//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This tablegen backend emits subtarget enumerations. // //===----------------------------------------------------------------------===// #include "Common/CodeGenHwModes.h" #include "Common/CodeGenSchedule.h" #include "Common/CodeGenTarget.h" #include "Common/PredicateExpander.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/MCSchedule.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include "llvm/TargetParser/SubtargetFeature.h" #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "subtarget-emitter" namespace { /// Sorting predicate to sort record pointers by their /// FieldName field. struct LessRecordFieldFieldName { bool operator()(const Record *Rec1, const Record *Rec2) const { return Rec1->getValueAsString("FieldName") < Rec2->getValueAsString("FieldName"); } }; class SubtargetEmitter { // Each processor has a SchedClassDesc table with an entry for each // SchedClass. The SchedClassDesc table indexes into a global write resource // table, write latency table, and read advance table. struct SchedClassTables { std::vector> ProcSchedClasses; std::vector WriteProcResources; std::vector WriteLatencies; std::vector WriterNames; std::vector ReadAdvanceEntries; // Reserve an invalid entry at index 0 SchedClassTables() { ProcSchedClasses.resize(1); WriteProcResources.resize(1); WriteLatencies.resize(1); WriterNames.push_back("InvalidWrite"); ReadAdvanceEntries.resize(1); } }; struct LessWriteProcResources { bool operator()(const MCWriteProcResEntry &LHS, const MCWriteProcResEntry &RHS) { return LHS.ProcResourceIdx < RHS.ProcResourceIdx; } }; CodeGenTarget TGT; RecordKeeper &Records; CodeGenSchedModels &SchedModels; std::string Target; void Enumeration(raw_ostream &OS, DenseMap &FeatureMap); void EmitSubtargetInfoMacroCalls(raw_ostream &OS); unsigned FeatureKeyValues(raw_ostream &OS, const DenseMap &FeatureMap); unsigned CPUKeyValues(raw_ostream &OS, const DenseMap &FeatureMap); void FormItineraryStageString(const std::string &Names, Record *ItinData, std::string &ItinString, unsigned &NStages); void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, unsigned &NOperandCycles); void FormItineraryBypassString(const std::string &Names, Record *ItinData, std::string &ItinString, unsigned NOperandCycles); void EmitStageAndOperandCycleData( raw_ostream &OS, std::vector> &ProcItinLists); void EmitItineraries(raw_ostream &OS, std::vector> &ProcItinLists); unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel, raw_ostream &OS); void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, raw_ostream &OS); void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, raw_ostream &OS); void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, char Separator); void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel, raw_ostream &OS); void EmitProcessorResources(const CodeGenProcModel &ProcModel, raw_ostream &OS); Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel); Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, const CodeGenProcModel &ProcModel); void ExpandProcResources(RecVec &PRVec, std::vector &ReleaseAtCycles, std::vector &AcquireAtCycles, const CodeGenProcModel &ProcModel); void GenSchedClassTables(const CodeGenProcModel &ProcModel, SchedClassTables &SchedTables); void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); void EmitProcessorModels(raw_ostream &OS); void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); void emitSchedModelHelpersImpl(raw_ostream &OS, bool OnlyExpandMCInstPredicates = false); void emitGenMCSubtargetInfo(raw_ostream &OS); void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS); void EmitSchedModel(raw_ostream &OS); void emitGetMacroFusions(const std::string &ClassName, raw_ostream &OS); void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS); void ParseFeaturesFunction(raw_ostream &OS); public: SubtargetEmitter(RecordKeeper &R) : TGT(R), Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {} void run(raw_ostream &o); }; } // end anonymous namespace // // Enumeration - Emit the specified class as an enumeration. // void SubtargetEmitter::Enumeration(raw_ostream &OS, DenseMap &FeatureMap) { // Get all records of class and sort std::vector DefList = Records.getAllDerivedDefinitions("SubtargetFeature"); llvm::sort(DefList, LessRecord()); unsigned N = DefList.size(); if (N == 0) return; if (N + 1 > MAX_SUBTARGET_FEATURES) PrintFatalError( "Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); OS << "namespace " << Target << " {\n"; // Open enumeration. OS << "enum {\n"; // For each record for (unsigned i = 0; i < N; ++i) { // Next record Record *Def = DefList[i]; // Get and emit name OS << " " << Def->getName() << " = " << i << ",\n"; // Save the index for this feature. FeatureMap[Def] = i; } OS << " " << "NumSubtargetFeatures = " << N << "\n"; // Close enumeration and namespace OS << "};\n"; OS << "} // end namespace " << Target << "\n"; } static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList, const DenseMap &FeatureMap) { std::array Mask = {}; for (const Record *Feature : FeatureList) { unsigned Bit = FeatureMap.lookup(Feature); Mask[Bit / 64] |= 1ULL << (Bit % 64); } OS << "{ { { "; for (unsigned i = 0; i != Mask.size(); ++i) { OS << "0x"; OS.write_hex(Mask[i]); OS << "ULL, "; } OS << "} } }"; } /// Emit some information about the SubtargetFeature as calls to a macro so /// that they can be used from C++. void SubtargetEmitter::EmitSubtargetInfoMacroCalls(raw_ostream &OS) { OS << "\n#ifdef GET_SUBTARGETINFO_MACRO\n"; std::vector FeatureList = Records.getAllDerivedDefinitions("SubtargetFeature"); llvm::sort(FeatureList, LessRecordFieldFieldName()); for (const Record *Feature : FeatureList) { const StringRef FieldName = Feature->getValueAsString("FieldName"); const StringRef Value = Feature->getValueAsString("Value"); // Only handle boolean features for now, excluding BitVectors and enums. const bool IsBool = (Value == "false" || Value == "true") && !StringRef(FieldName).contains('['); if (!IsBool) continue; // Some features default to true, with values set to false if enabled. const char *Default = Value == "false" ? "true" : "false"; // Define the getter with lowercased first char: xxxYyy() { return XxxYyy; } const std::string Getter = FieldName.substr(0, 1).lower() + FieldName.substr(1).str(); OS << "GET_SUBTARGETINFO_MACRO(" << FieldName << ", " << Default << ", " << Getter << ")\n"; } OS << "#undef GET_SUBTARGETINFO_MACRO\n"; OS << "#endif // GET_SUBTARGETINFO_MACRO\n\n"; OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; if (Target == "AArch64") OS << "#include \"llvm/TargetParser/AArch64TargetParser.h\"\n\n"; } // // FeatureKeyValues - Emit data of all the subtarget features. Used by the // command line. // unsigned SubtargetEmitter::FeatureKeyValues( raw_ostream &OS, const DenseMap &FeatureMap) { // Gather and sort all the features std::vector FeatureList = Records.getAllDerivedDefinitions("SubtargetFeature"); if (FeatureList.empty()) return 0; llvm::sort(FeatureList, LessRecordFieldName()); // Check that there are no duplicate keys std::set UniqueKeys; // Begin feature table OS << "// Sorted (by key) array of values for CPU features.