAG(__kmp_user_lock_seq));
} else {
__kmp_init_indirect_csptr(crit, loc, global_tid,
KMP_GET_I_TAG(__kmp_user_lock_seq));
}
}
// Branch for accessing the actual lock object and set operation. This
// branching is inevitable since this lock initialization does not follow the
// normal dispatch path (lock table is not used).
if (KMP_EXTRACT_D_TAG(lk) != 0) {
lck = (kmp_user_lock_p)lk;
KMP_DEBUG_ASSERT(lck != NULL);
if (__kmp_env_consistency_check) {
__kmp_push_sync(global_tid, ct_critical, loc, lck, __kmp_user_lock_seq);
}
KMP_D_LOCK_FUNC(lk, set)(lk, global_tid);
} else {
kmp_indirect_lock_t *ilk = *((kmp_indirect_lock_t **)lk);
lck = ilk->lock;
KMP_DEBUG_ASSERT(lck != NULL);
if (__kmp_env_consistency_check) {
__kmp_push_sync(global_tid, ct_critical, loc, lck, __kmp_user_lock_seq);
}
KMP_I_LOCK_FUNC(ilk, set)(lck, global_tid);
}
#else // KMP_USE_DYNAMIC_LOCK
// We know that the fast reduction code is only emitted by Intel compilers
// with 32 byte critical sections. If there isn't enough space, then we
// have to use a pointer.
if (__kmp_base_user_lock_size <= INTEL_CRITICAL_SIZE) {
lck = (kmp_user_lock_p)crit;
} else {
lck = __kmp_get_critical_section_ptr(crit, loc, global_tid);
}
KMP_DEBUG_ASSERT(lck != NULL);
if (__kmp_env_consistency_check)
__kmp_push_sync(global_tid, ct_critical, loc, lck);
__kmp_acquire_user_lock_with_checks(lck, global_tid);
#endif // KMP_USE_DYNAMIC_LOCK
}
// used in a critical section reduce block
static __forceinline void
__kmp_end_critical_section_reduce_block(ident_t *loc, kmp_int32 global_tid,
kmp_critical_name *crit) {
kmp_user_lock_p lck;
#if KMP_USE_DYNAMIC_LOCK
if (KMP_IS_D_LOCK(__kmp_user_lock_seq)) {
lck = (kmp_user_lock_p)crit;
if (__kmp_env_consistency_check)
__kmp_pop_sync(global_tid, ct_critical, loc);
KMP_D_LOCK_FUNC(lck, unset)((kmp_dyna_lock_t *)lck, global_tid);
} else {
kmp_indirect_lock_t *ilk =
(kmp_indirect_lock_t *)TCR_PTR(*((kmp_indirect_lock_t **)crit));
if (__kmp_env_consistency_check)
__kmp_pop_sync(global_tid, ct_critical, loc);
KMP_I_LOCK_FUNC(ilk, unset)(ilk->lock, global_tid);
}
#else // KMP_USE_DYNAMIC_LOCK
// We know that the fast reduction code is only emitted by Intel compilers
// with 32 byte critical sections. If there isn't enough space, then we have
// to use a pointer.
if (__kmp_base_user_lock_size > 32) {
lck = *((kmp_user_lock_p *)crit);
KMP_ASSERT(lck != NULL);
} else {
lck = (kmp_user_lock_p)crit;
}
if (__kmp_env_consistency_check)
__kmp_pop_sync(global_tid, ct_critical, loc);
__kmp_release_user_lock_with_checks(lck, global_tid);
#endif // KMP_USE_DYNAMIC_LOCK
} // __kmp_end_critical_section_reduce_block
static __forceinline int
__kmp_swap_teams_for_teams_reduction(kmp_info_t *th, kmp_team_t **team_p,
int *task_state) {
kmp_team_t *team;
// Check if we are inside the teams construct?
if (th->th.th_teams_microtask) {
*team_p = team = th->th.th_team;
if (team->t.t_level == th->th.th_teams_level) {
// This is reduction at teams construct.
