/* * kmp_barrier.cpp */ //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "kmp_wait_release.h" #include "kmp_barrier.h" #include "kmp_itt.h" #include "kmp_os.h" #include "kmp_stats.h" #include "ompt-specific.h" // for distributed barrier #include "kmp_affinity.h" #if KMP_MIC #include #define USE_NGO_STORES 1 #endif // KMP_MIC #if KMP_MIC && USE_NGO_STORES // ICV copying #define ngo_load(src) __m512d Vt = _mm512_load_pd((void *)(src)) #define ngo_store_icvs(dst, src) _mm512_storenrngo_pd((void *)(dst), Vt) #define ngo_store_go(dst, src) _mm512_storenrngo_pd((void *)(dst), Vt) #define ngo_sync() __asm__ volatile("lock; addl $0,0(%%rsp)" ::: "memory") #else #define ngo_load(src) ((void)0) #define ngo_store_icvs(dst, src) copy_icvs((dst), (src)) #define ngo_store_go(dst, src) KMP_MEMCPY((dst), (src), CACHE_LINE) #define ngo_sync() ((void)0) #endif /* KMP_MIC && USE_NGO_STORES */ void __kmp_print_structure(void); // Forward declaration // ---------------------------- Barrier Algorithms ---------------------------- // Distributed barrier // Compute how many threads to have polling each cache-line. // We want to limit the number of writes to IDEAL_GO_RESOLUTION. void distributedBarrier::computeVarsForN(size_t n) { int nsockets = 1; if (__kmp_topology) { int socket_level = __kmp_topology->get_level(KMP_HW_SOCKET); int core_level = __kmp_topology->get_level(KMP_HW_CORE); int ncores_per_socket = __kmp_topology->calculate_ratio(core_level, socket_level); nsockets = __kmp_topology->get_count(socket_level); if (nsockets <= 0) nsockets = 1; if (ncores_per_socket <= 0) ncores_per_socket = 1; threads_per_go = ncores_per_socket >> 1; if (!fix_threads_per_go) { // Minimize num_gos if (threads_per_go > 4) { if (KMP_OPTIMIZE_FOR_REDUCTIONS) { threads_per_go = threads_per_go >> 1; } if (threads_per_go > 4 && nsockets == 1) threads_per_go = threads_per_go >> 1; } } if (threads_per_go == 0) threads_per_go = 1; fix_threads_per_go = true; num_gos = n / threads_per_go; if (n % threads_per_go) num_gos++; if (nsockets == 1 || num_gos == 1) num_groups = 1; else { num_groups = num_gos / nsockets; if (num_gos % nsockets) num_groups++; } if (num_groups <= 0) num_groups = 1; gos_per_group = num_gos / num_groups; if (num_gos % num_groups) gos_per_group++; threads_per_group = threads_per_go * gos_per_group; } else { num_gos = n / threads_per_go; if (n % threads_per_go) num_gos++; if (num_gos == 1) num_groups = 1; else { num_groups = num_gos / 2; if (num_gos % 2) num_groups++; } gos_per_group = num_gos / num_groups; if (num_gos % num_groups) gos_per_group++; threads_per_group = threads_per_go * gos_per_group; } } void distributedBarrier::computeGo(size_t n) { // Minimize num_gos for (num_gos = 1;; num_gos++) if (IDEAL_CONTENTION * num_gos >= n) break; threads_per_go = n / num_gos; if (n % num_gos) threads_per_go++; while (num_gos > MAX_GOS) { threads_per_go++; num_gos = n / threads_per_go; if (n % threads_per_go) num_gos++; } computeVarsForN(n); } // This function is to resize the barrier arrays when the new number of threads // exceeds max_threads, which is the current size of all the arrays void distributedBarrier::resize(size_t nthr) { KMP_DEBUG_ASSERT(nthr > max_threads); // expand to requested size * 2 max_threads = nthr * 2; // allocate arrays to new max threads for (int i = 0; i < MAX_ITERS; ++i) { if (flags[i]) flags[i] = (flags_s *)KMP_INTERNAL_REALLOC(flags[i], max_threads * sizeof(flags_s)); else flags[i] = (flags_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(flags_s)); } if (go) go = (go_s *)KMP_INTERNAL_REALLOC(go, max_threads * sizeof(go_s)); else go = (go_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(go_s)); if (iter) iter = (iter_s *)KMP_INTERNAL_REALLOC(iter, max_threads * sizeof(iter_s)); else iter = (iter_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(iter_s)); if (sleep) sleep = (sleep_s *)KMP_INTERNAL_REALLOC(sleep, max_threads * sizeof(sleep_s)); else sleep = (sleep_s *)KMP_INTERNAL_MALLOC(max_threads * sizeof(sleep_s)); } // This function is to set all the go flags that threads might be waiting // on, and when blocktime is not infinite, it should be followed by a wake-up // call to each thread kmp_uint64 distributedBarrier::go_release() { kmp_uint64 next_go = iter[0].iter + distributedBarrier::MAX_ITERS; for (size_t j = 0; j < num_gos; j++) { go[j].go.store(next_go); } return next_go; } void distributedBarrier::go_reset() { for (size_t j = 0; j < max_threads; ++j) { for (size_t i = 0; i < distributedBarrier::MAX_ITERS; ++i) { flags[i][j].stillNeed = 1; } go[j].go.store(0); iter[j].iter = 0; } } // This function inits/re-inits the distributed barrier for a particular number // of threads. If a resize of arrays is needed, it calls the resize function. void distributedBarrier::init(size_t nthr) { size_t old_max = max_threads; if (nthr > max_threads) { // need more space in arrays resize(nthr); } for (size_t i = 0; i < max_threads; i++) { for (size_t j = 0; j < distributedBarrier::MAX_ITERS; j++) { flags[j][i].stillNeed = 1; } go[i].go.store(0); iter[i].iter = 0; if (i >= old_max) sleep[i].sleep = false; } // Recalculate num_gos, etc. based on new nthr computeVarsForN(nthr); num_threads = nthr; if (team_icvs == NULL) team_icvs = __kmp_allocate(sizeof(kmp_internal_control_t)); } // This function is used only when KMP_BLOCKTIME is not infinite. // static void __kmp_dist_barrier_wakeup(enum barrier_type bt, kmp_team_t *team, size_t start, size_t stop, size_t inc, size_t tid) { KMP_DEBUG_ASSERT(__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME); if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; kmp_info_t **other_threads = team->t.t_threads; for (size_t thr = start; thr < stop; thr += inc) { KMP_DEBUG_ASSERT(other_threads[thr]); int gtid = other_threads[thr]->th.th_info.ds.ds_gtid; // Wake up worker regardless of if it appears to be sleeping or not __kmp_atomic_resume_64(gtid, (kmp_atomic_flag_64<> *)NULL); } } static void __kmp_dist_barrier_gather( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_dist_gather); kmp_team_t *team; distributedBarrier *b; kmp_info_t **other_threads; kmp_uint64 my_current_iter, my_next_iter; kmp_uint32 nproc; bool group_leader; team = this_thr->th.th_team; nproc = this_thr->th.th_team_nproc; other_threads = team->t.t_threads; b = team->t.b; my_current_iter = b->iter[tid].iter; my_next_iter = (my_current_iter + 1) % distributedBarrier::MAX_ITERS; group_leader = ((tid % b->threads_per_group) == 0); KA_TRACE(20, ("__kmp_dist_barrier_gather: T#%d(%d:%d) enter; barrier type %d\n", gtid, team->t.t_id, tid, bt)); #if USE_ITT_BUILD && USE_ITT_NOTIFY // Barrier imbalance - save arrive time to the thread if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time = __itt_get_timestamp(); } #endif if (group_leader) { // Start from the thread after the group leader size_t group_start = tid + 1; size_t group_end = tid + b->threads_per_group; size_t threads_pending = 0; if (group_end > nproc) group_end = nproc; do { // wait for threads in my group threads_pending = 0; // Check all the flags every time to avoid branch misspredict for (size_t thr = group_start; thr < group_end; thr++) { // Each thread uses a different cache line threads_pending += b->flags[my_current_iter][thr].stillNeed; } // Execute tasks here if (__kmp_tasking_mode != tskm_immediate_exec) { kmp_task_team_t *task_team = this_thr->th.th_task_team; if (task_team != NULL) { if (TCR_SYNC_4(task_team->tt.tt_active)) { if (KMP_TASKING_ENABLED(task_team)) { int tasks_completed = FALSE; __kmp_atomic_execute_tasks_64( this_thr, gtid, (kmp_atomic_flag_64<> *)NULL, FALSE, &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0); } else this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; } } else { this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; } // if } if (TCR_4(__kmp_global.g.g_done)) { if (__kmp_global.g.g_abort) __kmp_abort_thread(); break; } else if (__kmp_tasking_mode != tskm_immediate_exec && this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) { this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; } } while (threads_pending > 0); if (reduce) { // Perform reduction if needed OMPT_REDUCTION_DECL(this_thr, gtid); OMPT_REDUCTION_BEGIN; // Group leader reduces all threads in group for (size_t thr = group_start; thr < group_end; thr++) { (*reduce)(this_thr->th.th_local.reduce_data, other_threads[thr]->th.th_local.reduce_data); } OMPT_REDUCTION_END; } // Set flag for next iteration b->flags[my_next_iter][tid].stillNeed = 1; // Each thread uses a different cache line; resets stillNeed to 0 to // indicate it has reached the barrier b->flags[my_current_iter][tid].stillNeed = 0; do { // wait for all group leaders threads_pending = 0; for (size_t thr = 0; thr < nproc; thr += b->threads_per_group) { threads_pending += b->flags[my_current_iter][thr].stillNeed; } // Execute tasks here if (__kmp_tasking_mode != tskm_immediate_exec) { kmp_task_team_t *task_team = this_thr->th.th_task_team; if (task_team != NULL) { if (TCR_SYNC_4(task_team->tt.tt_active)) { if (KMP_TASKING_ENABLED(task_team)) { int tasks_completed = FALSE; __kmp_atomic_execute_tasks_64( this_thr, gtid, (kmp_atomic_flag_64<> *)NULL, FALSE, &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0); } else this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; } } else { this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; } // if } if (TCR_4(__kmp_global.g.g_done)) { if (__kmp_global.g.g_abort) __kmp_abort_thread(); break; } else if (__kmp_tasking_mode != tskm_immediate_exec && this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) { this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; } } while (threads_pending > 0); if (reduce) { // Perform reduction if needed if (KMP_MASTER_TID(tid)) { // Master reduces over group leaders OMPT_REDUCTION_DECL(this_thr, gtid); OMPT_REDUCTION_BEGIN; for (size_t thr = b->threads_per_group; thr < nproc; thr += b->threads_per_group) { (*reduce)(this_thr->th.th_local.reduce_data, other_threads[thr]->th.th_local.reduce_data); } OMPT_REDUCTION_END; } } } else { // Set flag for next iteration b->flags[my_next_iter][tid].stillNeed = 1; // Each thread uses a different cache line; resets stillNeed to 0 to // indicate it has reached the barrier b->flags[my_current_iter][tid].stillNeed = 0; } KMP_MFENCE(); KA_TRACE(20, ("__kmp_dist_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n", gtid, team->t.t_id, tid, bt)); } static void __kmp_dist_barrier_release( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_dist_release); kmp_team_t *team; distributedBarrier *b; kmp_bstate_t *thr_bar; kmp_uint64 my_current_iter, next_go; size_t my_go_index; bool group_leader; KA_TRACE(20, ("__kmp_dist_barrier_release: T#%d(%d) enter; barrier type %d\n", gtid, tid, bt)); thr_bar = &this_thr->th.th_bar[bt].bb; if (!KMP_MASTER_TID(tid)) { // workers and non-master group leaders need to check their presence in team do { if (this_thr->th.th_used_in_team.load() != 1 && this_thr->th.th_used_in_team.load() != 3) { // Thread is not