\n" << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[] = {\n"; // For each feature unsigned NumFeatures = 0; for (const Record *Feature : FeatureList) { // Next feature StringRef Name = Feature->getName(); StringRef CommandLineName = Feature->getValueAsString("Name"); StringRef Desc = Feature->getValueAsString("Desc"); if (CommandLineName.empty()) continue; // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in // } } OS << " { " << "\"" << CommandLineName << "\", " << "\"" << Desc << "\", " << Target << "::" << Name << ", "; RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies"); printFeatureMask(OS, ImpliesList, FeatureMap); OS << " },\n"; ++NumFeatures; if (!UniqueKeys.insert(CommandLineName).second) PrintFatalError("Duplicate key in SubtargetFeatureKV: " + CommandLineName); } // End feature table OS << "};\n"; return NumFeatures; } // // CPUKeyValues - Emit data of all the subtarget processors. Used by command // line. // unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS, const DenseMap &FeatureMap) { // Gather and sort processor information std::vector ProcessorList = Records.getAllDerivedDefinitions("Processor"); llvm::sort(ProcessorList, LessRecordFieldName()); // Begin processor table OS << "// Sorted (by key) array of values for CPU subtype.\n" << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[] = {\n"; // For each processor for (Record *Processor : ProcessorList) { StringRef Name = Processor->getValueAsString("Name"); RecVec FeatureList = Processor->getValueAsListOfDefs("Features"); RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures"); // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } }, OS << " { " << "\"" << Name << "\", "; printFeatureMask(OS, FeatureList, FeatureMap); OS << ", "; printFeatureMask(OS, TuneFeatureList, FeatureMap); // Emit the scheduler model pointer. const std::string &ProcModelName = SchedModels.getModelForProc(Processor).ModelName; OS << ", &" << ProcModelName << " },\n"; } // End processor table OS << "};\n"; return ProcessorList.size(); } // // FormItineraryStageString - Compose a string containing the stage // data initialization for the specified itinerary. N is the number // of stages. // void SubtargetEmitter::FormItineraryStageString(const std::string &Name, Record *ItinData, std::string &ItinString, unsigned &NStages) { // Get states list RecVec StageList = ItinData->getValueAsListOfDefs("Stages"); // For each stage unsigned N = NStages = StageList.size(); for (unsigned i = 0; i < N;) { // Next stage const Record *Stage = StageList[i]; // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } int Cycles = Stage->getValueAsInt("Cycles"); ItinString += " { " + itostr(Cycles) + ", "; // Get unit list RecVec UnitList = Stage->getValueAsListOfDefs("Units"); // For each unit for (unsigned j = 0, M = UnitList.size(); j < M;) { // Add name and bitwise or ItinString += Name + "FU::" + UnitList[j]->getName().str(); if (++j < M) ItinString += " | "; } int TimeInc = Stage->getValueAsInt("TimeInc"); ItinString += ", " + itostr(TimeInc); int Kind = Stage->getValueAsInt("Kind"); ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); // Close off stage ItinString += " }"; if (++i < N) ItinString += ", "; } } // // FormItineraryOperandCycleString - Compose a string containing the // operand cycle initialization for the specified itinerary. N is the // number of operands that has cycles specified. // void SubtargetEmitter::FormItineraryOperandCycleString( Record *ItinData, std::string &ItinString, unsigned &NOperandCycles) { // Get operand cycle list std::vector OperandCycleList = ItinData->getValueAsListOfInts("OperandCycles"); // For each operand cycle NOperandCycles = OperandCycleList.size(); ListSeparator LS; for (int OCycle : OperandCycleList) { // Next operand cycle ItinString += LS; ItinString += " " + itostr(OCycle); } } void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, Record *ItinData, std::string &ItinString, unsigned NOperandCycles) { RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses"); unsigned N = BypassList.size(); unsigned i = 0; ListSeparator LS; for (; i < N; ++i) { ItinString += LS; ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); } for (; i < NOperandCycles; ++i) { ItinString += LS; ItinString += " 0"; } } // // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed // by CodeGenSchedClass::Index. // void SubtargetEmitter::EmitStageAndOperandCycleData( raw_ostream &OS, std::vector> &ProcItinLists) { // Multiple processor models may share an itinerary record. Emit it once. SmallPtrSet ItinsDefSet; // Emit functional units for all the itineraries. for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) continue; RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); if (FUs.empty()) continue; StringRef Name = ProcModel.ItinsDef->getName(); OS << "\n// Functional units for \"" << Name << "\"\n" << "namespace " << Name << "FU {\n"; for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) OS << " const InstrStage::FuncUnits " << FUs[j]->getName() << " = 1ULL << " << j << ";\n"; OS << "} // end namespace " << Name << "FU\n"; RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); if (!BPs.empty()) { OS << "\n// Pipeline forwarding paths for itineraries \"" << Name << "\"\n" << "namespace " << Name << "Bypass {\n"; OS << " const unsigned NoBypass = 0;\n"; for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) OS << " const unsigned " << BPs[j]->getName() << " = 1 << " << j << ";\n"; OS << "} // end namespace " << Name << "Bypass\n"; } } // Begin stages table std::string StageTable = "\nextern const llvm::InstrStage " + Target + "Stages[] = {\n"; StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; // Begin operand cycle table std::string OperandCycleTable = "extern const unsigned " + Target + "OperandCycles[] = {\n"; OperandCycleTable += " 0, // No itinerary\n"; // Begin pipeline bypass table std::string BypassTable = "extern const unsigned " + Target + "ForwardingPaths[] = {\n"; BypassTable += " 0, // No itinerary\n"; // For each Itinerary across all processors, add a unique entry to the stages, // operand cycles, and pipeline bypass tables. Then add the new Itinerary // object with computed offsets to the ProcItinLists result. unsigned StageCount = 1, OperandCycleCount = 1; std::map ItinStageMap, ItinOperandMap; for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { // Add process itinerary to the list. std::vector &ItinList = ProcItinLists.emplace_back(); // If this processor defines no itineraries, then leave the itinerary list // empty. if (!ProcModel.hasItineraries()) continue; StringRef Name = ProcModel.ItinsDef->getName(); ItinList.resize(SchedModels.numInstrSchedClasses()); assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { // Next itinerary data Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; // Get string and stage count std::string ItinStageString; unsigned NStages = 0; if (ItinData) FormItineraryStageString(std::string(Name), ItinData, ItinStageString, NStages); // Get string and operand cycle count std::string ItinOperandCycleString; unsigned NOperandCycles = 0; std::string ItinBypassString; if (ItinData) { FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, NOperandCycles); FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString, NOperandCycles); } // Check to see if stage already exists and create if it doesn't uint16_t FindStage = 0; if (NStages > 0) { FindStage = ItinStageMap[ItinStageString]; if (FindStage == 0) { // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices StageTable += ItinStageString + ", // " + itostr(StageCount); if (NStages > 1) StageTable += "-" + itostr(StageCount + NStages - 1); StageTable += "\n"; // Record Itin class number. ItinStageMap[ItinStageString] = FindStage = StageCount; StageCount += NStages; } } // Check to see if operand cycle already exists and create if it doesn't uint16_t FindOperandCycle = 0; if (NOperandCycles > 0) { std::string ItinOperandString = ItinOperandCycleString + ItinBypassString; FindOperandCycle = ItinOperandMap[ItinOperandString]; if (FindOperandCycle == 0) { // Emit as cycle, // index OperandCycleTable += ItinOperandCycleString + ", // "; std::string OperandIdxComment = itostr(OperandCycleCount); if (NOperandCycles > 1) OperandIdxComment += "-" + itostr(OperandCycleCount + NOperandCycles - 1); OperandCycleTable += OperandIdxComment + "\n"; // Record Itin class number. ItinOperandMap[ItinOperandCycleString] = FindOperandCycle = OperandCycleCount; // Emit as bypass, // index BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; OperandCycleCount += NOperandCycles; } } // Set up itinerary as location and location + stage count int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; InstrItinerary Intinerary = { NumUOps, FindStage, uint16_t(FindStage + NStages), FindOperandCycle, uint16_t(FindOperandCycle + NOperandCycles), }; // Inject - empty slots will be 0, 0 ItinList[SchedClassIdx] = Intinerary; } } // Closing stage StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; StageTable += "};\n"; // Closing operand cycles OperandCycleTable += " 0 // End operand cycles\n"; OperandCycleTable += "};\n"; BypassTable += " 0 // End bypass tables\n"; BypassTable += "};\n"; // Emit tables. OS << StageTable; OS << OperandCycleTable; OS << BypassTable; } // // EmitProcessorData - Generate data for processor itineraries that were // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all // Itineraries for each processor. The Itinerary lists are indexed on // CodeGenSchedClass::Index. // void SubtargetEmitter::EmitItineraries( raw_ostream &OS, std::vector> &ProcItinLists) { // Multiple processor models may share an itinerary record. Emit it once. SmallPtrSet ItinsDefSet; // For each processor's machine model std::vector>::iterator ProcItinListsIter = ProcItinLists.begin(); for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { Record *ItinsDef = PI->ItinsDef; if (!ItinsDefSet.insert(ItinsDef).second) continue; // Get the itinerary list for the processor. assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); std::vector &ItinList = *ProcItinListsIter; // Empty itineraries aren't referenced anywhere in the tablegen output // so don't emit them. if (ItinList.empty()) continue; OS << "\n"; OS << "static const llvm::InstrItinerary "; // Begin processor itinerary table OS << ItinsDef->getName() << "[] = {\n"; // For each itinerary class in CodeGenSchedClass::Index order. for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { InstrItinerary &Intinerary = ItinList[j]; // Emit Itinerary in the form of // { firstStage, lastStage, firstCycle, lastCycle } // index OS << " { " << Intinerary.NumMicroOps << ", " << Intinerary.FirstStage << ", " << Intinerary.LastStage << ", " << Intinerary.FirstOperandCycle << ", " << Intinerary.LastOperandCycle << " }" << ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; } // End processor itinerary table OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }" "// end marker\n"; OS << "};\n"; } } // Emit either the value defined in the TableGen Record, or the default // value defined in the C++ header. The Record is null if the processor does not // define a model. void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, char Separator) { OS << " "; int V = R ? R->getValueAsInt(Name) : -1; if (V >= 0) OS << V << Separator << " // " << Name; else OS << "MCSchedModel::Default" << Name << Separator; OS << '\n'; } void SubtargetEmitter::EmitProcessorResourceSubUnits( const CodeGenProcModel &ProcModel, raw_ostream &OS) { OS << "\nstatic const unsigned " << ProcModel.ModelName << "ProcResourceSubUnits[] = {\n" << " 0, // Invalid\n"; for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { Record *PRDef = ProcModel.ProcResourceDefs[i]; if (!PRDef->isSubClassOf("ProcResGroup")) continue; RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); for (Record *RUDef : ResUnits) { Record *const RU = SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc()); for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) { OS << " " << ProcModel.getProcResourceIdx(RU) << ", "; } } OS << " // " << PRDef->getName() << "\n"; } OS << "};\n"; } static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel, raw_ostream &OS) { int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0; if (Record *RCU = ProcModel.RetireControlUnit) { ReorderBufferSize = std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize")); MaxRetirePerCycle = std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle")); } OS << ReorderBufferSize << ", // ReorderBufferSize\n "; OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n "; } static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel, unsigned NumRegisterFiles, unsigned NumCostEntries, raw_ostream &OS) { if (NumRegisterFiles) OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles); else OS << "nullptr,\n 0"; OS << ", // Number of register files.