KMP_DEBUG_ASSERT(!th->th.th_info.ds.ds_tid); // AC: check that tid == 0
// Let's swap teams temporarily for the reduction.
th->th.th_info.ds.ds_tid = team->t.t_master_tid;
th->th.th_team = team->t.t_parent;
th->th.th_team_nproc = th->th.th_team->t.t_nproc;
th->th.th_task_team = th->th.th_team->t.t_task_team[0];
*task_state = th->th.th_task_state;
th->th.th_task_state = 0;
return 1;
}
}
return 0;
}
static __forceinline void
__kmp_restore_swapped_teams(kmp_info_t *th, kmp_team_t *team, int task_state) {
// Restore thread structure swapped in __kmp_swap_teams_for_teams_reduction.
th->th.th_info.ds.ds_tid = 0;
th->th.th_team = team;
th->th.th_team_nproc = team->t.t_nproc;
th->th.th_task_team = team->t.t_task_team[task_state];
th->th.th_task_state = task_state;
}
/* 2.a.i. Reduce Block without a terminating barrier */
/*!
@ingroup SYNCHRONIZATION
@param loc source location information
@param global_tid global thread number
@param num_vars number of items (variables) to be reduced
@param reduce_size size of data in bytes to be reduced
@param reduce_data pointer to data to be reduced
@param reduce_func callback function providing reduction operation on two
operands and returning result of reduction in lhs_data
@param lck pointer to the unique lock data structure
@result 1 for the master thread, 0 for all other team threads, 2 for all team
threads if atomic reduction needed
The nowait version is used for a reduce clause with the nowait argument.
*/
kmp_int32
__kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars,
size_t reduce_size, void *reduce_data,
void (*reduce_func)(void *lhs_data, void *rhs_data),
kmp_critical_name *lck) {
KMP_COUNT_BLOCK(REDUCE_nowait);
int retval = 0;
PACKED_REDUCTION_METHOD_T packed_reduction_method;
kmp_info_t *th;
kmp_team_t *team;
int teams_swapped = 0, task_state;
KA_TRACE(10, ("__kmpc_reduce_nowait() enter: called T#%d\n", global_tid));
// why do we need this initialization here at all?
// Reduction clause can not be used as a stand-alone directive.
// do not call __kmp_serial_initialize(), it will be called by
// __kmp_parallel_initialize() if needed
// possible detection of false-positive race by the threadchecker ???
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
// check correctness of reduce block nesting
#if KMP_USE_DYNAMIC_LOCK
if (__kmp_env_consistency_check)
__kmp_push_sync(global_tid, ct_reduce, loc, NULL, 0);
#else
if (__kmp_env_consistency_check)
__kmp_push_sync(global_tid, ct_reduce, loc, NULL);
#endif
th = __kmp_thread_from_gtid(global_tid);
teams_swapped = __kmp_swap_teams_for_teams_reduction(th, &team, &task_state);
// packed_reduction_method value will be reused by __kmp_end_reduce* function,
// the value should be kept in a variable
// the variable should be either a construct-specific or thread-specific
// property, not a team specific property
// (a thread can reach the next reduce block on the next construct, reduce
// method may differ on the next construct)
// an ident_t "loc" parameter could be used as a construct-specific property
// (what if loc == 0?)
// (if both construct-specific and team-specific variables were shared,
// then unness extra syncs should be needed)
// a thread-specific variable is better regarding two issues above (next
// construct and extra syncs)
// a thread-specific "th_local.reduction_method" variable is used currently
// each thread executes 'determine' and 'set' lines (no need to execute by one
// thread, to avoid unness extra syncs)
packed_reduction_method = __kmp_determine_reduction_method(
loc, global_tid, num_vars, reduce_size, reduce_data, reduce_func, lck);
__KMP_SET_REDUCTION_METHOD(global_tid, packed_reduction_method);
OMPT_REDUCTION_DECL(th, global_tid);
if (packed_reduction_method == critical_reduce_block) {
OMPT_REDUCTION_BEGIN;
__kmp_enter_critical_section_reduce_block(loc, global_tid, lck);
retval = 1;
} else if (packed_reduction_method == empty_reduce_block) {
OMPT_REDUCTION_BEGIN;
// usage: if team size == 1, no synchronization is required ( Intel
// platforms only )
retval = 1;
} else if (packed_reduction_method == atomic_reduce_block) {
retval = 2;
// all threads should do this pop here (because __kmpc_end_reduce_nowait()
// won't be called by the code gen)
// (it's not quite good, because the checking block has been closed by
// this 'pop',
// but atomic operation has not been executed yet, will be executed
// slightly later, literally on next instruction)
if (__kmp_env_consistency_check)
__kmp_pop_sync(global_tid, ct_reduce, loc);
} else if (TEST_REDUCTION_METHOD(packed_reduction_method,
tree_reduce_block)) {
// AT: performance issue: a real barrier here
// AT: (if master goes slow, other threads are blocked here waiting for the
// master to come and release them)
// AT: (it's not what a customer might expect specifying NOWAIT clause)
// AT: (specifying NOWAIT won't result in improvement of performance, it'll
// be confusing to a customer)
// AT: another implementation of *barrier_gather*nowait() (or some other design)
// might go faster and be more in line with sense of NOWAIT
// AT: TO DO: do epcc test and compare times
// this barrier should be invisible to a customer and to the threading profile
// tool (it's neither a terminating barrier nor customer's code, it's
// used for an internal purpose)
#if OMPT_SUPPORT
// JP: can this barrier potentially leed to task scheduling?