in use in a team. Wait on location in tid's thread // struct. The 0 value tells anyone looking that this thread is spinning // or sleeping until this location becomes 3 again; 3 is the transition // state to get to 1 which is waiting on go and being in the team kmp_flag_32 my_flag(&(this_thr->th.th_used_in_team), 3); if (KMP_COMPARE_AND_STORE_ACQ32(&(this_thr->th.th_used_in_team), 2, 0) || this_thr->th.th_used_in_team.load() == 0) { my_flag.wait(this_thr, true USE_ITT_BUILD_ARG(itt_sync_obj)); } #if USE_ITT_BUILD && USE_ITT_NOTIFY if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) { // In fork barrier where we could not get the object reliably itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1); // Cancel wait on previous parallel region... __kmp_itt_task_starting(itt_sync_obj); if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); if (itt_sync_obj != NULL) // Call prepare as early as possible for "new" barrier __kmp_itt_task_finished(itt_sync_obj); } else #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; } if (this_thr->th.th_used_in_team.load() != 1 && this_thr->th.th_used_in_team.load() != 3) // spurious wake-up? continue; if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; // At this point, the thread thinks it is in use in a team, or in // transition to be used in a team, but it might have reached this barrier // before it was marked unused by the team. Unused threads are awoken and // shifted to wait on local thread struct elsewhere. It also might reach // this point by being picked up for use by a different team. Either way, // we need to update the tid. tid = __kmp_tid_from_gtid(gtid); team = this_thr->th.th_team; KMP_DEBUG_ASSERT(tid >= 0); KMP_DEBUG_ASSERT(team); b = team->t.b; my_current_iter = b->iter[tid].iter; next_go = my_current_iter + distributedBarrier::MAX_ITERS; my_go_index = tid / b->threads_per_go; if (this_thr->th.th_used_in_team.load() == 3) { KMP_COMPARE_AND_STORE_ACQ32(&(this_thr->th.th_used_in_team), 3, 1); } // Check if go flag is set if (b->go[my_go_index].go.load() != next_go) { // Wait on go flag on team kmp_atomic_flag_64 my_flag( &(b->go[my_go_index].go), next_go, &(b->sleep[tid].sleep)); my_flag.wait(this_thr, true USE_ITT_BUILD_ARG(itt_sync_obj)); KMP_DEBUG_ASSERT(my_current_iter == b->iter[tid].iter || b->iter[tid].iter == 0); KMP_DEBUG_ASSERT(b->sleep[tid].sleep == false); } if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; // At this point, the thread's go location was set. This means the primary // thread is safely in the barrier, and so this thread's data is // up-to-date, but we should check again that this thread is really in // use in the team, as it could have been woken up for the purpose of // changing team size, or reaping threads at shutdown. if (this_thr->th.th_used_in_team.load() == 1) break; } while (1); if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; group_leader = ((tid % b->threads_per_group) == 0); if (group_leader) { // Tell all the threads in my group they can go! for (size_t go_idx = my_go_index + 1; go_idx < my_go_index + b->gos_per_group; go_idx++) { b->go[go_idx].go.store(next_go); } // Fence added so that workers can see changes to go. sfence inadequate. KMP_MFENCE(); } #if KMP_BARRIER_ICV_PUSH if (propagate_icvs) { // copy ICVs to final dest __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, tid, FALSE); copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, (kmp_internal_control_t *)team->t.b->team_icvs); copy_icvs(&thr_bar->th_fixed_icvs, &team->t.t_implicit_task_taskdata[tid].td_icvs); } #endif if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && group_leader) { // This thread is now awake and participating in the barrier; // wake up the other threads in the group size_t nproc = this_thr->th.th_team_nproc; size_t group_end = tid + b->threads_per_group; if (nproc < group_end) group_end = nproc; __kmp_dist_barrier_wakeup(bt, team, tid + 1, group_end, 1, tid); } } else { // Primary thread team = this_thr->th.th_team; b = team->t.b; my_current_iter = b->iter[tid].iter; next_go = my_current_iter + distributedBarrier::MAX_ITERS; #if KMP_BARRIER_ICV_PUSH if (propagate_icvs) { // primary thread has ICVs in final destination; copy copy_icvs(&thr_bar->th_fixed_icvs, &team->t.t_implicit_task_taskdata[tid].td_icvs); } #endif // Tell all the group leaders they can go! for (size_t go_idx = 0; go_idx < b->num_gos; go_idx += b->gos_per_group) { b->go[go_idx].go.store(next_go); } if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake-up the group leaders size_t nproc = this_thr->th.th_team_nproc; __kmp_dist_barrier_wakeup(bt, team, tid + b->threads_per_group, nproc, b->threads_per_group, tid); } // Tell all the threads in my group they can go! for (size_t go_idx = 1; go_idx < b->gos_per_group; go_idx++) { b->go[go_idx].go.store(next_go); } // Fence added so that workers can see changes to go. sfence inadequate. KMP_MFENCE(); if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake-up the other threads in my group size_t nproc = this_thr->th.th_team_nproc; size_t group_end = tid + b->threads_per_group; if (nproc < group_end) group_end = nproc; __kmp_dist_barrier_wakeup(bt, team, tid + 1, group_end, 1, tid); } } // Update to next iteration KMP_ASSERT(my_current_iter == b->iter[tid].iter); b->iter[tid].iter = (b->iter[tid].iter + 1) % distributedBarrier::MAX_ITERS; KA_TRACE( 20, ("__kmp_dist_barrier_release: T#%d(%d:%d) exit for barrier type %d\n", gtid, team->t.t_id, tid, bt)); } // Linear Barrier template static bool __kmp_linear_barrier_gather_template( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_linear_gather); kmp_team_t *team = this_thr->th.th_team; kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; kmp_info_t **other_threads = team->t.t_threads; KA_TRACE( 20, ("__kmp_linear_barrier_gather: T#%d(%d:%d) enter for barrier type %d\n", gtid, team->t.t_id, tid, bt)); KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]); #if USE_ITT_BUILD && USE_ITT_NOTIFY // Barrier imbalance - save arrive time to the thread if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time = __itt_get_timestamp(); } #endif // We now perform a linear reduction to signal that all of the threads have // arrived. if (!KMP_MASTER_TID(tid)) { KA_TRACE(20, ("__kmp_linear_barrier_gather: T#%d(%d:%d) releasing T#%d(%d:%d)" "arrived(%p): %llu => %llu\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(0, team), team->t.t_id, 0, &thr_bar->b_arrived, thr_bar->b_arrived, thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP)); // Mark arrival to primary thread /* After performing this write, a worker thread may not assume that the team is valid any more - it could be deallocated by the primary thread at any time. */ kmp_flag_64<> flag(&thr_bar->b_arrived, other_threads[0]); flag.release(); } else { kmp_balign_team_t *team_bar = &team->t.t_bar[bt]; int nproc = this_thr->th.th_team_nproc; int i; // Don't have to worry about sleep bit here or atomic since team setting kmp_uint64 new_state = team_bar->b_arrived + KMP_BARRIER_STATE_BUMP; // Collect all the worker team member threads. for (i = 1; i < nproc; ++i) { #if KMP_CACHE_MANAGE // Prefetch next thread's arrived count if (i + 1 < nproc) KMP_CACHE_PREFETCH(&other_threads[i + 1]->th.th_bar[bt].bb.b_arrived); #endif /* KMP_CACHE_MANAGE */ KA_TRACE(20, ("__kmp_linear_barrier_gather: T#%d(%d:%d) wait T#%d(%d:%d) " "arrived(%p) == %llu\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(i, team), team->t.t_id, i, &other_threads[i]->th.th_bar[bt].bb.b_arrived, new_state)); // Wait for worker thread to arrive if (cancellable) { kmp_flag_64 flag( &other_threads[i]->th.th_bar[bt].bb.b_arrived, new_state); if (flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj))) return true; } else { kmp_flag_64<> flag(&other_threads[i]->th.th_bar[bt].bb.b_arrived, new_state); flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); } #if USE_ITT_BUILD && USE_ITT_NOTIFY // Barrier imbalance - write min of the thread time and the other thread // time to the thread. if (__kmp_forkjoin_frames_mode == 2) { this_thr->th.th_bar_min_time = KMP_MIN( this_thr->th.th_bar_min_time, other_threads[i]->th.th_bar_min_time); } #endif if (reduce) { KA_TRACE(100, ("__kmp_linear_barrier_gather: T#%d(%d:%d) += T#%d(%d:%d)\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(i, team), team->t.t_id, i)); OMPT_REDUCTION_DECL(this_thr, gtid); OMPT_REDUCTION_BEGIN; (*reduce)(this_thr->th.th_local.reduce_data, other_threads[i]->th.th_local.reduce_data); OMPT_REDUCTION_END; } } // Don't have to worry about sleep bit here or atomic since team setting team_bar->b_arrived = new_state; KA_TRACE(20, ("__kmp_linear_barrier_gather: T#%d(%d:%d) set team %d " "arrived(%p) = %llu\n", gtid, team->t.t_id, tid, team->t.t_id, &team_bar->b_arrived, new_state)); } KA_TRACE( 20, ("__kmp_linear_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n", gtid, team->t.t_id, tid, bt)); return false; } template static bool __kmp_linear_barrier_release_template( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_linear_release); kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; kmp_team_t *team; if (KMP_MASTER_TID(tid)) { unsigned int i; kmp_uint32 nproc = this_thr->th.th_team_nproc; kmp_info_t **other_threads; team = __kmp_threads[gtid]->th.th_team; KMP_DEBUG_ASSERT(team != NULL); other_threads = team->t.t_threads; KA_TRACE(20, ("__kmp_linear_barrier_release: T#%d(%d:%d) primary enter for " "barrier type %d\n", gtid, team->t.t_id, tid, bt)); if (nproc > 1) { #if KMP_BARRIER_ICV_PUSH { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_icv_copy); if (propagate_icvs) { ngo_load(&team->t.t_implicit_task_taskdata[0].td_icvs); for (i = 1; i < nproc; ++i) { __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[i], team, i, FALSE); ngo_store_icvs(&team->t.t_implicit_task_taskdata[i].td_icvs, &team->t.t_implicit_task_taskdata[0].td_icvs); } ngo_sync(); } } #endif // KMP_BARRIER_ICV_PUSH // Now, release all of the worker threads for (i = 1; i < nproc; ++i) { #if KMP_CACHE_MANAGE // Prefetch next thread's go flag if (i + 1 < nproc) KMP_CACHE_PREFETCH(&other_threads[i + 1]->th.th_bar[bt].bb.b_go); #endif /* KMP_CACHE_MANAGE */ KA_TRACE( 20, ("__kmp_linear_barrier_release: T#%d(%d:%d) releasing T#%d(%d:%d) " "go(%p): %u => %u\n", gtid, team->t.t_id, tid, other_threads[i]->th.th_info.ds.ds_gtid, team->t.t_id, i, &other_threads[i]->th.th_bar[bt].bb.b_go, other_threads[i]->th.th_bar[bt].bb.b_go, other_threads[i]->th.th_bar[bt].bb.b_go + KMP_BARRIER_STATE_BUMP)); kmp_flag_64<> flag(&other_threads[i]->th.th_bar[bt].bb.b_go, other_threads[i]); flag.release(); } } } else { // Wait for the PRIMARY thread to release us KA_TRACE(20, ("__kmp_linear_barrier_release: T#%d wait go(%p) == %u\n", gtid, &thr_bar->b_go, KMP_BARRIER_STATE_BUMP)); if (cancellable) { kmp_flag_64 flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); if (flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj))) return true; } else { kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); } #if