\n "; if (NumCostEntries) OS << ProcModel.ModelName << "RegisterCosts,\n "; else OS << "nullptr,\n "; OS << NumCostEntries << ", // Number of register cost entries.\n"; } unsigned SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel, raw_ostream &OS) { if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) { return RF.hasDefaultCosts(); })) return 0; // Print the RegisterCost table first. OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n"; OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName << "RegisterCosts" << "[] = {\n"; for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) { // Skip register files with a default cost table. if (RF.hasDefaultCosts()) continue; // Add entries to the cost table. for (const CodeGenRegisterCost &RC : RF.Costs) { OS << " { "; Record *Rec = RC.RCDef; if (Rec->getValue("Namespace")) OS << Rec->getValueAsString("Namespace") << "::"; OS << Rec->getName() << "RegClassID, " << RC.Cost << ", " << RC.AllowMoveElimination << "},\n"; } } OS << "};\n"; // Now generate a table with register file info. OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, " << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n"; OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName << "RegisterFiles" << "[] = {\n" << " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n"; unsigned CostTblIndex = 0; for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) { OS << " { "; OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", "; unsigned NumCostEntries = RD.Costs.size(); OS << NumCostEntries << ", " << CostTblIndex << ", " << RD.MaxMovesEliminatedPerCycle << ", " << RD.AllowZeroMoveEliminationOnly << "},\n"; CostTblIndex += NumCostEntries; } OS << "};\n"; return CostTblIndex; } void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, raw_ostream &OS) { unsigned QueueID = 0; if (ProcModel.LoadQueue) { const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor"); QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(), find(ProcModel.ProcResourceDefs, Queue)); } OS << " " << QueueID << ", // Resource Descriptor for the Load Queue\n"; QueueID = 0; if (ProcModel.StoreQueue) { const Record *Queue = ProcModel.StoreQueue->getValueAsDef("QueueDescriptor"); QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(), find(ProcModel.ProcResourceDefs, Queue)); } OS << " " << QueueID << ", // Resource Descriptor for the Store Queue\n"; } void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, raw_ostream &OS) { // Generate a table of register file descriptors (one entry per each user // defined register file), and a table of register costs. unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS); // Now generate a table for the extra processor info. OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName << "ExtraInfo = {\n "; // Add information related to the retire control unit. EmitRetireControlUnitInfo(ProcModel, OS); // Add information related to the register files (i.e. where to find register // file descriptors and register costs). EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(), NumCostEntries, OS); // Add information about load/store queues. EmitLoadStoreQueueInfo(ProcModel, OS); OS << "};\n"; } void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, raw_ostream &OS) { EmitProcessorResourceSubUnits(ProcModel, OS); OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n"; OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName << "ProcResources" << "[] = {\n" << " {\"InvalidUnit\", 0, 0, 0, 0},\n"; unsigned SubUnitsOffset = 1; for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { Record *PRDef = ProcModel.ProcResourceDefs[i]; Record *SuperDef = nullptr; unsigned SuperIdx = 0; unsigned NumUnits = 0; const unsigned SubUnitsBeginOffset = SubUnitsOffset; int BufferSize = PRDef->getValueAsInt("BufferSize"); if (PRDef->isSubClassOf("ProcResGroup")) { RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); for (Record *RU : ResUnits) { NumUnits += RU->getValueAsInt("NumUnits"); SubUnitsOffset += RU->getValueAsInt("NumUnits"); } } else { // Find the SuperIdx if (PRDef->getValueInit("Super")->isComplete()) { SuperDef = SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"), ProcModel, PRDef->getLoc()); SuperIdx = ProcModel.getProcResourceIdx(SuperDef); } NumUnits = PRDef->getValueAsInt("NumUnits"); } // Emit the ProcResourceDesc OS << " {\"" << PRDef->getName() << "\", "; if (PRDef->getName().size() < 15) OS.indent(15 - PRDef->getName().size()); OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", "; if (SubUnitsBeginOffset != SubUnitsOffset) { OS << ProcModel.ModelName << "ProcResourceSubUnits + " << SubUnitsBeginOffset; } else { OS << "nullptr"; } OS << "}, // #" << i + 1; if (SuperDef) OS << ", Super=" << SuperDef->getName(); OS << "\n"; } OS << "};\n"; } // Find the WriteRes Record that defines processor resources for this // SchedWrite. Record * SubtargetEmitter::FindWriteResources(const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { // Check if the SchedWrite is already subtarget-specific and directly // specifies a set of processor resources. if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) return SchedWrite.TheDef; Record *AliasDef = nullptr; for (Record *A : SchedWrite.Aliases) { const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); if (&SchedModels.getProcModel(ModelDef) != &ProcModel) continue; } if (AliasDef) PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " "defined for processor " + ProcModel.ModelName + " Ensure only one SchedAlias exists per RW."); AliasDef = AliasRW.TheDef; } if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) return AliasDef; // Check this processor's list of write resources. Record *ResDef = nullptr; for (Record *WR : ProcModel.WriteResDefs) { if (!WR->isSubClassOf("WriteRes")) continue; Record *WRDef = WR->getValueAsDef("WriteType"); if (AliasDef == WRDef || SchedWrite.TheDef == WRDef) { if (ResDef) { PrintFatalError(WR->getLoc(), "Resources are defined for both " "SchedWrite and its alias on processor " + ProcModel.ModelName); } ResDef = WR; // If there is no AliasDef and we find a match, we can early exit since // there is no need to verify whether there are resources defined for both // SchedWrite and its alias. if (!AliasDef) break; } } // TODO: If ProcModel has a base model (previous generation processor), // then call FindWriteResources recursively with that model here. if (!ResDef) { PrintFatalError(ProcModel.ModelDef->getLoc(), Twine("Processor does not define resources for ") + SchedWrite.TheDef->getName()); } return ResDef; } /// Find the ReadAdvance record for the given SchedRead on this processor or /// return NULL. Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, const CodeGenProcModel &ProcModel) { // Check for SchedReads that directly specify a ReadAdvance. if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) return SchedRead.TheDef; // Check this processor's list of aliases for SchedRead. Record *AliasDef = nullptr; for (Record *A : SchedRead.Aliases) { const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); if (&SchedModels.getProcModel(ModelDef) != &ProcModel) continue; } if (AliasDef) PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " "defined for processor " + ProcModel.ModelName + " Ensure only one SchedAlias exists per RW."); AliasDef = AliasRW.TheDef; } if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) return AliasDef; // Check this processor's ReadAdvanceList. Record *ResDef = nullptr; for (Record *RA : ProcModel.ReadAdvanceDefs) { if (!RA->isSubClassOf("ReadAdvance")) continue; Record *RADef = RA->getValueAsDef("ReadType"); if (AliasDef == RADef || SchedRead.TheDef == RADef) { if (ResDef) { PrintFatalError(RA->getLoc(), "Resources are defined for both " "SchedRead and its alias on processor " + ProcModel.ModelName); } ResDef = RA; // If there is no AliasDef and we find a match, we can early exit since // there is no need to verify whether there are resources defined for both // SchedRead and its alias. if (!AliasDef) break; } } // TODO: If ProcModel has a base model (previous generation processor), // then call FindReadAdvance recursively with that model here. if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { PrintFatalError(ProcModel.ModelDef->getLoc(), Twine("Processor does not define resources for ") + SchedRead.TheDef->getName()); } return ResDef; } // Expand an explicit list of processor resources into a full list of implied // resource groups and super resources that cover them. void SubtargetEmitter::ExpandProcResources( RecVec &PRVec, std::vector &ReleaseAtCycles, std::vector &AcquireAtCycles, const CodeGenProcModel &PM) { assert(PRVec.size() == ReleaseAtCycles.size() && "failed precondition"); for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { Record *PRDef = PRVec[i]; RecVec SubResources; if (PRDef->isSubClassOf("ProcResGroup")) SubResources = PRDef->getValueAsListOfDefs("Resources"); else { SubResources.push_back(PRDef); PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc()); for (Record *SubDef = PRDef; SubDef->getValueInit("Super")->isComplete();) { if (SubDef->isSubClassOf("ProcResGroup")) { // Disallow this for simplicitly. PrintFatalError(SubDef->getLoc(), "Processor resource group " " cannot be a super resources."); } Record *SuperDef = SchedModels.findProcResUnits( SubDef->getValueAsDef("Super"), PM, SubDef->getLoc()); PRVec.push_back(SuperDef); ReleaseAtCycles.push_back(ReleaseAtCycles[i]); AcquireAtCycles.push_back(AcquireAtCycles[i]); SubDef = SuperDef; } } for (Record *PR : PM.ProcResourceDefs) { if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) continue; RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); RecIter SubI = SubResources.begin(), SubE = SubResources.end(); for (; SubI != SubE; ++SubI) { if (!is_contained(SuperResources, *SubI)) { break; } } if (SubI == SubE) { PRVec.push_back(PR); ReleaseAtCycles.push_back(ReleaseAtCycles[i]); AcquireAtCycles.push_back(AcquireAtCycles[i]); } } } } // Generate the SchedClass table for this processor and update global // tables. Must be called for each processor in order. void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, SchedClassTables &SchedTables) { std::vector &SCTab = SchedTables.ProcSchedClasses.emplace_back(); if (!ProcModel.hasInstrSchedModel()) return; LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { LLVM_DEBUG(SC.dump(&SchedModels)); MCSchedClassDesc &SCDesc = SCTab.emplace_back(); // SCDesc.Name is guarded by NDEBUG SCDesc.NumMicroOps = 0; SCDesc.BeginGroup = false; SCDesc.EndGroup = false; SCDesc.RetireOOO = false; SCDesc.WriteProcResIdx = 0; SCDesc.WriteLatencyIdx = 0; SCDesc.ReadAdvanceIdx = 0; // A Variant SchedClass has no resources of its own. bool HasVariants = false; for (const CodeGenSchedTransition &CGT : make_range(SC.Transitions.begin(), SC.Transitions.end())) { if (CGT.ProcIndex == ProcModel.Index) { HasVariants = true; break; } } if (HasVariants) { SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; continue; } // Determine if the SchedClass is actually reachable on this processor. If // not don't try to locate the processor resources, it will fail. // If ProcIndices contains 0, this class applies to all processors. assert(!SC.ProcIndices.empty() && "expect at least one procidx"); if (SC.ProcIndices[0] != 0) { if (!is_contained(SC.ProcIndices, ProcModel.Index)) continue; } IdxVec Writes = SC.Writes; IdxVec Reads = SC.Reads; if (!SC.InstRWs.empty()) { // This class has a default ReadWrite list which can be overridden by // InstRW definitions. Record *RWDef = nullptr; for (Record *RW : SC.InstRWs) { Record *RWModelDef = RW->getValueAsDef("SchedModel"); if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { RWDef = RW; break; } } if (RWDef) { Writes.clear(); Reads.clear(); SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); } } if (Writes.empty()) { // Check this processor's itinerary class resources. for (Record *I : ProcModel.ItinRWDefs) { RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); if (is_contained(Matched, SC.ItinClassDef)) { SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); break; } } if (Writes.empty()) { LLVM_DEBUG(dbgs() << ProcModel.ModelName << " does not have resources for class " << SC.Name << '\n'); SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; } } // Sum resources across all operand writes. std::vector WriteProcResources; std::vector WriteLatencies; std::vector WriterNames; std::vector ReadAdvanceEntries; for (unsigned W : Writes) { IdxVec WriteSeq; SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, ProcModel); // For each operand, create a latency entry. MCWriteLatencyEntry WLEntry; WLEntry.Cycles = 0; unsigned WriteID = WriteSeq.back(); WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); // If this Write is not referenced by a ReadAdvance, don't distinguish it // from other WriteLatency entries. if (!ProcModel.hasReadOfWrite(SchedModels.getSchedWrite(WriteID).TheDef)) WriteID = 0; WLEntry.WriteResourceID = WriteID; for (unsigned WS : WriteSeq) { Record *WriteRes = FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); // Mark the parent class as invalid for unsupported write types. if (WriteRes->getValueAsBit("Unsupported")) { SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; break; } WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO"); // Create