// JP: as long as there is a barrier in the implementation, OMPT should and
// will provide the barrier events
// so we set-up the necessary frame/return addresses.
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
if (ompt_frame->enter_frame.ptr == NULL)
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(global_tid);
}
#endif
#if USE_ITT_NOTIFY
__kmp_threads[global_tid]->th.th_ident = loc;
#endif
retval =
__kmp_barrier(UNPACK_REDUCTION_BARRIER(packed_reduction_method),
global_tid, FALSE, reduce_size, reduce_data, reduce_func);
retval = (retval != 0) ? (0) : (1);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
// all other workers except master should do this pop here
// ( none of other workers will get to __kmpc_end_reduce_nowait() )
if (__kmp_env_consistency_check) {
if (retval == 0) {
__kmp_pop_sync(global_tid, ct_reduce, loc);
}
}
} else {
// should never reach this block
KMP_ASSERT(0); // "unexpected method"
}
if (teams_swapped) {
__kmp_restore_swapped_teams(th, team, task_state);
}
KA_TRACE(
10,
("__kmpc_reduce_nowait() exit: called T#%d: method %08x, returns %08x\n",
global_tid, packed_reduction_method, retval));
return retval;
}
/*!
@ingroup SYNCHRONIZATION
@param loc source location information
@param global_tid global thread id.
@param lck pointer to the unique lock data structure
Finish the execution of a reduce nowait.
*/
void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
kmp_critical_name *lck) {
PACKED_REDUCTION_METHOD_T packed_reduction_method;
KA_TRACE(10, ("__kmpc_end_reduce_nowait() enter: called T#%d\n", global_tid));
packed_reduction_method = __KMP_GET_REDUCTION_METHOD(global_tid);
OMPT_REDUCTION_DECL(__kmp_thread_from_gtid(global_tid), global_tid);
if (packed_reduction_method == critical_reduce_block) {
__kmp_end_critical_section_reduce_block(loc, global_tid, lck);
OMPT_REDUCTION_END;
} else if (packed_reduction_method == empty_reduce_block) {
// usage: if team size == 1, no synchronization is required ( on Intel
// platforms only )
OMPT_REDUCTION_END;
} else if (packed_reduction_method == atomic_reduce_block) {
// neither master nor other workers should get here
// (code gen does not generate this call in case 2: atomic reduce block)
// actually it's better to remove this elseif at all;
// after removal this value will checked by the 'else' and will assert
} else if (TEST_REDUCTION_METHOD(packed_reduction_method,
tree_reduce_block)) {
// only master gets here
// OMPT: tree reduction is annotated in the barrier code
} else {
// should never reach this block
KMP_ASSERT(0); // "unexpected method"
}
if (__kmp_env_consistency_check)
__kmp_pop_sync(global_tid, ct_reduce, loc);
KA_TRACE(10, ("__kmpc_end_reduce_nowait() exit: called T#%d: method %08x\n",
global_tid, packed_reduction_method));
return;
}
/* 2.a.ii. Reduce Block with a terminating barrier */
/*!
@ingroup SYNCHRONIZATION
@param loc source location information
@param global_tid global thread number
@param num_vars number of items (variables) to be reduced
@param reduce_size size of data in bytes to be reduced
@param reduce_data pointer to data to be reduced
@param reduce_func callback function providing reduction operation on two
operands and returning result of reduction in lhs_data
@param lck pointer to the unique lock data structure
@result 1 for the master thread, 0 for all other team threads, 2 for all team
threads if atomic reduction needed
A blocking reduce that includes an implicit barrier.