USE_ITT_BUILD && USE_ITT_NOTIFY if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) { // In a fork barrier; cannot get the object reliably (or ITTNOTIFY is // disabled) itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1); // Cancel wait on previous parallel region... __kmp_itt_task_starting(itt_sync_obj); if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return false; itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); if (itt_sync_obj != NULL) // Call prepare as early as possible for "new" barrier __kmp_itt_task_finished(itt_sync_obj); } else #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ // Early exit for reaping threads releasing forkjoin barrier if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return false; // The worker thread may now assume that the team is valid. #ifdef KMP_DEBUG tid = __kmp_tid_from_gtid(gtid); team = __kmp_threads[gtid]->th.th_team; #endif KMP_DEBUG_ASSERT(team != NULL); TCW_4(thr_bar->b_go, KMP_INIT_BARRIER_STATE); KA_TRACE(20, ("__kmp_linear_barrier_release: T#%d(%d:%d) set go(%p) = %u\n", gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE)); KMP_MB(); // Flush all pending memory write invalidates. } KA_TRACE( 20, ("__kmp_linear_barrier_release: T#%d(%d:%d) exit for barrier type %d\n", gtid, team->t.t_id, tid, bt)); return false; } static void __kmp_linear_barrier_gather( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { __kmp_linear_barrier_gather_template( bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); } static bool __kmp_linear_barrier_gather_cancellable( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { return __kmp_linear_barrier_gather_template( bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); } static void __kmp_linear_barrier_release( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { __kmp_linear_barrier_release_template( bt, this_thr, gtid, tid, propagate_icvs USE_ITT_BUILD_ARG(itt_sync_obj)); } static bool __kmp_linear_barrier_release_cancellable( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { return __kmp_linear_barrier_release_template( bt, this_thr, gtid, tid, propagate_icvs USE_ITT_BUILD_ARG(itt_sync_obj)); } // Tree barrier static void __kmp_tree_barrier_gather( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_tree_gather); kmp_team_t *team = this_thr->th.th_team; kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; kmp_info_t **other_threads = team->t.t_threads; kmp_uint32 nproc = this_thr->th.th_team_nproc; kmp_uint32 branch_bits = __kmp_barrier_gather_branch_bits[bt]; kmp_uint32 branch_factor = 1 << branch_bits; kmp_uint32 child; kmp_uint32 child_tid; kmp_uint64 new_state = 0; KA_TRACE( 20, ("__kmp_tree_barrier_gather: T#%d(%d:%d) enter for barrier type %d\n", gtid, team->t.t_id, tid, bt)); KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]); #if USE_ITT_BUILD && USE_ITT_NOTIFY // Barrier imbalance - save arrive time to the thread if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time = __itt_get_timestamp(); } #endif // Perform tree gather to wait until all threads have arrived; reduce any // required data as we go child_tid = (tid << branch_bits) + 1; if (child_tid < nproc) { // Parent threads wait for all their children to arrive new_state = team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP; child = 1; do { kmp_info_t *child_thr = other_threads[child_tid]; kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; #if KMP_CACHE_MANAGE // Prefetch next thread's arrived count if (child + 1 <= branch_factor && child_tid + 1 < nproc) KMP_CACHE_PREFETCH( &other_threads[child_tid + 1]->th.th_bar[bt].bb.b_arrived); #endif /* KMP_CACHE_MANAGE */ KA_TRACE(20, ("__kmp_tree_barrier_gather: T#%d(%d:%d) wait T#%d(%d:%u) " "arrived(%p) == %llu\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid, &child_bar->b_arrived, new_state)); // Wait for child to arrive kmp_flag_64<> flag(&child_bar->b_arrived, new_state); flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); #if USE_ITT_BUILD && USE_ITT_NOTIFY // Barrier imbalance - write min of the thread time and a child time to // the thread. if (__kmp_forkjoin_frames_mode == 2) { this_thr->th.th_bar_min_time = KMP_MIN(this_thr->th.th_bar_min_time, child_thr->th.th_bar_min_time); } #endif if (reduce) { KA_TRACE(100, ("__kmp_tree_barrier_gather: T#%d(%d:%d) += T#%d(%d:%u)\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid)); OMPT_REDUCTION_DECL(this_thr, gtid); OMPT_REDUCTION_BEGIN; (*reduce)(this_thr->th.th_local.reduce_data, child_thr->th.th_local.reduce_data); OMPT_REDUCTION_END; } child++; child_tid++; } while (child <= branch_factor && child_tid < nproc); } if (!KMP_MASTER_TID(tid)) { // Worker threads kmp_int32 parent_tid = (tid - 1) >> branch_bits; KA_TRACE(20, ("__kmp_tree_barrier_gather: T#%d(%d:%d) releasing T#%d(%d:%d) " "arrived(%p): %llu => %llu\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(parent_tid, team), team->t.t_id, parent_tid, &thr_bar->b_arrived, thr_bar->b_arrived, thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP)); // Mark arrival to parent thread /* After performing this write, a worker thread may not assume that the team is valid any more - it could be deallocated by the primary thread at any time. */ kmp_flag_64<> flag(&thr_bar->b_arrived, other_threads[parent_tid]); flag.release(); } else { // Need to update the team arrived pointer if we are the primary thread if (nproc > 1) // New value was already computed above team->t.t_bar[bt].b_arrived = new_state; else team->t.t_bar[bt].b_arrived += KMP_BARRIER_STATE_BUMP; KA_TRACE(20, ("__kmp_tree_barrier_gather: T#%d(%d:%d) set team %d " "arrived(%p) = %llu\n", gtid, team->t.t_id, tid, team->t.t_id, &team->t.t_bar[bt].b_arrived, team->t.t_bar[bt].b_arrived)); } KA_TRACE(20, ("__kmp_tree_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n", gtid, team->t.t_id, tid, bt)); } static void __kmp_tree_barrier_release( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_tree_release); kmp_team_t *team; kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; kmp_uint32 nproc; kmp_uint32 branch_bits = __kmp_barrier_release_branch_bits[bt]; kmp_uint32 branch_factor = 1 << branch_bits; kmp_uint32 child; kmp_uint32 child_tid; // Perform a tree release for all of the threads that have been gathered if (!KMP_MASTER_TID( tid)) { // Handle fork barrier workers who aren't part of a team yet KA_TRACE(20, ("__kmp_tree_barrier_release: T#%d wait go(%p) == %u\n", gtid, &thr_bar->b_go, KMP_BARRIER_STATE_BUMP)); // Wait for parent thread to release us kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); #if USE_ITT_BUILD && USE_ITT_NOTIFY if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) { // In fork barrier where we could not get the object reliably (or // ITTNOTIFY is disabled) itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1); // Cancel wait on previous parallel region... __kmp_itt_task_starting(itt_sync_obj); if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); if (itt_sync_obj != NULL) // Call prepare as early as possible for "new" barrier __kmp_itt_task_finished(itt_sync_obj); } else #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ // Early exit for reaping threads releasing forkjoin barrier if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; // The worker thread may now assume that the team is valid. team = __kmp_threads[gtid]->th.th_team; KMP_DEBUG_ASSERT(team != NULL); tid = __kmp_tid_from_gtid(gtid); TCW_4(thr_bar->b_go, KMP_INIT_BARRIER_STATE); KA_TRACE(20, ("__kmp_tree_barrier_release: T#%d(%d:%d) set go(%p) = %u\n", gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE)); KMP_MB(); // Flush all pending memory write invalidates. } else { team = __kmp_threads[gtid]->th.th_team; KMP_DEBUG_ASSERT(team != NULL); KA_TRACE(20, ("__kmp_tree_barrier_release: T#%d(%d:%d) primary enter for " "barrier type %d\n", gtid, team->t.t_id, tid, bt)); } nproc = this_thr->th.th_team_nproc; child_tid = (tid << branch_bits) + 1; if (child_tid < nproc) { kmp_info_t **other_threads = team->t.t_threads; child = 1; // Parent threads release all their children do { kmp_info_t *child_thr = other_threads[child_tid]; kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; #if KMP_CACHE_MANAGE // Prefetch next thread's go count if (child + 1 <= branch_factor && child_tid + 1 < nproc) KMP_CACHE_PREFETCH( &other_threads[child_tid + 1]->th.th_bar[bt].bb.b_go); #endif /* KMP_CACHE_MANAGE */ #if KMP_BARRIER_ICV_PUSH { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_icv_copy); if (propagate_icvs) { __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[child_tid], team, child_tid, FALSE); copy_icvs(&team->t.t_implicit_task_taskdata[child_tid].td_icvs, &team->t.t_implicit_task_taskdata[0].td_icvs); } } #endif // KMP_BARRIER_ICV_PUSH KA_TRACE(20, ("__kmp_tree_barrier_release: T#%d(%d:%d) releasing T#%d(%d:%u)" "go(%p): %u => %u\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go, child_bar->b_go + KMP_BARRIER_STATE_BUMP)); // Release child from barrier kmp_flag_64<> flag(&child_bar->b_go, child_thr); flag.release(); child++; child_tid++; } while (child <= branch_factor && child_tid < nproc); } KA_TRACE( 20, ("__kmp_tree_barrier_release: T#%d(%d:%d) exit for barrier type %d\n", gtid, team->t.t_id, tid, bt)); } // Hyper Barrier static void __kmp_hyper_barrier_gather( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hyper_gather); kmp_team_t *team = this_thr->th.th_team; kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; kmp_info_t **other_threads = team->t.t_threads; kmp_uint64 new_state = KMP_BARRIER_UNUSED_STATE; kmp_uint32 num_threads = this_thr->th.th_team_nproc; kmp_uint32 branch_bits = __kmp_barrier_gather_branch_bits[bt]; kmp_uint32 branch_factor = 1 << branch_bits; kmp_uint32 offset; kmp_uint32 level; KA_TRACE( 20, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) enter for barrier type %d\n", gtid, team->t.t_id, tid, bt)); KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]); #if USE_ITT_BUILD && USE_ITT_NOTIFY // Barrier imbalance - save arrive time to the thread if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { this_thr->th.th_bar_arrive_time = this_thr->th.th_bar_min_time = __itt_get_timestamp(); } #endif /* Perform a hypercube-embedded tree gather to wait until all of the threads have arrived, and reduce any required data as we go. */ kmp_flag_64<> p_flag(&thr_bar->b_arrived); for (level = 0, offset = 1; offset < num_threads; level += branch_bits, offset <<= branch_bits) { kmp_uint32 child; kmp_uint32 child_tid; if (((tid >> level) & (branch_factor - 1)) != 0) { kmp_int32 parent_tid = tid & ~((1 << (level + branch_bits)) - 1); KMP_MB(); // Synchronize parent and child threads. KA_TRACE(20, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) releasing T#%d(%d:%d) " "arrived(%p): %llu => %llu\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(parent_tid, team), team->t.t_id, parent_tid, &thr_bar->b_arrived, thr_bar->b_arrived, thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP)); // Mark arrival to parent