an entry for each ProcResource listed in WriteRes. RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); std::vector ReleaseAtCycles = WriteRes->getValueAsListOfInts("ReleaseAtCycles"); std::vector AcquireAtCycles = WriteRes->getValueAsListOfInts("AcquireAtCycles"); // Check consistency of the two vectors carrying the start and // stop cycles of the resources. if (!ReleaseAtCycles.empty() && ReleaseAtCycles.size() != PRVec.size()) { // If ReleaseAtCycles is provided, check consistency. PrintFatalError( WriteRes->getLoc(), Twine("Inconsistent release at cycles: size(ReleaseAtCycles) != " "size(ProcResources): ") .concat(Twine(PRVec.size())) .concat(" vs ") .concat(Twine(ReleaseAtCycles.size()))); } if (!AcquireAtCycles.empty() && AcquireAtCycles.size() != PRVec.size()) { PrintFatalError( WriteRes->getLoc(), Twine("Inconsistent resource cycles: size(AcquireAtCycles) != " "size(ProcResources): ") .concat(Twine(AcquireAtCycles.size())) .concat(" vs ") .concat(Twine(PRVec.size()))); } if (ReleaseAtCycles.empty()) { // If ReleaseAtCycles is not provided, default to one cycle // per resource. ReleaseAtCycles.resize(PRVec.size(), 1); } if (AcquireAtCycles.empty()) { // If AcquireAtCycles is not provided, reserve the resource // starting from cycle 0. AcquireAtCycles.resize(PRVec.size(), 0); } assert(AcquireAtCycles.size() == ReleaseAtCycles.size()); ExpandProcResources(PRVec, ReleaseAtCycles, AcquireAtCycles, ProcModel); assert(AcquireAtCycles.size() == ReleaseAtCycles.size()); for (unsigned PRIdx = 0, PREnd = PRVec.size(); PRIdx != PREnd; ++PRIdx) { MCWriteProcResEntry WPREntry; WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); WPREntry.ReleaseAtCycle = ReleaseAtCycles[PRIdx]; WPREntry.AcquireAtCycle = AcquireAtCycles[PRIdx]; if (AcquireAtCycles[PRIdx] > ReleaseAtCycles[PRIdx]) { PrintFatalError( WriteRes->getLoc(), Twine("Inconsistent resource cycles: AcquireAtCycles " "< ReleaseAtCycles must hold.")); } if (AcquireAtCycles[PRIdx] < 0) { PrintFatalError(WriteRes->getLoc(), Twine("Invalid value: AcquireAtCycle " "must be a non-negative value.")); } // If this resource is already used in this sequence, add the current // entry's cycles so that the same resource appears to be used // serially, rather than multiple parallel uses. This is important for // in-order machine where the resource consumption is a hazard. unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); for (; WPRIdx != WPREnd; ++WPRIdx) { if (WriteProcResources[WPRIdx].ProcResourceIdx == WPREntry.ProcResourceIdx) { // TODO: multiple use of the same resources would // require either 1. thinking of how to handle multiple // intervals for the same resource in // `WriteProcResTable` (see // `SubtargetEmitter::EmitSchedClassTables`), or // 2. thinking how to merge multiple intervals into a // single interval. assert(WPREntry.AcquireAtCycle == 0 && "multiple use ofthe same resource is not yet handled"); WriteProcResources[WPRIdx].ReleaseAtCycle += WPREntry.ReleaseAtCycle; break; } } if (WPRIdx == WPREnd) WriteProcResources.push_back(WPREntry); } } WriteLatencies.push_back(WLEntry); } // Create an entry for each operand Read in this SchedClass. // Entries must be sorted first by UseIdx then by WriteResourceID. for (unsigned UseIdx = 0, EndIdx = Reads.size(); UseIdx != EndIdx; ++UseIdx) { Record *ReadAdvance = FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); if (!ReadAdvance) continue; // Mark the parent class as invalid for unsupported write types. if (ReadAdvance->getValueAsBit("Unsupported")) { SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; break; } RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); IdxVec WriteIDs; if (ValidWrites.empty()) WriteIDs.push_back(0); else { for (Record *VW : ValidWrites) { unsigned WriteID = SchedModels.getSchedRWIdx(VW, /*IsRead=*/false); assert(WriteID != 0 && "Expected a valid SchedRW in the list of ValidWrites"); WriteIDs.push_back(WriteID); } } llvm::sort(WriteIDs); for (unsigned W : WriteIDs) { MCReadAdvanceEntry RAEntry; RAEntry.UseIdx = UseIdx; RAEntry.WriteResourceID = W; RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); ReadAdvanceEntries.push_back(RAEntry); } } if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { WriteProcResources.clear(); WriteLatencies.clear(); ReadAdvanceEntries.clear(); } // Add the information for this SchedClass to the global tables using basic // compression. // // WritePrecRes entries are sorted by ProcResIdx. llvm::sort(WriteProcResources, LessWriteProcResources()); SCDesc.NumWriteProcResEntries = WriteProcResources.size(); std::vector::iterator WPRPos = std::search(SchedTables.WriteProcResources.begin(), SchedTables.WriteProcResources.end(), WriteProcResources.begin(), WriteProcResources.end()); if (WPRPos != SchedTables.WriteProcResources.end()) SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); else { SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), WriteProcResources.end()); } // Latency entries must remain in operand order. SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); std::vector::iterator WLPos = std::search( SchedTables.WriteLatencies.begin(), SchedTables.WriteLatencies.end(), WriteLatencies.begin(), WriteLatencies.end()); if (WLPos != SchedTables.WriteLatencies.end()) { unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); SCDesc.WriteLatencyIdx = idx; for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == std::string::npos) { SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; } } else { SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); llvm::append_range(SchedTables.WriteLatencies, WriteLatencies); llvm::append_range(SchedTables.WriterNames, WriterNames); } // ReadAdvanceEntries must remain in operand order. SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); std::vector::iterator RAPos = std::search(SchedTables.ReadAdvanceEntries.begin(), SchedTables.ReadAdvanceEntries.end(), ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); if (RAPos != SchedTables.ReadAdvanceEntries.end()) SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); else { SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries); } } } // Emit SchedClass tables for all processors and associated global tables. void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS) { // Emit global WriteProcResTable. OS << "\n// {ProcResourceIdx, ReleaseAtCycle, AcquireAtCycle}\n" << "extern const llvm::MCWriteProcResEntry " << Target << "WriteProcResTable[] = {\n" << " { 0, 0, 0 }, // Invalid\n"; for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); WPRIdx != WPREnd; ++WPRIdx) { MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " << format("%2d", WPREntry.ReleaseAtCycle) << ", " << format("%2d", WPREntry.AcquireAtCycle) << "}"; if (WPRIdx + 1 < WPREnd) OS << ','; OS << " // #" << WPRIdx << '\n'; } OS << "}; // " << Target << "WriteProcResTable\n"; // Emit global WriteLatencyTable. OS << "\n// {Cycles, WriteResourceID}\n" << "extern const llvm::MCWriteLatencyEntry " << Target << "WriteLatencyTable[] = {\n" << " { 0, 0}, // Invalid\n"; for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); WLIdx != WLEnd; ++WLIdx) { MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; OS << " {" << format("%2d", WLEntry.Cycles) << ", " << format("%2d", WLEntry.WriteResourceID) << "}"; if (WLIdx + 1 < WLEnd) OS << ','; OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; } OS << "}; // " << Target << "WriteLatencyTable\n"; // Emit global ReadAdvanceTable. OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" << "extern const llvm::MCReadAdvanceEntry " << Target << "ReadAdvanceTable[] = {\n" << " {0, 0, 0}, // Invalid\n"; for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); RAIdx != RAEnd; ++RAIdx) { MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; OS << " {" << RAEntry.UseIdx << ", " << format("%2d", RAEntry.WriteResourceID) << ", " << format("%2d", RAEntry.Cycles) << "}"; if (RAIdx + 1 < RAEnd) OS << ','; OS << " // #" << RAIdx << '\n'; } OS << "}; // " << Target << "ReadAdvanceTable\n"; // Emit a SchedClass table for each processor. for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { if (!PI->hasInstrSchedModel()) continue; std::vector &SCTab = SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup, RetireOOO," << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; OS << "static const llvm::MCSchedClassDesc " << PI->ModelName << "SchedClasses[] = {\n"; // The first class is always invalid. We no way to distinguish it except by // name and position. assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" && "invalid class not first"); OS << " {DBGFIELD(\"InvalidSchedClass\") " << MCSchedClassDesc::InvalidNumMicroOps << ", false, false, false, 0, 0, 0, 0, 0, 0},\n"; for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { MCSchedClassDesc &MCDesc = SCTab[SCIdx]; const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; if (SchedClass.Name.size() < 18) OS.indent(18 - SchedClass.Name.size()); OS << MCDesc.NumMicroOps << ", " << (MCDesc.BeginGroup ? "true" : "false") << ", " << (MCDesc.EndGroup ? "true" : "false") << ", " << (MCDesc.RetireOOO ? "true" : "false") << ", " << format("%2d", MCDesc.WriteProcResIdx) << ", " << MCDesc.NumWriteProcResEntries << ", " << format("%2d", MCDesc.WriteLatencyIdx) << ", " << MCDesc.NumWriteLatencyEntries << ", " << format("%2d", MCDesc.ReadAdvanceIdx) << ", " << MCDesc.NumReadAdvanceEntries << "}, // #" << SCIdx << '\n'; } OS << "}; // " << PI->ModelName << "SchedClasses\n"; } } void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { // For each processor model. for (const CodeGenProcModel &PM : SchedModels.procModels()) { // Emit extra processor info if available. if (PM.hasExtraProcessorInfo()) EmitExtraProcessorInfo(PM, OS); // Emit processor resource table. if (PM.hasInstrSchedModel()) EmitProcessorResources(PM, OS); else if (!PM.ProcResourceDefs.empty()) PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " "ProcResources without defining WriteRes SchedWriteRes"); // Begin processor itinerary properties OS << "\n"; OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); bool PostRAScheduler = (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); OS << " " << (PostRAScheduler ? "true" : "false") << ", // " << "PostRAScheduler\n"; bool CompleteModel = (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); OS << " " << (CompleteModel ? "true" : "false") << ", // " << "CompleteModel\n"; bool EnableIntervals = (PM.ModelDef ? PM.ModelDef->getValueAsBit("EnableIntervals") : false); OS << " " << (EnableIntervals ? "true" : "false") << ", // " << "EnableIntervals\n"; OS << " " << PM.Index << ", // Processor ID\n"; if (PM.hasInstrSchedModel()) OS << " " << PM.ModelName << "ProcResources" << ",\n" << " " << PM.ModelName << "SchedClasses" << ",\n" << " " << PM.ProcResourceDefs.size() + 1 << ",\n" << " " << (SchedModels.schedClassEnd() - SchedModels.schedClassBegin()) << ",\n"; else OS << " nullptr, nullptr, 0, 0," << " // No instruction-level machine model.\n"; if (PM.hasItineraries()) OS << " " << PM.ItinsDef->getName() << ",\n"; else OS << " nullptr, // No Itinerary\n"; if (PM.hasExtraProcessorInfo()) OS << " &" << PM.ModelName << "ExtraInfo,\n"; else OS << " nullptr // No extra processor descriptor\n"; OS << "};\n"; } } // // EmitSchedModel - Emits all scheduling model tables, folding common patterns. // void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { OS << "#ifdef DBGFIELD\n" << "#error \"GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" << "#endif\n" << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n" << "#define DBGFIELD(x) x,\n" << "#else\n" << "#define DBGFIELD(x)\n" << "#endif\n"; if (SchedModels.hasItineraries()) { std::vector> ProcItinLists; // Emit the stage data EmitStageAndOperandCycleData(OS, ProcItinLists); EmitItineraries(OS, ProcItinLists); } OS << "\n// ===============================================================\n" << "// Data tables for the new per-operand machine model.\n"; SchedClassTables SchedTables; for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { GenSchedClassTables(ProcModel, SchedTables); } EmitSchedClassTables(SchedTables, OS); OS << "\n#undef DBGFIELD\n"; // Emit the processor machine model EmitProcessorModels(OS); } static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) { std::string Buffer; raw_string_ostream Stream(Buffer); // Collect all the PredicateProlog records and print them to the output // stream. std::vector Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); llvm::sort(Prologs, LessRecord()); for (Record *P : Prologs) Stream << P->getValueAsString("Code") << '\n'; OS << Buffer; } static bool isTruePredicate(const Record *Rec) { return Rec->isSubClassOf("MCSchedPredicate") && Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue"); } static void emitPredicates(const CodeGenSchedTransition &T, const CodeGenSchedClass &SC, PredicateExpander &PE, raw_ostream &OS) { std::string Buffer; raw_string_ostream SS(Buffer); // If not all predicates are MCTrue, then we need an if-stmt. unsigned NumNonTruePreds = T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate); SS.indent(PE.getIndentLevel() * 2); if (NumNonTruePreds) { bool FirstNonTruePredicate = true; SS << "if ("; PE.setIndentLevel(PE.getIndentLevel() + 2); for (const Record *Rec : T.PredTerm) { // Skip predicates that evaluate to "true". if (isTruePredicate(Rec)) continue; if (FirstNonTruePredicate) { FirstNonTruePredicate = false; } else { SS << "\n"; SS.indent(PE.getIndentLevel() * 2); SS << "&& "; } if (Rec->isSubClassOf("MCSchedPredicate")) { PE.expandPredicate(SS, Rec->getValueAsDef("Pred")); continue; } // Expand this legacy predicate and wrap it around braces if there is more // than one predicate to expand. SS << ((NumNonTruePreds > 1) ? "(" : "") << Rec->getValueAsString("Predicate") << ((NumNonTruePreds > 1) ? ")" : ""); } SS << ")\n"; // end of if-stmt PE.decreaseIndentLevel(); SS.indent(PE.getIndentLevel() * 2); PE.decreaseIndentLevel(); } SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n'; OS << Buffer; } // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate // epilogue code for the auto-generated helper. static void emitSchedModelHelperEpilogue(raw_ostream &OS, bool ShouldReturnZero) { if (ShouldReturnZero) { OS << " // Don't know how to resolve this scheduling class.