*/
kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars,
size_t reduce_size, void *reduce_data,
void (*reduce_func)(void *lhs_data, void *rhs_data),
kmp_critical_name *lck) {
KMP_COUNT_BLOCK(REDUCE_wait);
int retval = 0;
PACKED_REDUCTION_METHOD_T packed_reduction_method;
kmp_info_t *th;
kmp_team_t *team;
int teams_swapped = 0, task_state;
KA_TRACE(10, ("__kmpc_reduce() enter: called T#%d\n", global_tid));
// why do we need this initialization here at all?
// Reduction clause can not be a stand-alone directive.
// do not call __kmp_serial_initialize(), it will be called by
// __kmp_parallel_initialize() if needed
// possible detection of false-positive race by the threadchecker ???
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
// check correctness of reduce block nesting
#if KMP_USE_DYNAMIC_LOCK
if (__kmp_env_consistency_check)
__kmp_push_sync(global_tid, ct_reduce, loc, NULL, 0);
#else
if (__kmp_env_consistency_check)
__kmp_push_sync(global_tid, ct_reduce, loc, NULL);
#endif
th = __kmp_thread_from_gtid(global_tid);
teams_swapped = __kmp_swap_teams_for_teams_reduction(th, &team, &task_state);
packed_reduction_method = __kmp_determine_reduction_method(
loc, global_tid, num_vars, reduce_size, reduce_data, reduce_func, lck);
__KMP_SET_REDUCTION_METHOD(global_tid, packed_reduction_method);
OMPT_REDUCTION_DECL(th, global_tid);
if (packed_reduction_method == critical_reduce_block) {
OMPT_REDUCTION_BEGIN;
__kmp_enter_critical_section_reduce_block(loc, global_tid, lck);
retval = 1;
} else if (packed_reduction_method == empty_reduce_block) {
OMPT_REDUCTION_BEGIN;
// usage: if team size == 1, no synchronization is required ( Intel
// platforms only )
retval = 1;
} else if (packed_reduction_method == atomic_reduce_block) {
retval = 2;
} else if (TEST_REDUCTION_METHOD(packed_reduction_method,
tree_reduce_block)) {
// case tree_reduce_block:
// this barrier should be visible to a customer and to the threading profile
// tool (it's a terminating barrier on constructs if NOWAIT not specified)
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
if (ompt_frame->enter_frame.ptr == NULL)
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(global_tid);
}
#endif
#if USE_ITT_NOTIFY
__kmp_threads[global_tid]->th.th_ident =
loc; // needed for correct notification of frames
#endif
retval =
__kmp_barrier(UNPACK_REDUCTION_BARRIER(packed_reduction_method),
global_tid, TRUE, reduce_size, reduce_data, reduce_func);
retval = (retval != 0) ? (0) : (1);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
// all other workers except master should do this pop here
// ( none of other workers except master will enter __kmpc_end_reduce() )
if (__kmp_env_consistency_check) {
if (retval == 0) { // 0: all other workers; 1: master
__kmp_pop_sync(global_tid, ct_reduce, loc);
}
}
} else {
// should never reach this block
KMP_ASSERT(0); // "unexpected method"
}
if (teams_swapped) {
__kmp_restore_swapped_teams(th, team, task_state);
}
KA_TRACE(10,
("__kmpc_reduce() exit: called T#%d: method %08x, returns %08x\n",
global_tid, packed_reduction_method, retval));
return retval;
}
/*!
@ingroup SYNCHRONIZATION
@param loc source location information
@param global_tid global thread id.
@param lck pointer to the unique lock data structure
Finish the execution of a blocking reduce.
The lck pointer must be the same as that used in the corresponding
start function.