thread /* After performing this write (in the last iteration of the enclosing for loop), a worker thread may not assume that the team is valid any more - it could be deallocated by the primary thread at any time. */ p_flag.set_waiter(other_threads[parent_tid]); p_flag.release(); break; } // Parent threads wait for children to arrive if (new_state == KMP_BARRIER_UNUSED_STATE) new_state = team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP; for (child = 1, child_tid = tid + (1 << level); child < branch_factor && child_tid < num_threads; child++, child_tid += (1 << level)) { kmp_info_t *child_thr = other_threads[child_tid]; kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; #if KMP_CACHE_MANAGE kmp_uint32 next_child_tid = child_tid + (1 << level); // Prefetch next thread's arrived count if (child + 1 < branch_factor && next_child_tid < num_threads) KMP_CACHE_PREFETCH( &other_threads[next_child_tid]->th.th_bar[bt].bb.b_arrived); #endif /* KMP_CACHE_MANAGE */ KA_TRACE(20, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) wait T#%d(%d:%u) " "arrived(%p) == %llu\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid, &child_bar->b_arrived, new_state)); // Wait for child to arrive kmp_flag_64<> c_flag(&child_bar->b_arrived, new_state); c_flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); KMP_MB(); // Synchronize parent and child threads. #if USE_ITT_BUILD && USE_ITT_NOTIFY // Barrier imbalance - write min of the thread time and a child time to // the thread. if (__kmp_forkjoin_frames_mode == 2) { this_thr->th.th_bar_min_time = KMP_MIN(this_thr->th.th_bar_min_time, child_thr->th.th_bar_min_time); } #endif if (reduce) { KA_TRACE(100, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) += T#%d(%d:%u)\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid)); OMPT_REDUCTION_DECL(this_thr, gtid); OMPT_REDUCTION_BEGIN; (*reduce)(this_thr->th.th_local.reduce_data, child_thr->th.th_local.reduce_data); OMPT_REDUCTION_END; } } } if (KMP_MASTER_TID(tid)) { // Need to update the team arrived pointer if we are the primary thread if (new_state == KMP_BARRIER_UNUSED_STATE) team->t.t_bar[bt].b_arrived += KMP_BARRIER_STATE_BUMP; else team->t.t_bar[bt].b_arrived = new_state; KA_TRACE(20, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) set team %d " "arrived(%p) = %llu\n", gtid, team->t.t_id, tid, team->t.t_id, &team->t.t_bar[bt].b_arrived, team->t.t_bar[bt].b_arrived)); } KA_TRACE( 20, ("__kmp_hyper_barrier_gather: T#%d(%d:%d) exit for barrier type %d\n", gtid, team->t.t_id, tid, bt)); } // The reverse versions seem to beat the forward versions overall #define KMP_REVERSE_HYPER_BAR static void __kmp_hyper_barrier_release( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hyper_release); kmp_team_t *team; kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; kmp_info_t **other_threads; kmp_uint32 num_threads; kmp_uint32 branch_bits = __kmp_barrier_release_branch_bits[bt]; kmp_uint32 branch_factor = 1 << branch_bits; kmp_uint32 child; kmp_uint32 child_tid; kmp_uint32 offset; kmp_uint32 level; /* Perform a hypercube-embedded tree release for all of the threads that have been gathered. If KMP_REVERSE_HYPER_BAR is defined (default) the threads are released in the reverse order of the corresponding gather, otherwise threads are released in the same order. */ if (KMP_MASTER_TID(tid)) { // primary thread team = __kmp_threads[gtid]->th.th_team; KMP_DEBUG_ASSERT(team != NULL); KA_TRACE(20, ("__kmp_hyper_barrier_release: T#%d(%d:%d) primary enter for " "barrier type %d\n", gtid, team->t.t_id, tid, bt)); #if KMP_BARRIER_ICV_PUSH if (propagate_icvs) { // primary already has ICVs in final destination; copy copy_icvs(&thr_bar->th_fixed_icvs, &team->t.t_implicit_task_taskdata[tid].td_icvs); } #endif } else { // Handle fork barrier workers who aren't part of a team yet KA_TRACE(20, ("__kmp_hyper_barrier_release: T#%d wait go(%p) == %u\n", gtid, &thr_bar->b_go, KMP_BARRIER_STATE_BUMP)); // Wait for parent thread to release us kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); #if USE_ITT_BUILD && USE_ITT_NOTIFY if ((__itt_sync_create_ptr && itt_sync_obj == NULL) || KMP_ITT_DEBUG) { // In fork barrier where we could not get the object reliably itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 0, -1); // Cancel wait on previous parallel region... __kmp_itt_task_starting(itt_sync_obj); if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); if (itt_sync_obj != NULL) // Call prepare as early as possible for "new" barrier __kmp_itt_task_finished(itt_sync_obj); } else #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ // Early exit for reaping threads releasing forkjoin barrier if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; // The worker thread may now assume that the team is valid. team = __kmp_threads[gtid]->th.th_team; KMP_DEBUG_ASSERT(team != NULL); tid = __kmp_tid_from_gtid(gtid); TCW_4(thr_bar->b_go, KMP_INIT_BARRIER_STATE); KA_TRACE(20, ("__kmp_hyper_barrier_release: T#%d(%d:%d) set go(%p) = %u\n", gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE)); KMP_MB(); // Flush all pending memory write invalidates. } num_threads = this_thr->th.th_team_nproc; other_threads = team->t.t_threads; #ifdef KMP_REVERSE_HYPER_BAR // Count up to correct level for parent for (level = 0, offset = 1; offset < num_threads && (((tid >> level) & (branch_factor - 1)) == 0); level += branch_bits, offset <<= branch_bits) ; // Now go down from there for (level -= branch_bits, offset >>= branch_bits; offset != 0; level -= branch_bits, offset >>= branch_bits) #else // Go down the tree, level by level for (level = 0, offset = 1; offset < num_threads; level += branch_bits, offset <<= branch_bits) #endif // KMP_REVERSE_HYPER_BAR { #ifdef KMP_REVERSE_HYPER_BAR /* Now go in reverse order through the children, highest to lowest. Initial setting of child is conservative here. */ child = num_threads >> ((level == 0) ? level : level - 1); for (child = (child < branch_factor - 1) ? child : branch_factor - 1, child_tid = tid + (child << level); child >= 1; child--, child_tid -= (1 << level)) #else if (((tid >> level) & (branch_factor - 1)) != 0) // No need to go lower than this, since this is the level parent would be // notified break; // Iterate through children on this level of the tree for (child = 1, child_tid = tid + (1 << level); child < branch_factor && child_tid < num_threads; child++, child_tid += (1 << level)) #endif // KMP_REVERSE_HYPER_BAR { if (child_tid >= num_threads) continue; // Child doesn't exist so keep going else { kmp_info_t *child_thr = other_threads[child_tid]; kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; #if KMP_CACHE_MANAGE kmp_uint32 next_child_tid = child_tid - (1 << level); // Prefetch next thread's go count #ifdef KMP_REVERSE_HYPER_BAR if (child - 1 >= 1 && next_child_tid < num_threads) #else if (child + 1 < branch_factor && next_child_tid < num_threads) #endif // KMP_REVERSE_HYPER_BAR KMP_CACHE_PREFETCH( &other_threads[next_child_tid]->th.th_bar[bt].bb.b_go); #endif /* KMP_CACHE_MANAGE */ #if KMP_BARRIER_ICV_PUSH if (propagate_icvs) // push my fixed ICVs to my child copy_icvs(&child_bar->th_fixed_icvs, &thr_bar->th_fixed_icvs); #endif // KMP_BARRIER_ICV_PUSH KA_TRACE( 20, ("__kmp_hyper_barrier_release: T#%d(%d:%d) releasing T#%d(%d:%u)" "go(%p): %u => %u\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go, child_bar->b_go + KMP_BARRIER_STATE_BUMP)); // Release child from barrier kmp_flag_64<> flag(&child_bar->b_go, child_thr); flag.release(); } } } #if KMP_BARRIER_ICV_PUSH if (propagate_icvs && !KMP_MASTER_TID(tid)) { // copy ICVs locally to final dest __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, tid, FALSE); copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, &thr_bar->th_fixed_icvs); } #endif KA_TRACE( 20, ("__kmp_hyper_barrier_release: T#%d(%d:%d) exit for barrier type %d\n", gtid, team->t.t_id, tid, bt)); } // Hierarchical Barrier // Initialize thread barrier data /* Initializes/re-initializes the hierarchical barrier data stored on a thread. Performs the minimum amount of initialization required based on how the team has changed. Returns true if leaf children will require both on-core and traditional wake-up mechanisms. For example, if the team size increases, threads already in the team will respond to on-core wakeup on their parent thread, but threads newly added to the team will only be listening on the their local b_go. */ static bool __kmp_init_hierarchical_barrier_thread(enum barrier_type bt, kmp_bstate_t *thr_bar, kmp_uint32 nproc, int gtid, int tid, kmp_team_t *team) { // Checks to determine if (re-)initialization is needed bool uninitialized = thr_bar->team == NULL; bool team_changed = team != thr_bar->team; bool team_sz_changed = nproc != thr_bar->nproc; bool tid_changed = tid != thr_bar->old_tid; bool retval = false; if (uninitialized || team_sz_changed) { __kmp_get_hierarchy(nproc, thr_bar); } if (uninitialized || team_sz_changed || tid_changed) { thr_bar->my_level = thr_bar->depth - 1; // default for primary thread thr_bar->parent_tid = -1; // default for primary thread if (!KMP_MASTER_TID(tid)) { // if not primary thread, find parent thread in hierarchy kmp_uint32 d = 0; while (d < thr_bar->depth) { // find parent based on level of thread in // hierarchy, and note level kmp_uint32 rem; if (d == thr_bar->depth - 2) { // reached level right below the primary thr_bar->parent_tid = 0; thr_bar->my_level = d; break; } else if ((rem = tid % thr_bar->skip_per_level[d + 1]) != 0) { // TODO: can we make the above op faster? // thread is not a subtree root at next level, so this is max thr_bar->parent_tid = tid - rem; thr_bar->my_level = d; break; } ++d; } } __kmp_type_convert(7 - ((tid - thr_bar->parent_tid) / (thr_bar->skip_per_level[thr_bar->my_level])), &(thr_bar->offset)); thr_bar->old_tid = tid; thr_bar->wait_flag = KMP_BARRIER_NOT_WAITING; thr_bar->team = team; thr_bar->parent_bar = &team->t.t_threads[thr_bar->parent_tid]->th.th_bar[bt].bb; } if (uninitialized || team_changed || tid_changed) { thr_bar->team = team; thr_bar->parent_bar = &team->t.t_threads[thr_bar->parent_tid]->th.th_bar[bt].bb; retval = true; } if (uninitialized || team_sz_changed || tid_changed) { thr_bar->nproc = nproc; thr_bar->leaf_kids = thr_bar->base_leaf_kids; if (thr_bar->my_level == 0) thr_bar->leaf_kids = 0; if (thr_bar->leaf_kids && (kmp_uint32)tid + thr_bar->leaf_kids + 1 > nproc) __kmp_type_convert(nproc - tid - 1, &(thr_bar->leaf_kids)); thr_bar->leaf_state = 0; for (int i = 0; i < thr_bar->leaf_kids; ++i) ((char *)&(thr_bar->leaf_state))[7 - i] = 1; } return retval; } static void __kmp_hierarchical_barrier_gather( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, void (*reduce)(void *, void *) USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hier_gather); kmp_team_t *team = this_thr->th.th_team; kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; kmp_uint32 nproc = this_thr->th.th_team_nproc; kmp_info_t **other_threads = team->t.t_threads; kmp_uint64 new_state = 0; int level = team->t.t_level; if (other_threads[0] ->th.th_teams_microtask) // are we inside the teams construct? if (this_thr->th.th_teams_size.nteams > 1) ++level; // level was not increased in teams construct for team_of_masters if (level == 1) thr_bar->use_oncore_barrier = 1; else thr_bar->use_oncore_barrier = 0; // Do not use oncore barrier when nested KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) enter for " "barrier type %d\n", gtid, team->t.t_id, tid, bt)); KMP_DEBUG_ASSERT(this_thr == other_threads[this_thr->th.th_info.ds.ds_tid]); #if USE_ITT_BUILD && USE_ITT_NOTIFY // Barrier imbalance - save arrive time to the thread if (__kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 2) { this_thr->th.th_bar_arrive_time = __itt_get_timestamp(); } #endif (void)__kmp_init_hierarchical_barrier_thread(bt, thr_bar, nproc, gtid, tid, team); if (thr_bar->my_level) { // not a leaf (my_level==0 means leaf) kmp_int32 child_tid; new_state = (kmp_uint64)team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP; if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && thr_bar->use_oncore_barrier) { if (thr_bar->leaf_kids) { // First, wait for leaf children to check-in on my b_arrived flag kmp_uint64 leaf_state = KMP_MASTER_TID(tid) ? thr_bar->b_arrived | thr_bar->leaf_state : team->t.t_bar[bt].b_arrived | thr_bar->leaf_state; KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) waiting " "for leaf kids\n", gtid, team->t.t_id, tid)); kmp_flag_64<> flag(&thr_bar->b_arrived, leaf_state); flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); if (reduce) { OMPT_REDUCTION_DECL(this_thr, gtid); OMPT_REDUCTION_BEGIN; for (child_tid = tid + 1; child_tid <= tid + thr_bar->leaf_kids; ++child_tid) { KA_TRACE(100, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) += " "T#%d(%d:%d)\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid)); (*reduce)(this_thr->th.th_local.reduce_data, other_threads[child_tid]->th.th_local.reduce_data); } OMPT_REDUCTION_END; } // clear leaf_state bits KMP_TEST_THEN_AND64(&thr_bar->b_arrived, ~(thr_bar->leaf_state)); } // Next, wait for higher level children on each child's b_arrived flag for (kmp_uint32 d = 1; d < thr_bar->my_level; ++d) { // gather lowest level threads first, but skip 0 kmp_uint32 last = tid + thr_bar->skip_per_level[d + 1], skip = thr_bar->skip_per_level[d]; if (last > nproc) last = nproc; for (child_tid = tid + skip; child_tid < (int)last; child_tid += skip) { kmp_info_t *child_thr = other_threads[child_tid]; kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) wait " "T#%d(%d:%d) " "arrived(%p) == %llu\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid, &child_bar->b_arrived, new_state)); kmp_flag_64<> flag(&child_bar->b_arrived, new_state); flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); if (reduce) { KA_TRACE(100, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) += " "T#%d(%d:%d)\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid)); (*reduce)(this_thr->th.th_local.reduce_data, child_thr->th.th_local.reduce_data); } } } } else { // Blocktime is not infinite for (kmp_uint32 d = 0; d < thr_bar->my_level; ++d) { // Gather lowest level threads first kmp_uint32 last = tid + thr_bar->skip_per_level[d + 1], skip = thr_bar->skip_per_level[d]; if (last > nproc) last = nproc; for (child_tid = tid + skip; child_tid < (int)last; child_tid += skip) { kmp_info_t *child_thr = other_threads[child_tid]; kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) wait " "T#%d(%d:%d) " "arrived(%p) == %llu\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid, &child_bar->b_arrived, new_state)); kmp_flag_64<> flag(&child_bar->b_arrived, new_state); flag.wait(this_thr, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); if (reduce) { KA_TRACE(100, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) += " "T#%d(%d:%d)\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid)); (*reduce)(this_thr->th.th_local.reduce_data, child_thr->th.th_local.reduce_data); } } } } } // All subordinates are gathered; now release parent if not primary thread if (!KMP_MASTER_TID(tid)) { // worker threads release parent in hierarchy KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) releasing" " T#%d(%d:%d) arrived(%p): %llu => %llu\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(thr_bar->parent_tid, team), team->t.t_id, thr_bar->parent_tid, &thr_bar->b_arrived, thr_bar->b_arrived, thr_bar->b_arrived + KMP_BARRIER_STATE_BUMP)); /* Mark arrival to parent: After performing this write, a worker thread may not assume that the team is valid any more - it could be deallocated by the primary thread at any time. */ if (thr_bar->my_level || __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME || !thr_bar->use_oncore_barrier) { // Parent is waiting on my b_arrived // flag; release it kmp_flag_64<> flag(&thr_bar->b_arrived, other_threads[thr_bar->parent_tid]); flag.release(); } else { // Leaf does special release on "offset" bits of parent's b_arrived flag thr_bar->b_arrived = team->t.t_bar[bt].b_arrived + KMP_BARRIER_STATE_BUMP; kmp_flag_oncore flag(&thr_bar->parent_bar->b_arrived, thr_bar->offset + 1); flag.set_waiter(other_threads[thr_bar->parent_tid]); flag.release(); } } else { // Primary thread needs to update the team's b_arrived value team->t.t_bar[bt].b_arrived = new_state; KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) set team %d " "arrived(%p) = %llu\n", gtid, team->t.t_id, tid, team->t.t_id, &team->t.t_bar[bt].b_arrived, team->t.t_bar[bt].b_arrived)); } // Is the team access below unsafe or just technically invalid? KA_TRACE(20, ("__kmp_hierarchical_barrier_gather: T#%d(%d:%d) exit for " "barrier type %d\n", gtid, team->t.t_id, tid, bt)); } static void __kmp_hierarchical_barrier_release( enum barrier_type bt, kmp_info_t *this_thr, int gtid, int tid, int propagate_icvs USE_ITT_BUILD_ARG(void *itt_sync_obj)) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_hier_release); kmp_team_t *team; kmp_bstate_t *thr_bar = &this_thr->th.th_bar[bt].bb; kmp_uint32 nproc; bool team_change = false; // indicates on-core barrier shouldn't be used if (KMP_MASTER_TID(tid)) { team = __kmp_threads[gtid]->th.th_team; KMP_DEBUG_ASSERT(team != NULL); KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) primary " "entered barrier type %d\n", gtid, team->t.t_id, tid, bt)); } else { // Worker threads // Wait for parent thread to release me if (!thr_bar->use_oncore_barrier || __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME || thr_bar->my_level != 0 || thr_bar->team == NULL) { // Use traditional method of waiting on my own b_go flag thr_bar->wait_flag = KMP_BARRIER_OWN_FLAG; kmp_flag_64<> flag(&thr_bar->b_go, KMP_BARRIER_STATE_BUMP); flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); TCW_8(thr_bar->b_go, KMP_INIT_BARRIER_STATE); // Reset my b_go flag for next time } else { // Thread barrier data is initialized, this is a leaf, blocktime is // infinite, not nested // Wait on my "offset" bits on parent's b_go flag thr_bar->wait_flag = KMP_BARRIER_PARENT_FLAG; kmp_flag_oncore flag(&thr_bar->parent_bar->b_go, KMP_BARRIER_STATE_BUMP, thr_bar->offset + 1, bt, this_thr USE_ITT_BUILD_ARG(itt_sync_obj)); flag.wait(this_thr, TRUE); if (thr_bar->wait_flag == KMP_BARRIER_SWITCHING) { // Thread was switched to own b_go TCW_8(thr_bar->b_go, KMP_INIT_BARRIER_STATE); // Reset my b_go flag for next time } else { // Reset my bits on parent's b_go flag (RCAST(volatile char *, &(thr_bar->parent_bar->b_go)))[thr_bar->offset + 1] = 0; } } thr_bar->wait_flag = KMP_BARRIER_NOT_WAITING; // Early exit for reaping threads releasing forkjoin barrier if (bt == bs_forkjoin_barrier && TCR_4(__kmp_global.g.g_done)) return; // The worker thread may now assume that the team is valid. team = __kmp_threads[gtid]->th.th_team; KMP_DEBUG_ASSERT(team != NULL); tid = __kmp_tid_from_gtid(gtid); KA_TRACE( 20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) set go(%p) = %u\n", gtid, team->t.t_id, tid, &thr_bar->b_go, KMP_INIT_BARRIER_STATE)); KMP_MB(); // Flush all pending memory write invalidates. } nproc = this_thr->th.th_team_nproc; int level = team->t.t_level; if (team->t.t_threads[0] ->th.th_teams_microtask) { // are we inside the teams construct? if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && this_thr->th.th_teams_level == level) ++level; // level was not increased in teams construct for team_of_workers if (this_thr->th.th_teams_size.nteams > 1) ++level; // level was not increased in teams construct for team_of_masters } if (level == 1) thr_bar->use_oncore_barrier = 1; else thr_bar->use_oncore_barrier = 0; // Do not use oncore barrier when nested // If the team size has increased, we still communicate with old leaves via // oncore barrier. unsigned short int old_leaf_kids = thr_bar->leaf_kids; kmp_uint64 old_leaf_state = thr_bar->leaf_state; team_change = __kmp_init_hierarchical_barrier_thread(bt, thr_bar, nproc, gtid, tid, team); // But if the entire team changes, we won't use oncore barrier at all if (team_change) old_leaf_kids = 0; #if KMP_BARRIER_ICV_PUSH if (propagate_icvs) { __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, tid, FALSE); if (KMP_MASTER_TID( tid)) { // primary already has copy in final destination; copy copy_icvs(&thr_bar->th_fixed_icvs, &team->t.t_implicit_task_taskdata[tid].td_icvs); } else if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && thr_bar->use_oncore_barrier) { // optimization for inf blocktime if (!thr_bar->my_level) // I'm a leaf in the hierarchy (my_level==0) // leaves (on-core children) pull parent's fixed ICVs directly to local // ICV store copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, &thr_bar->parent_bar->th_fixed_icvs); // non-leaves will get ICVs piggybacked with b_go via NGO store } else { // blocktime is not infinite; pull ICVs from parent's fixed ICVs if (thr_bar->my_level) // not a leaf; copy ICVs to my fixed ICVs child can // access copy_icvs(&thr_bar->th_fixed_icvs, &thr_bar->parent_bar->th_fixed_icvs); else // leaves copy parent's fixed ICVs directly to local ICV store copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, &thr_bar->parent_bar->th_fixed_icvs); } } #endif // KMP_BARRIER_ICV_PUSH // Now, release my children if (thr_bar->my_level) { // not a leaf kmp_int32 child_tid; kmp_uint32 last; if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && thr_bar->use_oncore_barrier) { if (KMP_MASTER_TID(tid)) { // do a flat release // Set local b_go to bump children via NGO store of the cache line // containing IVCs and b_go. thr_bar->b_go = KMP_BARRIER_STATE_BUMP; // Use ngo stores if available; b_go piggybacks in the last 8 bytes of // the cache line ngo_load(&thr_bar->th_fixed_icvs); // This loops over all the threads skipping only the leaf nodes in the // hierarchy for (child_tid = thr_bar->skip_per_level[1]; child_tid < (int)nproc; child_tid += thr_bar->skip_per_level[1]) { kmp_bstate_t *child_bar = &team->t.t_threads[child_tid]->th.th_bar[bt].bb; KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) " "releasing