*/
void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
kmp_critical_name *lck) {
PACKED_REDUCTION_METHOD_T packed_reduction_method;
kmp_info_t *th;
kmp_team_t *team;
int teams_swapped = 0, task_state;
KA_TRACE(10, ("__kmpc_end_reduce() enter: called T#%d\n", global_tid));
th = __kmp_thread_from_gtid(global_tid);
teams_swapped = __kmp_swap_teams_for_teams_reduction(th, &team, &task_state);
packed_reduction_method = __KMP_GET_REDUCTION_METHOD(global_tid);
// this barrier should be visible to a customer and to the threading profile
// tool (it's a terminating barrier on constructs if NOWAIT not specified)
OMPT_REDUCTION_DECL(th, global_tid);
if (packed_reduction_method == critical_reduce_block) {
__kmp_end_critical_section_reduce_block(loc, global_tid, lck);
OMPT_REDUCTION_END;
// TODO: implicit barrier: should be exposed
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
if (ompt_frame->enter_frame.ptr == NULL)
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(global_tid);
}
#endif
#if USE_ITT_NOTIFY
__kmp_threads[global_tid]->th.th_ident = loc;
#endif
__kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
} else if (packed_reduction_method == empty_reduce_block) {
OMPT_REDUCTION_END;
// usage: if team size==1, no synchronization is required (Intel platforms only)
// TODO: implicit barrier: should be exposed
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
if (ompt_frame->enter_frame.ptr == NULL)
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(global_tid);
}
#endif
#if USE_ITT_NOTIFY
__kmp_threads[global_tid]->th.th_ident = loc;
#endif
__kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
} else if (packed_reduction_method == atomic_reduce_block) {
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
if (ompt_frame->enter_frame.ptr == NULL)
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(global_tid);
}
#endif
// TODO: implicit barrier: should be exposed
#if USE_ITT_NOTIFY
__kmp_threads[global_tid]->th.th_ident = loc;
#endif
__kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
} else if (TEST_REDUCTION_METHOD(packed_reduction_method,
tree_reduce_block)) {
// only master executes here (master releases all other workers)
__kmp_end_split_barrier(UNPACK_REDUCTION_BARRIER(packed_reduction_method),
global_tid);
} else {
// should never reach this block
KMP_ASSERT(0); // "unexpected method"
}
if (teams_swapped) {
__kmp_restore_swapped_teams(th, team, task_state);
}
if (__kmp_env_consistency_check)
__kmp_pop_sync(global_tid, ct_reduce, loc);
KA_TRACE(10, ("__kmpc_end_reduce() exit: called T#%d: method %08x\n",
global_tid, packed_reduction_method));
return;
}
#undef __KMP_GET_REDUCTION_METHOD
#undef __KMP_SET_REDUCTION_METHOD
/* end of interface to fast scalable reduce routines */
kmp_uint64 __kmpc_get_taskid() {
kmp_int32 gtid;
kmp_info_t *thread;
gtid = __kmp_get_gtid();
if (gtid < 0) {
return 0;
}
thread = __kmp_thread_from_gtid(gtid);
return thread->th.th_current_task->td_task_id;
} // __kmpc_get_taskid
kmp_uint64 __kmpc_get_parent_taskid() {
kmp_int32 gtid;
kmp_info_t *thread;
kmp_taskdata_t *parent_task;
gtid = __kmp_get_gtid();
if (gtid < 0) {
return 0;
}
thread = __kmp_thread_from_gtid(gtid);
parent_task = thread->th.th_current_task->td_parent;
return (parent_task == NULL ? 0 : parent_task->td_task_id);
} // __kmpc_get_parent_taskid
/*!
@ingroup WORK_SHARING
@param loc source location information.
@param gtid global thread number.
@param num_dims number of associated doacross loops.
@param dims info on loops bounds.
Initialize doacross loop information.
Expect compiler send us inclusive bounds,
e.g. for(i=2;i<9;i+=2) lo=2, up=8, st=2.
*/
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims,
const struct kmp_dim *dims) {
int j, idx;
kmp_int64 last, trace_count;
kmp_info_t *th = __kmp_threads[gtid];
kmp_team_t *team = th->th.th_team;
kmp_uint32 *flags;
kmp_disp_t *pr_buf = th->th.th_dispatch;
dispatch_shared_info_t *sh_buf;
KA_TRACE(
20,
("__kmpc_doacross_init() enter: called T#%d, num dims %d, active %d\n",
gtid, num_dims, !team->t.t_serialized));
KMP_DEBUG_ASSERT(dims != NULL);
KMP_DEBUG_ASSERT(num_dims > 0);
if (team->t.t_serialized) {
KA_TRACE(20, ("__kmpc_doacross_init() exit: serialized team\n"));
return; // no dependencies if team is serialized
}
KMP_DEBUG_ASSERT(team->t.t_nproc > 1);
idx = pr_buf->th_doacross_buf_idx++; // Increment index of shared buffer for
// the next loop
sh_buf = &team->t.t_disp_buffer[idx % __kmp_dispatch_num_buffers];
// Save bounds info into allocated private buffer
KMP_DEBUG_ASSERT(pr_buf->th_doacross_info == NULL);
pr_buf->th_doacross_info = (kmp_int64 *)__kmp_thread_malloc(
th, sizeof(kmp_int64) * (4 * num_dims + 1));
KMP_DEBUG_ASSERT(pr_buf->th_doacross_info != NULL);
pr_buf->th_doacross_info[0] =
(kmp_int64)num_dims; // first element is number of dimensions
// Save also address of num_done in order to access it later without knowing
// the buffer index
pr_buf->th_doacross_info[1] = (kmp_int64)&sh_buf->doacross_num_done;
pr_buf->th_doacross_info[2] = dims[0].lo;
pr_buf->th_doacross_info[3] = dims[0].up;
pr_buf->th_doacross_info[4] = dims[0].st;
last = 5;
for (j = 1; j < num_dims; ++j) {
kmp_int64
range_length; // To keep ranges of all dimensions but the first dims[0]
if (dims[j].st == 1) { // most common case
// AC: should we care of ranges bigger than LLONG_MAX? (not for now)
range_length = dims[j].up - dims[j].lo + 1;
} else {
if (dims[j].st > 0) {
KMP_DEBUG_ASSERT(dims[j].up > dims[j].lo);
range_length = (kmp_uint64)(dims[j].up - dims[j].lo) / dims[j].st + 1;
} else { // negative increment
KMP_DEBUG_ASSERT(dims[j].lo > dims[j].up);
range_length =
(kmp_uint64)(dims[j].lo - dims[j].up) / (-dims[j].st) + 1;
}
}
pr_buf->th_doacross_info[last++] = range_length;
pr_buf->th_doacross_info[last++] = dims[j].lo;
pr_buf->th_doacross_info[last++] = dims[j].up;
pr_buf->th_doacross_info[last++] = dims[j].st;
}
// Compute total trip count.
// Start with range of dims[0] which we don't need to keep in the buffer.
if (dims[0].st == 1) { // most common case
trace_count = dims[0].up - dims[0].lo + 1;
} else if (dims[0].st > 0) {
KMP_DEBUG_ASSERT(dims[0].up > dims[0].lo);
trace_count = (kmp_uint64)(dims[0].up - dims[0].lo) / dims[0].st + 1;
} else { // negative increment
KMP_DEBUG_ASSERT(dims[0].lo > dims[0].up);
trace_count = (kmp_uint64)(dims[0].lo - dims[0].up) / (-dims[0].st) + 1;
}
for (j = 1; j < num_dims; ++j) {
trace_count *= pr_buf->th_doacross_info[4 * j + 1]; // use kept ranges
}
KMP_DEBUG_ASSERT(trace_count > 0);
// Check if shared buffer is not occupied by other loop (idx -
// __kmp_dispatch_num_buffers)
if (idx != sh_buf->doacross_buf_idx) {
// Shared buffer is occupied, wait for it to be free
__kmp_wait_4((volatile kmp_uint32 *)&sh_buf->doacross_buf_idx, idx,
__kmp_eq_4, NULL);
}
#if KMP_32_BIT_ARCH
// Check if we are the first thread. After the CAS the first thread gets 0,
// others get 1 if initialization is in progress, allocated pointer otherwise.
// Treat pointer as volatile integer (value 0 or 1) until memory is allocated.