T#%d(%d:%d)" " go(%p): %u => %u\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go, child_bar->b_go + KMP_BARRIER_STATE_BUMP)); // Use ngo store (if available) to both store ICVs and release child // via child's b_go ngo_store_go(&child_bar->th_fixed_icvs, &thr_bar->th_fixed_icvs); } ngo_sync(); } TCW_8(thr_bar->b_go, KMP_INIT_BARRIER_STATE); // Reset my b_go flag for next time // Now, release leaf children if (thr_bar->leaf_kids) { // if there are any // We test team_change on the off-chance that the level 1 team changed. if (team_change || old_leaf_kids < thr_bar->leaf_kids) { // some old, some new if (old_leaf_kids) { // release old leaf kids thr_bar->b_go |= old_leaf_state; } // Release new leaf kids last = tid + thr_bar->skip_per_level[1]; if (last > nproc) last = nproc; for (child_tid = tid + 1 + old_leaf_kids; child_tid < (int)last; ++child_tid) { // skip_per_level[0]=1 kmp_info_t *child_thr = team->t.t_threads[child_tid]; kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; KA_TRACE( 20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) releasing" " T#%d(%d:%d) go(%p): %u => %u\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go, child_bar->b_go + KMP_BARRIER_STATE_BUMP)); // Release child using child's b_go flag kmp_flag_64<> flag(&child_bar->b_go, child_thr); flag.release(); } } else { // Release all children at once with leaf_state bits on my own // b_go flag thr_bar->b_go |= thr_bar->leaf_state; } } } else { // Blocktime is not infinite; do a simple hierarchical release for (int d = thr_bar->my_level - 1; d >= 0; --d) { // Release highest level threads first last = tid + thr_bar->skip_per_level[d + 1]; kmp_uint32 skip = thr_bar->skip_per_level[d]; if (last > nproc) last = nproc; for (child_tid = tid + skip; child_tid < (int)last; child_tid += skip) { kmp_info_t *child_thr = team->t.t_threads[child_tid]; kmp_bstate_t *child_bar = &child_thr->th.th_bar[bt].bb; KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) " "releasing T#%d(%d:%d) go(%p): %u => %u\n", gtid, team->t.t_id, tid, __kmp_gtid_from_tid(child_tid, team), team->t.t_id, child_tid, &child_bar->b_go, child_bar->b_go, child_bar->b_go + KMP_BARRIER_STATE_BUMP)); // Release child using child's b_go flag kmp_flag_64<> flag(&child_bar->b_go, child_thr); flag.release(); } } } #if KMP_BARRIER_ICV_PUSH if (propagate_icvs && !KMP_MASTER_TID(tid)) // non-leaves copy ICVs from fixed ICVs to local dest copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, &thr_bar->th_fixed_icvs); #endif // KMP_BARRIER_ICV_PUSH } KA_TRACE(20, ("__kmp_hierarchical_barrier_release: T#%d(%d:%d) exit for " "barrier type %d\n", gtid, team->t.t_id, tid, bt)); } // End of Barrier Algorithms // type traits for cancellable value // if cancellable is true, then is_cancellable is a normal boolean variable // if cancellable is false, then is_cancellable is a compile time constant template struct is_cancellable {}; template <> struct is_cancellable { bool value; is_cancellable() : value(false) {} is_cancellable(bool b) : value(b) {} is_cancellable &operator=(bool b) { value = b; return *this; } operator bool() const { return value; } }; template <> struct is_cancellable { is_cancellable &operator=(bool b) { return *this; } constexpr operator bool() const { return false; } }; // Internal function to do a barrier. /* If is_split is true, do a split barrier, otherwise, do a plain barrier If reduce is non-NULL, do a split reduction barrier, otherwise, do a split barrier When cancellable = false, Returns 0 if primary thread, 1 if worker thread. When cancellable = true Returns 0 if not cancelled, 1 if cancelled. */ template static int __kmp_barrier_template(enum barrier_type bt, int gtid, int is_split, size_t reduce_size, void *reduce_data, void (*reduce)(void *, void *)) { KMP_TIME_PARTITIONED_BLOCK(OMP_plain_barrier); KMP_SET_THREAD_STATE_BLOCK(PLAIN_BARRIER); int tid = __kmp_tid_from_gtid(gtid); kmp_info_t *this_thr = __kmp_threads[gtid]; kmp_team_t *team = this_thr->th.th_team; int status = 0; is_cancellable cancelled; #if OMPT_SUPPORT && OMPT_OPTIONAL ompt_data_t *my_task_data; ompt_data_t *my_parallel_data; void *return_address; ompt_sync_region_t barrier_kind; #endif KA_TRACE(15, ("__kmp_barrier: T#%d(%d:%d) has arrived\n", gtid, __kmp_team_from_gtid(gtid)->t.t_id, __kmp_tid_from_gtid(gtid))); #if OMPT_SUPPORT if (ompt_enabled.enabled) { #if OMPT_OPTIONAL my_task_data = OMPT_CUR_TASK_DATA(this_thr); my_parallel_data = OMPT_CUR_TEAM_DATA(this_thr); return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); barrier_kind = __ompt_get_barrier_kind(bt, this_thr); if (ompt_enabled.ompt_callback_sync_region) { ompt_callbacks.ompt_callback(ompt_callback_sync_region)( barrier_kind, ompt_scope_begin, my_parallel_data, my_task_data, return_address); } if (ompt_enabled.ompt_callback_sync_region_wait) { ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( barrier_kind, ompt_scope_begin, my_parallel_data, my_task_data, return_address); } #endif // It is OK to report the barrier state after the barrier begin callback. // According to the OMPT specification, a compliant implementation may // even delay reporting this state until the barrier begins to wait. this_thr->th.ompt_thread_info.state = ompt_state_wait_barrier; } #endif if (!team->t.t_serialized) { #if USE_ITT_BUILD // This value will be used in itt notify events below. void *itt_sync_obj = NULL; #if USE_ITT_NOTIFY if (__itt_sync_create_ptr || KMP_ITT_DEBUG) itt_sync_obj = __kmp_itt_barrier_object(gtid, bt, 1); #endif #endif /* USE_ITT_BUILD */ if (__kmp_tasking_mode == tskm_extra_barrier) { __kmp_tasking_barrier(team, this_thr, gtid); KA_TRACE(15, ("__kmp_barrier: T#%d(%d:%d) past tasking barrier\n", gtid, __kmp_team_from_gtid(gtid)->t.t_id, __kmp_tid_from_gtid(gtid))); } /* Copy the blocktime info to the thread, where __kmp_wait_template() can access it when the team struct is not guaranteed to exist. */ // See note about the corresponding code in __kmp_join_barrier() being // performance-critical. if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { #if KMP_USE_MONITOR this_thr->th.th_team_bt_intervals = team->t.t_implicit_task_taskdata[tid].td_icvs.bt_intervals; this_thr->th.th_team_bt_set = team->t.t_implicit_task_taskdata[tid].td_icvs.bt_set; #else this_thr->th.th_team_bt_intervals = KMP_BLOCKTIME_INTERVAL(team, tid); #endif } #if USE_ITT_BUILD if (__itt_sync_create_ptr || KMP_ITT_DEBUG) __kmp_itt_barrier_starting(gtid, itt_sync_obj); #endif /* USE_ITT_BUILD */ #if USE_DEBUGGER // Let the debugger know: the thread arrived to the barrier and waiting. if (KMP_MASTER_TID(tid)) { // Primary thread counter stored in team struct team->t.t_bar[bt].b_master_arrived += 1; } else { this_thr->th.th_bar[bt].bb.b_worker_arrived += 1; } // if #endif /* USE_DEBUGGER */ if (reduce != NULL) { // KMP_DEBUG_ASSERT( is_split == TRUE ); // #C69956 this_thr->th.th_local.reduce_data = reduce_data; } if (KMP_MASTER_TID(tid) && __kmp_tasking_mode != tskm_immediate_exec) // use 0 to only setup the current team if nthreads > 1 __kmp_task_team_setup(this_thr, team, 0); if (cancellable) { cancelled = __kmp_linear_barrier_gather_cancellable( bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); } else { switch (__kmp_barrier_gather_pattern[bt]) { case bp_dist_bar: { __kmp_dist_barrier_gather(bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_hyper_bar: { // don't set branch bits to 0; use linear KMP_ASSERT(__kmp_barrier_gather_branch_bits[bt]); __kmp_hyper_barrier_gather(bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_hierarchical_bar: { __kmp_hierarchical_barrier_gather( bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_tree_bar: { // don't set branch bits to 0; use linear KMP_ASSERT(__kmp_barrier_gather_branch_bits[bt]); __kmp_tree_barrier_gather(bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); break; } default: { __kmp_linear_barrier_gather(bt, this_thr, gtid, tid, reduce USE_ITT_BUILD_ARG(itt_sync_obj)); } } } KMP_MB(); if (KMP_MASTER_TID(tid)) { status = 0; if (__kmp_tasking_mode != tskm_immediate_exec && !cancelled) { __kmp_task_team_wait(this_thr, team USE_ITT_BUILD_ARG(itt_sync_obj)); } #if USE_DEBUGGER // Let the debugger know: All threads are arrived and starting leaving the // barrier. team->t.t_bar[bt].b_team_arrived += 1; #endif if (__kmp_omp_cancellation) { kmp_int32 cancel_request = KMP_ATOMIC_LD_RLX(&team->t.t_cancel_request); // Reset cancellation flag for worksharing constructs if (cancel_request == cancel_loop || cancel_request == cancel_sections) { KMP_ATOMIC_ST_RLX(&team->t.t_cancel_request, cancel_noreq); } } #if USE_ITT_BUILD /* TODO: In case of split reduction barrier, primary thread may send acquired event early, before the final summation into the shared variable is done (final summation can be a long operation for array reductions). */ if (__itt_sync_create_ptr || KMP_ITT_DEBUG) __kmp_itt_barrier_middle(gtid, itt_sync_obj); #endif /* USE_ITT_BUILD */ #if USE_ITT_BUILD && USE_ITT_NOTIFY // Barrier - report frame end (only if active_level == 1) if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && __kmp_forkjoin_frames_mode && (this_thr->th.th_teams_microtask == NULL || // either not in teams this_thr->th.th_teams_size.nteams == 1) && // or inside single team team->t.t_active_level == 1) { ident_t *loc = __kmp_threads[gtid]->th.th_ident; kmp_uint64 cur_time = __itt_get_timestamp(); kmp_info_t **other_threads = team->t.t_threads; int nproc = this_thr->th.th_team_nproc; int i; switch (__kmp_forkjoin_frames_mode) { case 1: __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0, loc, nproc); this_thr->th.th_frame_time = cur_time; break; case 2: // AC 2015-01-19: currently does not work for hierarchical (to // be fixed) __kmp_itt_frame_submit(gtid, this_thr->th.th_bar_min_time, cur_time, 1, loc, nproc); break; case 3: if (__itt_metadata_add_ptr) { // Initialize with primary thread's wait time kmp_uint64 delta = cur_time - this_thr->th.th_bar_arrive_time; // Set arrive time to zero to be able to check it in // __kmp_invoke_task(); the same is done inside the loop below this_thr->th.th_bar_arrive_time = 0; for (i = 1; i < nproc; ++i) { delta += (cur_time - other_threads[i]->th.th_bar_arrive_time); other_threads[i]->th.th_bar_arrive_time = 0; } __kmp_itt_metadata_imbalance(gtid, this_thr->th.th_frame_time, cur_time, delta, (kmp_uint64)(reduce != NULL)); } __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0, loc, nproc); this_thr->th.th_frame_time = cur_time; break; } } #endif /* USE_ITT_BUILD */ } else { status = 1; #if USE_ITT_BUILD if (__itt_sync_create_ptr || KMP_ITT_DEBUG) __kmp_itt_barrier_middle(gtid, itt_sync_obj); #endif /* USE_ITT_BUILD */ } if ((status == 1 || !is_split) && !cancelled) { if (cancellable) { cancelled = __kmp_linear_barrier_release_cancellable( bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); } else { switch (__kmp_barrier_release_pattern[bt]) { case bp_dist_bar: { KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); __kmp_dist_barrier_release(bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_hyper_bar: { KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); __kmp_hyper_barrier_release(bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_hierarchical_bar: { __kmp_hierarchical_barrier_release( bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_tree_bar: { KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); __kmp_tree_barrier_release(bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); break; } default: { __kmp_linear_barrier_release(bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(itt_sync_obj)); } } } if (__kmp_tasking_mode != tskm_immediate_exec && !cancelled) { __kmp_task_team_sync(this_thr, team); } } #if USE_ITT_BUILD /* GEH: TODO: Move this under if-condition above and also include in __kmp_end_split_barrier(). This will more accurately represent the actual release time of the threads for split barriers. */ if (__itt_sync_create_ptr || KMP_ITT_DEBUG) __kmp_itt_barrier_finished(gtid, itt_sync_obj); #endif /* USE_ITT_BUILD */ } else { // Team is serialized. status = 0; if (__kmp_tasking_mode != tskm_immediate_exec) { if (this_thr->th.th_task_team != NULL) { #if USE_ITT_NOTIFY void *itt_sync_obj = NULL; if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { itt_sync_obj = __kmp_itt_barrier_object(gtid, bt, 1); __kmp_itt_barrier_starting(gtid, itt_sync_obj); } #endif KMP_DEBUG_ASSERT( this_thr->th.th_task_team->tt.tt_found_proxy_tasks == TRUE || this_thr->th.th_task_team->tt.tt_hidden_helper_task_encountered == TRUE); __kmp_task_team_wait(this_thr, team USE_ITT_BUILD_ARG(itt_sync_obj)); __kmp_task_team_setup(this_thr, team, 0); #if USE_ITT_BUILD if (__itt_sync_create_ptr || KMP_ITT_DEBUG) __kmp_itt_barrier_finished(gtid, itt_sync_obj); #endif /* USE_ITT_BUILD */ } } } KA_TRACE(15, ("__kmp_barrier: T#%d(%d:%d) is leaving with return value %d\n", gtid, __kmp_team_from_gtid(gtid)->t.t_id, __kmp_tid_from_gtid(gtid), status)); #if OMPT_SUPPORT if (ompt_enabled.enabled) { #if OMPT_OPTIONAL if (ompt_enabled.ompt_callback_sync_region_wait) { ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( barrier_kind, ompt_scope_end, my_parallel_data, my_task_data, return_address); } if (ompt_enabled.ompt_callback_sync_region) { ompt_callbacks.ompt_callback(ompt_callback_sync_region)( barrier_kind, ompt_scope_end, my_parallel_data, my_task_data, return_address); } #endif this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; } #endif if (cancellable) return (int)cancelled; return status; } // Returns 0 if primary thread, 1 if worker thread. int __kmp_barrier(enum barrier_type bt, int gtid, int is_split, size_t reduce_size, void *reduce_data, void (*reduce)(void *, void *)) { return __kmp_barrier_template<>(bt, gtid, is_split, reduce_size, reduce_data, reduce); } #if defined(KMP_GOMP_COMPAT) // Returns 1 if cancelled, 0 otherwise int __kmp_barrier_gomp_cancel(int gtid) { if (__kmp_omp_cancellation) { int cancelled = __kmp_barrier_template(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); if (cancelled) { int tid = __kmp_tid_from_gtid(gtid); kmp_info_t *this_thr = __kmp_threads[gtid]; if (KMP_MASTER_TID(tid)) { // Primary thread does not need to revert anything } else { // Workers need to revert their private b_arrived flag this_thr->th.th_bar[bs_plain_barrier].bb.b_arrived -= KMP_BARRIER_STATE_BUMP; } } return cancelled; } __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); return FALSE; } #endif void __kmp_end_split_barrier(enum barrier_type bt, int gtid) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_end_split_barrier); KMP_SET_THREAD_STATE_BLOCK(PLAIN_BARRIER); KMP_DEBUG_ASSERT(bt < bs_last_barrier); int tid = __kmp_tid_from_gtid(gtid); kmp_info_t *this_thr = __kmp_threads[gtid]; kmp_team_t *team = this_thr->th.th_team; if (!team->t.t_serialized) { if (KMP_MASTER_GTID(gtid)) { switch (__kmp_barrier_release_pattern[bt]) { case bp_dist_bar: { __kmp_dist_barrier_release(bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(NULL)); break; } case bp_hyper_bar: { KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); __kmp_hyper_barrier_release(bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(NULL)); break; } case bp_hierarchical_bar: { __kmp_hierarchical_barrier_release(bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(NULL)); break; } case bp_tree_bar: { KMP_ASSERT(__kmp_barrier_release_branch_bits[bt]); __kmp_tree_barrier_release(bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(NULL)); break; } default: { __kmp_linear_barrier_release(bt, this_thr, gtid, tid, FALSE USE_ITT_BUILD_ARG(NULL)); } } if (__kmp_tasking_mode != tskm_immediate_exec) { __kmp_task_team_sync(this_thr, team); } // if } } } void __kmp_join_barrier(int gtid) { KMP_TIME_PARTITIONED_BLOCK(OMP_join_barrier); KMP_SET_THREAD_STATE_BLOCK(FORK_JOIN_BARRIER); KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); kmp_info_t *this_thr = __kmp_threads[gtid]; kmp_team_t *team; kmp_uint nproc; int tid; #ifdef KMP_DEBUG int team_id; #endif /* KMP_DEBUG */ #if USE_ITT_BUILD void *itt_sync_obj = NULL; #if USE_ITT_NOTIFY if (__itt_sync_create_ptr || KMP_ITT_DEBUG) // Don't call routine without need // Get object created at fork_barrier itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); #endif #endif /* USE_ITT_BUILD */ KMP_MB(); // Get current info team = this_thr->th.th_team; nproc = this_thr->th.th_team_nproc; KMP_DEBUG_ASSERT((int)nproc == team->t.t_nproc); tid = __kmp_tid_from_gtid(gtid); #ifdef KMP_DEBUG team_id = team->t.t_id; kmp_info_t *master_thread = this_thr->th.th_team_master; if (master_thread != team->t.t_threads[0]) { __kmp_print_structure(); } #endif /* KMP_DEBUG */ KMP_DEBUG_ASSERT(master_thread == team->t.t_threads[0]); KMP_MB(); // Verify state KMP_DEBUG_ASSERT(TCR_PTR(this_thr->th.th_team)); KMP_DEBUG_ASSERT(TCR_PTR(this_thr->th.th_root)); KMP_DEBUG_ASSERT(this_thr == team->t.t_threads[tid]); KA_TRACE(10, ("__kmp_join_barrier: T#%d(%d:%d) arrived at join barrier\n", gtid, team_id, tid)); #if OMPT_SUPPORT if (ompt_enabled.enabled) { #if OMPT_OPTIONAL ompt_data_t *my_task_data; ompt_data_t *my_parallel_data; void *codeptr = NULL; int ds_tid = this_thr->th.th_info.ds.ds_tid; if (KMP_MASTER_TID(ds_tid) && (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || ompt_callbacks.ompt_callback(ompt_callback_sync_region))) codeptr = team->t.ompt_team_info.master_return_address; my_task_data = OMPT_CUR_TASK_DATA(this_thr); my_parallel_data = OMPT_CUR_TEAM_DATA(this_thr); if (ompt_enabled.ompt_callback_sync_region) { ompt_callbacks.ompt_callback(ompt_callback_sync_region)( ompt_sync_region_barrier_implicit, ompt_scope_begin, my_parallel_data, my_task_data, codeptr); } if (ompt_enabled.ompt_callback_sync_region_wait) { ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( ompt_sync_region_barrier_implicit, ompt_scope_begin, my_parallel_data, my_task_data, codeptr); } if (!KMP_MASTER_TID(ds_tid)) this_thr->th.ompt_thread_info.task_data = *OMPT_CUR_TASK_DATA(this_thr); #endif this_thr->th.ompt_thread_info.state = ompt_state_wait_barrier_implicit; } #endif if (__kmp_tasking_mode == tskm_extra_barrier) { __kmp_tasking_barrier(team, this_thr, gtid); KA_TRACE(10, ("__kmp_join_barrier: T#%d(%d:%d) past tasking barrier\n", gtid, team_id, tid)); } #ifdef KMP_DEBUG if (__kmp_tasking_mode != tskm_immediate_exec) { KA_TRACE(20, ("__kmp_join_barrier: T#%d, old team = %d, old task_team = " "%p, th_task_team = %p\n", __kmp_gtid_from_thread(this_thr), team_id, team->t.t_task_team[this_thr->th.th_task_state], this_thr->th.th_task_team)); if (this_thr->th.th_task_team) KMP_DEBUG_ASSERT(this_thr->th.th_task_team == team->t.t_task_team[this_thr->th.th_task_state]); } #endif /* KMP_DEBUG */ /* Copy the blocktime info to the thread, where __kmp_wait_template() can access it when the team struct is not guaranteed to exist. Doing these loads causes a cache miss slows down EPCC parallel by 2x. As a workaround, we do not perform the copy if blocktime=infinite, since the values are not used by __kmp_wait_template() in that case. */ if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { #if KMP_USE_MONITOR this_thr->th.th_team_bt_intervals = team->t.t_implicit_task_taskdata[tid].td_icvs.bt_intervals; this_thr->th.th_team_bt_set = team->t.t_implicit_task_taskdata[tid].td_icvs.bt_set; #else this_thr->th.th_team_bt_intervals = KMP_BLOCKTIME_INTERVAL(team, tid); #endif } #if USE_ITT_BUILD if (__itt_sync_create_ptr || KMP_ITT_DEBUG) __kmp_itt_barrier_starting(gtid, itt_sync_obj); #endif /* USE_ITT_BUILD */ switch (__kmp_barrier_gather_pattern[bs_forkjoin_barrier]) { case bp_dist_bar: { __kmp_dist_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, NULL USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_hyper_bar: { KMP_ASSERT(__kmp_barrier_gather_branch_bits[bs_forkjoin_barrier]); __kmp_hyper_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, NULL USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_hierarchical_bar: { __kmp_hierarchical_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, NULL USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_tree_bar: { KMP_ASSERT(__kmp_barrier_gather_branch_bits[bs_forkjoin_barrier]); __kmp_tree_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, NULL USE_ITT_BUILD_ARG(itt_sync_obj)); break; } default: { __kmp_linear_barrier_gather(bs_forkjoin_barrier, this_thr, gtid, tid, NULL USE_ITT_BUILD_ARG(itt_sync_obj)); } } /* From this point on, the team data structure may be deallocated at any time by the primary thread - it is unsafe to reference it in any of the worker threads. Any per-team data items that need to be referenced before the end of the barrier should be moved to the kmp_task_team_t structs. */ if (KMP_MASTER_TID(tid)) { if (__kmp_tasking_mode != tskm_immediate_exec) { __kmp_task_team_wait(this_thr, team USE_ITT_BUILD_ARG(itt_sync_obj)); } if (__kmp_display_affinity) { KMP_CHECK_UPDATE(team->t.t_display_affinity, 0); } #if KMP_STATS_ENABLED // Have primary thread flag the workers to indicate they are now waiting for // next parallel region, Also wake them up so they switch their timers to // idle. for (int i = 0; i < team->t.t_nproc; ++i) { kmp_info_t *team_thread = team->t.t_threads[i]; if (team_thread == this_thr) continue; team_thread->th.th_stats->setIdleFlag(); if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && team_thread->th.th_sleep_loc != NULL) __kmp_null_resume_wrapper(team_thread); } #endif #if USE_ITT_BUILD if (__itt_sync_create_ptr || KMP_ITT_DEBUG) __kmp_itt_barrier_middle(gtid, itt_sync_obj); #endif /* USE_ITT_BUILD */ #if USE_ITT_BUILD && USE_ITT_NOTIFY // Join barrier - report frame end if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && __kmp_forkjoin_frames_mode && (this_thr->th.th_teams_microtask == NULL || // either not in teams this_thr->th.th_teams_size.nteams == 1) && // or inside single team team->t.t_active_level == 1) { kmp_uint64 cur_time = __itt_get_timestamp(); ident_t *loc = team->t.t_ident; kmp_info_t **other_threads = team->t.t_threads; switch (__kmp_forkjoin_frames_mode) { case 1: __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0, loc, nproc); break; case 2: __kmp_itt_frame_submit(gtid, this_thr->th.th_bar_min_time, cur_time, 1, loc, nproc); break; case 3: if (__itt_metadata_add_ptr) { // Initialize with primary thread's wait time kmp_uint64 delta = cur_time - this_thr->th.th_bar_arrive_time; // Set arrive time to zero to be able to check it in // __kmp_invoke_task(); the same is done inside the loop below this_thr->th.th_bar_arrive_time = 0; for (kmp_uint i = 1; i < nproc; ++i) { delta += (cur_time - other_threads[i]->th.th_bar_arrive_time); other_threads[i]->th.th_bar_arrive_time = 0; } __kmp_itt_metadata_imbalance(gtid, this_thr->th.th_frame_time, cur_time, delta, 0); } __kmp_itt_frame_submit(gtid, this_thr->th.th_frame_time, cur_time, 0, loc, nproc); this_thr->th.th_frame_time = cur_time; break; } } #endif /* USE_ITT_BUILD */ } #if USE_ITT_BUILD else { if (__itt_sync_create_ptr || KMP_ITT_DEBUG) __kmp_itt_barrier_middle(gtid, itt_sync_obj); } #endif /* USE_ITT_BUILD */ #if KMP_DEBUG if (KMP_MASTER_TID(tid)) { KA_TRACE( 15, ("__kmp_join_barrier: T#%d(%d:%d) says all %d team threads arrived\n", gtid, team_id, tid, nproc)); } #endif /* KMP_DEBUG */ // TODO now, mark worker threads as done so they may be disbanded KMP_MB(); // Flush all pending memory write invalidates. KA_TRACE(10, ("__kmp_join_barrier: T#%d(%d:%d) leaving\n", gtid, team_id, tid)); } // TODO release worker threads' fork barriers as we are ready instead of all at // once void __kmp_fork_barrier(int gtid, int tid) { KMP_TIME_PARTITIONED_BLOCK(OMP_fork_barrier); KMP_SET_THREAD_STATE_BLOCK(FORK_JOIN_BARRIER); kmp_info_t *this_thr = __kmp_threads[gtid]; kmp_team_t *team = (tid == 0) ? this_thr->th.th_team : NULL; #if USE_ITT_BUILD void *itt_sync_obj = NULL; #endif /* USE_ITT_BUILD */ if (team) KA_TRACE(10, ("__kmp_fork_barrier: T#%d(%d:%d) has arrived\n", gtid, (team != NULL) ? team->t.t_id : -1, tid)); // th_team pointer only valid for primary thread here if (KMP_MASTER_TID(tid)) { #if USE_ITT_BUILD && USE_ITT_NOTIFY if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { // Create itt barrier object itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier, 1); __kmp_itt_barrier_middle(gtid, itt_sync_obj); // Call acquired/releasing } #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ #ifdef KMP_DEBUG KMP_DEBUG_ASSERT(team); kmp_info_t **other_threads = team->t.t_threads; int i; // Verify state KMP_MB(); for (i = 1; i < team->t.t_nproc; ++i) { KA_TRACE(500, ("__kmp_fork_barrier: T#%d(%d:0) checking T#%d(%d:%d) fork go " "== %u.\n", gtid, team->t.t_id, other_threads[i]->th.th_info.ds.ds_gtid, team->t.t_id, other_threads[i]->th.th_info.ds.ds_tid, other_threads[i]->th.th_bar[bs_forkjoin_barrier].bb.b_go)); KMP_DEBUG_ASSERT( (TCR_4(other_threads[i]->th.th_bar[bs_forkjoin_barrier].bb.b_go) & ~(KMP_BARRIER_SLEEP_STATE)) == KMP_INIT_BARRIER_STATE); KMP_DEBUG_ASSERT(other_threads[i]->th.th_team == team); } #endif if (__kmp_tasking_mode != tskm_immediate_exec) { // 0 indicates setup current task team if nthreads > 1 __kmp_task_team_setup(this_thr, team, 0); } /* The primary thread may have changed its blocktime between join barrier and fork barrier. Copy the blocktime info to the thread, where __kmp_wait_template() can access it when the team struct is not guaranteed to exist. */ // See note about the corresponding code in __kmp_join_barrier() being // performance-critical if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { #if KMP_USE_MONITOR this_thr->th.th_team_bt_intervals = team->t.t_implicit_task_taskdata[tid].td_icvs.bt_intervals; this_thr->th.th_team_bt_set = team->t.t_implicit_task_taskdata[tid].td_icvs.bt_set; #else this_thr->th.th_team_bt_intervals = KMP_BLOCKTIME_INTERVAL(team, tid); #endif } } // primary thread switch (__kmp_barrier_release_pattern[bs_forkjoin_barrier]) { case bp_dist_bar: { __kmp_dist_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, TRUE USE_ITT_BUILD_ARG(NULL)); break; } case bp_hyper_bar: { KMP_ASSERT(__kmp_barrier_release_branch_bits[bs_forkjoin_barrier]); __kmp_hyper_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_hierarchical_bar: { __kmp_hierarchical_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); break; } case bp_tree_bar: { KMP_ASSERT(__kmp_barrier_release_branch_bits[bs_forkjoin_barrier]); __kmp_tree_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); break; } default: { __kmp_linear_barrier_release(bs_forkjoin_barrier, this_thr, gtid, tid, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); } } #if OMPT_SUPPORT if (ompt_enabled.enabled && this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { int ds_tid = this_thr->th.th_info.ds.ds_tid; ompt_data_t *task_data = (team) ? OMPT_CUR_TASK_DATA(this_thr) : &(this_thr->th.ompt_thread_info.task_data); this_thr->th.ompt_thread_info.state = ompt_state_overhead; #if OMPT_OPTIONAL void *codeptr = NULL; if (KMP_MASTER_TID(ds_tid) && (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || ompt_callbacks.ompt_callback(ompt_callback_sync_region))) codeptr = team ? team->t.ompt_team_info.master_return_address : NULL; if (ompt_enabled.ompt_callback_sync_region_wait) { ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, codeptr); } if (ompt_enabled.ompt_callback_sync_region) { ompt_callbacks.ompt_callback(ompt_callback_sync_region)( ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, codeptr); } #endif if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial? } } #endif // Early exit for reaping threads releasing forkjoin barrier if (TCR_4(__kmp_global.g.g_done)) { this_thr->th.th_task_team = NULL; #if USE_ITT_BUILD && USE_ITT_NOTIFY if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { if (!KMP_MASTER_TID(tid)) { itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); if (itt_sync_obj) __kmp_itt_barrier_finished(gtid, itt_sync_obj); } } #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ KA_TRACE(10, ("__kmp_fork_barrier: T#%d is leaving early\n", gtid)); return; } /* We can now assume that a valid team structure has been allocated by the primary thread and propagated to all worker threads. The current thread, however, may not be part of the team, so we can't blindly assume that the team pointer is non-null. */ team = (kmp_team_t *)TCR_PTR(this_thr->th.th_team); KMP_DEBUG_ASSERT(team != NULL); tid = __kmp_tid_from_gtid(gtid); #if KMP_BARRIER_ICV_PULL /* Primary thread's copy of the ICVs was set up on the implicit taskdata in __kmp_reinitialize_team. __kmp_fork_call() assumes the primary thread's implicit task has this data before this function is called. We cannot modify __kmp_fork_call() to look at the fixed ICVs in the primary thread's thread struct, because it is not always the case that the threads arrays have been allocated when __kmp_fork_call() is executed. */ { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_icv_copy); if (!KMP_MASTER_TID(tid)) { // primary thread already has ICVs // Copy the initial ICVs from the primary thread's thread struct to the // implicit task for this tid. KA_TRACE(10, ("__kmp_fork_barrier: T#%d(%d) is PULLing ICVs\n", gtid, tid)); __kmp_init_implicit_task(team->t.t_ident, team->t.t_threads[tid], team, tid, FALSE); copy_icvs(&team->t.t_implicit_task_taskdata[tid].td_icvs, &team->t.t_threads[0] ->th.th_bar[bs_forkjoin_barrier] .bb.th_fixed_icvs); } } #endif // KMP_BARRIER_ICV_PULL if (__kmp_tasking_mode != tskm_immediate_exec) { __kmp_task_team_sync(this_thr, team); } #if KMP_AFFINITY_SUPPORTED kmp_proc_bind_t proc_bind = team->t.t_proc_bind; if (proc_bind == proc_bind_intel) { // Call dynamic affinity settings if (__kmp_affinity_type == affinity_balanced && team->t.t_size_changed) { __kmp_balanced_affinity(this_thr, team->t.t_nproc); } } else if (proc_bind != proc_bind_false) { if (this_thr->th.th_new_place == this_thr->th.th_current_place) { KA_TRACE(100, ("__kmp_fork_barrier: T#%d already in correct place %d\n", __kmp_gtid_from_thread(this_thr), this_thr->th.th_current_place)); } else { __kmp_affinity_set_place(gtid); } } #endif // KMP_AFFINITY_SUPPORTED // Perform the display affinity functionality if (__kmp_display_affinity) { if (team->t.t_display_affinity #if KMP_AFFINITY_SUPPORTED || (__kmp_affinity_type == affinity_balanced && team->t.t_size_changed) #endif ) { // NULL means use the affinity-format-var ICV __kmp_aux_display_affinity(gtid, NULL); this_thr->th.th_prev_num_threads = team->t.t_nproc; this_thr->th.th_prev_level = team->t.t_level; } } if (!KMP_MASTER_TID(tid)) KMP_CHECK_UPDATE(this_thr->th.th_def_allocator, team->t.t_def_allocator); #if USE_ITT_BUILD && USE_ITT_NOTIFY if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { if (!KMP_MASTER_TID(tid)) { // Get correct barrier object itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); __kmp_itt_barrier_finished(gtid, itt_sync_obj); // Workers call acquired } // (prepare called inside barrier_release) } #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ KA_TRACE(10, ("__kmp_fork_barrier: T#%d(%d:%d) is leaving\n", gtid, team->t.t_id, tid)); } void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, kmp_internal_control_t *new_icvs, ident_t *loc) { KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_setup_icv_copy); KMP_DEBUG_ASSERT(team && new_nproc && new_icvs); KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); /* Primary thread's copy of the ICVs was set up on the implicit taskdata in __kmp_reinitialize_team. __kmp_fork_call() assumes the primary thread's implicit task has this data before this function is called. */ #if KMP_BARRIER_ICV_PULL /* Copy ICVs to primary thread's thread structure into th_fixed_icvs (which remains untouched), where all of the worker threads can access them and make their own copies after the barrier. */ KMP_DEBUG_ASSERT(team->t.t_threads[0]); // The threads arrays should be // allocated at this point copy_icvs( &team->t.t_threads[0]->th.th_bar[bs_forkjoin_barrier].bb.th_fixed_icvs, new_icvs); KF_TRACE(10, ("__kmp_setup_icv_copy: PULL: T#%d this_thread=%p team=%p\n", 0, team->t.t_threads[0], team)); #elif KMP_BARRIER_ICV_PUSH // The ICVs will be propagated in the fork barrier, so nothing needs to be // done here. KF_TRACE(10, ("__kmp_setup_icv_copy: PUSH: T#%d this_thread=%p team=%p\n", 0, team->t.t_threads[0], team)); #else // Copy the ICVs to each of the non-primary threads. This takes O(nthreads) // time. ngo_load(new_icvs); KMP_DEBUG_ASSERT(team->t.t_threads[0]); // The threads arrays should be // allocated at this point for (int f = 1; f < new_nproc; ++f) { // Skip the primary thread // TODO: GEH - pass in better source location info since usually NULL here KF_TRACE(10, ("__kmp_setup_icv_copy: LINEAR: T#%d this_thread=%p team=%p\n", f, team->t.t_threads[f], team)); __kmp_init_implicit_task(loc, team->t.t_threads[f], team, f, FALSE); ngo_store_icvs(&team->t.t_implicit_task_taskdata[f].td_icvs, new_icvs); KF_TRACE(10, ("__kmp_setup_icv_copy: LINEAR: T#%d this_thread=%p team=%p\n", f, team->t.t_threads[f], team)); } ngo_sync(); #endif // KMP_BARRIER_ICV_PULL }