flags = (kmp_uint32 *)KMP_COMPARE_AND_STORE_RET32(
(volatile kmp_int32 *)&sh_buf->doacross_flags, NULL, 1);
#else
flags = (kmp_uint32 *)KMP_COMPARE_AND_STORE_RET64(
(volatile kmp_int64 *)&sh_buf->doacross_flags, NULL, 1LL);
#endif
if (flags == NULL) {
// we are the first thread, allocate the array of flags
size_t size = trace_count / 8 + 8; // in bytes, use single bit per iteration
flags = (kmp_uint32 *)__kmp_thread_calloc(th, size, 1);
KMP_MB();
sh_buf->doacross_flags = flags;
} else if (flags == (kmp_uint32 *)1) {
#if KMP_32_BIT_ARCH
// initialization is still in progress, need to wait
while (*(volatile kmp_int32 *)&sh_buf->doacross_flags == 1)
#else
while (*(volatile kmp_int64 *)&sh_buf->doacross_flags == 1LL)
#endif
KMP_YIELD(TRUE);
KMP_MB();
} else {
KMP_MB();
}
KMP_DEBUG_ASSERT(sh_buf->doacross_flags > (kmp_uint32 *)1); // check ptr value
pr_buf->th_doacross_flags =
sh_buf->doacross_flags; // save private copy in order to not
// touch shared buffer on each iteration
KA_TRACE(20, ("__kmpc_doacross_init() exit: T#%d\n", gtid));
}
void __kmpc_doacross_wait(ident_t *loc, int gtid, const kmp_int64 *vec) {
kmp_int32 shft, num_dims, i;
kmp_uint32 flag;
kmp_int64 iter_number; // iteration number of "collapsed" loop nest
kmp_info_t *th = __kmp_threads[gtid];
kmp_team_t *team = th->th.th_team;
kmp_disp_t *pr_buf;
kmp_int64 lo, up, st;
KA_TRACE(20, ("__kmpc_doacross_wait() enter: called T#%d\n", gtid));
if (team->t.t_serialized) {
KA_TRACE(20, ("__kmpc_doacross_wait() exit: serialized team\n"));
return; // no dependencies if team is serialized
}
// calculate sequential iteration number and check out-of-bounds condition
pr_buf = th->th.th_dispatch;
KMP_DEBUG_ASSERT(pr_buf->th_doacross_info != NULL);
num_dims = pr_buf->th_doacross_info[0];
lo = pr_buf->th_doacross_info[2];
up = pr_buf->th_doacross_info[3];
st = pr_buf->th_doacross_info[4];
if (st == 1) { // most common case
if (vec[0] < lo || vec[0] > up) {
KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of "
"bounds [%lld,%lld]\n",
gtid, vec[0], lo, up));
return;
}
iter_number = vec[0] - lo;
} else if (st > 0) {
if (vec[0] < lo || vec[0] > up) {
KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of "
"bounds [%lld,%lld]\n",
gtid, vec[0], lo, up));
return;
}
iter_number = (kmp_uint64)(vec[0] - lo) / st;
} else { // negative increment
if (vec[0] > lo || vec[0] < up) {
KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of "
"bounds [%lld,%lld]\n",
gtid, vec[0], lo, up));
return;
}
iter_number = (kmp_uint64)(lo - vec[0]) / (-st);
}
for (i = 1; i < num_dims; ++i) {
kmp_int64 iter, ln;
kmp_int32 j = i * 4;
ln = pr_buf->th_doacross_info[j + 1];
lo = pr_buf->th_doacross_info[j + 2];
up = pr_buf->th_doacross_info[j + 3];
st = pr_buf->th_doacross_info[j + 4];
if (st == 1) {
if (vec[i] < lo || vec[i] > up) {
KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of "
"bounds [%lld,%lld]\n",
gtid, vec[i], lo, up));
return;
}
iter = vec[i] - lo;
} else if (st > 0) {
if (vec[i] < lo || vec[i] > up) {
KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of "
"bounds [%lld,%lld]\n",
gtid, vec[i], lo, up));
return;
}
iter = (kmp_uint64)(vec[i] - lo) / st;
} else { // st < 0
if (vec[i] > lo || vec[i] < up) {
KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of "
"bounds [%lld,%lld]\n",
gtid, vec[i], lo, up));
return;
}
iter = (kmp_uint64)(lo - vec[i]) / (-st);
}
iter_number = iter + ln * iter_number;
}
shft = iter_number % 32; // use 32-bit granularity
iter_number >>= 5; // divided by 32
flag = 1 << shft;
while ((flag & pr_buf->th_doacross_flags[iter_number]) == 0) {
KMP_YIELD(TRUE);
}
KMP_MB();
KA_TRACE(20,
("__kmpc_doacross_wait() exit: T#%d wait for iter %lld completed\n",
gtid, (iter_number << 5) + shft));
}
void __kmpc_doacross_post(ident_t *loc, int gtid, const kmp_int64 *vec) {
kmp_int32 shft, num_dims, i;
kmp_uint32 flag;
kmp_int64 iter_number; // iteration number of "collapsed" loop nest
kmp_info_t *th = __kmp_threads[gtid];
kmp_team_t *team = th->th.th_team;
kmp_disp_t *pr_buf;
kmp_int64 lo, st;
KA_TRACE(20, ("__kmpc_doacross_post() enter: called T#%d\n", gtid));
if (team->t.t_serialized) {
KA_TRACE(20, ("__kmpc_doacross_post() exit: serialized team\n"));
return; // no dependencies if team is serialized
}
// calculate sequential iteration number (same as in "wait" but no
// out-of-bounds checks)
pr_buf = th->th.th_dispatch;
KMP_DEBUG_ASSERT(pr_buf->th_doacross_info != NULL);
num_dims = pr_buf->th_doacross_info[0];
lo = pr_buf->th_doacross_info[2];
st = pr_buf->th_doacross_info[4];
if (st == 1) { // most common case
iter_number = vec[0] - lo;
} else if (st > 0) {
iter_number = (kmp_uint64)(vec[0] - lo) / st;
} else { // negative increment
iter_number = (kmp_uint64)(lo - vec[0]) / (-st);
}
for (i = 1; i < num_dims; ++i) {
kmp_int64 iter, ln;
kmp_int32 j = i * 4;
ln = pr_buf->th_doacross_info[j + 1];
lo = pr_buf->th_doacross_info[j + 2];
st = pr_buf->th_doacross_info[j + 4];
if (st == 1) {
iter = vec[i] - lo;
} else if (st > 0) {
iter = (kmp_uint64)(vec[i] - lo) / st;
} else { // st < 0
iter = (kmp_uint64)(lo - vec[i]) / (-st);
}
iter_number = iter + ln * iter_number;
}
shft = iter_number % 32; // use 32-bit granularity
iter_number >>= 5; // divided by 32
flag = 1 << shft;
KMP_MB();
if ((flag & pr_buf->th_doacross_flags[iter_number]) == 0)
KMP_TEST_THEN_OR32(&pr_buf->th_doacross_flags[iter_number], flag);
KA_TRACE(20, ("__kmpc_doacross_post() exit: T#%d iter %lld posted\n", gtid,
(iter_number << 5) + shft));
}
void __kmpc_doacross_fini(ident_t *loc, int gtid) {
kmp_int32 num_done;
kmp_info_t *th = __kmp_threads[gtid];
kmp_team_t *team = th->th.th_team;
kmp_disp_t *pr_buf = th->th.th_dispatch;
KA_TRACE(20, ("__kmpc_doacross_fini() enter: called T#%d\n", gtid));
if (team->t.t_serialized) {
KA_TRACE(20, ("__kmpc_doacross_fini() exit: serialized team %p\n", team));
return; // nothing to do
}
num_done = KMP_TEST_THEN_INC32((kmp_int32 *)pr_buf->th_doacross_info[1]) + 1;
if (num_done == th->th.th_team_nproc) {
// we are the last thread, need to free shared resources
int idx = pr_buf->th_doacross_buf_idx - 1;
dispatch_shared_info_t *sh_buf =
&team->t.t_disp_buffer[idx % __kmp_dispatch_num_buffers];
KMP_DEBUG_ASSERT(pr_buf->th_doacross_info[1] ==
(kmp_int64)&sh_buf->doacross_num_done);
KMP_DEBUG_ASSERT(num_done == sh_buf->doacross_num_done);
KMP_DEBUG_ASSERT(idx == sh_buf->doacross_buf_idx);
__kmp_thread_free(th, CCAST(kmp_uint32 *, sh_buf->doacross_flags));
sh_buf->doacross_flags = NULL;
sh_buf->doacross_num_done = 0;
sh_buf->doacross_buf_idx +=
__kmp_dispatch_num_buffers; // free buffer for future re-use
}
// free private resources (need to keep buffer index forever)
pr_buf->th_doacross_flags = NULL;
__kmp_thread_free(th, (void *)pr_buf->th_doacross_info);
pr_buf->th_doacross_info = NULL;
KA_TRACE(20, ("__kmpc_doacross_fini() exit: T#%d\n", gtid));
}
/* omp_alloc/omp_free only defined for C/C++, not for Fortran */
void *omp_alloc(size_t size, omp_allocator_handle_t allocator) {
return __kmpc_alloc(__kmp_entry_gtid(), size, allocator);
}
void omp_free(void *ptr, omp_allocator_handle_t allocator) {
__kmpc_free(__kmp_entry_gtid(), ptr, allocator);
}
int __kmpc_get_target_offload(void) {
if (!__kmp_init_serial) {
__kmp_serial_initialize();
}
return __kmp_target_offload;
}
int __kmpc_pause_resource(kmp_pause_status_t level) {
if (!__kmp_init_serial) {
return 1; // Can't pause if runtime is not initialized
}
return __kmp_pause_resource(level);
}