\n" << " return 0;\n"; return; } OS << " report_fatal_error(\"Expected a variant SchedClass\");\n"; } static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) { return all_of(T.PredTerm, [](const Record *Rec) { return Rec->isSubClassOf("MCSchedPredicate"); }); } static void collectVariantClasses(const CodeGenSchedModels &SchedModels, IdxVec &VariantClasses, bool OnlyExpandMCInstPredicates) { for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { // Ignore non-variant scheduling classes. if (SC.Transitions.empty()) continue; if (OnlyExpandMCInstPredicates) { // Ignore this variant scheduling class no transitions use any meaningful // MCSchedPredicate definitions. if (llvm::none_of(SC.Transitions, hasMCSchedPredicates)) continue; } VariantClasses.push_back(SC.Index); } } static void collectProcessorIndices(const CodeGenSchedClass &SC, IdxVec &ProcIndices) { // A variant scheduling class may define transitions for multiple // processors. This function identifies wich processors are associated with // transition rules specified by variant class `SC`. for (const CodeGenSchedTransition &T : SC.Transitions) { IdxVec PI; std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(), ProcIndices.end(), std::back_inserter(PI)); ProcIndices = std::move(PI); } } static bool isAlwaysTrue(const CodeGenSchedTransition &T) { return llvm::all_of(T.PredTerm, isTruePredicate); } void SubtargetEmitter::emitSchedModelHelpersImpl( raw_ostream &OS, bool OnlyExpandMCInstPredicates) { IdxVec VariantClasses; collectVariantClasses(SchedModels, VariantClasses, OnlyExpandMCInstPredicates); if (VariantClasses.empty()) { emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); return; } // Construct a switch statement where the condition is a check on the // scheduling class identifier. There is a `case` for every variant class // defined by the processor models of this target. // Each `case` implements a number of rules to resolve (i.e. to transition // from) a variant scheduling class to another scheduling class. Rules are // described by instances of CodeGenSchedTransition. Note that transitions may // not be valid for all processors. OS << " switch (SchedClass) {\n"; for (unsigned VC : VariantClasses) { IdxVec ProcIndices; const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); collectProcessorIndices(SC, ProcIndices); OS << " case " << VC << ": // " << SC.Name << '\n'; PredicateExpander PE(Target); PE.setByRef(false); PE.setExpandForMC(OnlyExpandMCInstPredicates); for (unsigned PI : ProcIndices) { OS << " "; // Emit a guard on the processor ID. if (PI != 0) { OS << (OnlyExpandMCInstPredicates ? "if (CPUID == " : "if (SchedModel->getProcessorID() == "); OS << PI << ") "; OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n'; } // Now emit transitions associated with processor PI. const CodeGenSchedTransition *FinalT = nullptr; for (const CodeGenSchedTransition &T : SC.Transitions) { if (PI != 0 && T.ProcIndex != PI) continue; // Emit only transitions based on MCSchedPredicate, if it's the case. // At least the transition specified by NoSchedPred is emitted, // which becomes the default transition for those variants otherwise // not based on MCSchedPredicate. // FIXME: preferably, llvm-mca should instead assume a reasonable // default when a variant transition is not based on MCSchedPredicate // for a given processor. if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T)) continue; // If transition is folded to 'return X' it should be the last one. if (isAlwaysTrue(T)) { FinalT = &T; continue; } PE.setIndentLevel(3); emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS); } if (FinalT) emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx), PE, OS); OS << " }\n"; if (PI == 0) break; } if (SC.isInferred()) OS << " return " << SC.Index << ";\n"; OS << " break;\n"; } OS << " };\n"; emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); } void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS) { OS << "unsigned " << ClassName << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," << " const TargetSchedModel *SchedModel) const {\n"; // Emit the predicate prolog code. emitPredicateProlog(Records, OS); // Emit target predicates. emitSchedModelHelpersImpl(OS); OS << "} // " << ClassName << "::resolveSchedClass\n\n"; OS << "unsigned " << ClassName << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI," << " const MCInstrInfo *MCII, unsigned CPUID) const {\n" << " return " << Target << "_MC" << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n" << "} // " << ClassName << "::resolveVariantSchedClass\n\n"; STIPredicateExpander PE(Target); PE.setClassPrefix(ClassName); PE.setExpandDefinition(true); PE.setByRef(false); PE.setIndentLevel(0); for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) PE.expandSTIPredicate(OS, Fn); } void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS) { const CodeGenHwModes &CGH = TGT.getHwModes(); assert(CGH.getNumModeIds() > 0); if (CGH.getNumModeIds() == 1) return; // Collect all HwModes and related features defined in the TD files, // and store them as a bit set. unsigned ValueTypeModes = 0; unsigned RegInfoModes = 0; unsigned EncodingInfoModes = 0; for (const auto &MS : CGH.getHwModeSelects()) { for (const HwModeSelect::PairType &P : MS.second.Items) { if (P.first == DefaultMode) continue; if (P.second->isSubClassOf("ValueType")) { ValueTypeModes |= (1 << (P.first - 1)); } else if (P.second->isSubClassOf("RegInfo") || P.second->isSubClassOf("SubRegRange")) { RegInfoModes |= (1 << (P.first - 1)); } else if (P.second->isSubClassOf("InstructionEncoding")) { EncodingInfoModes |= (1 << (P.first - 1)); } } } // Start emitting for getHwModeSet(). OS << "unsigned " << ClassName << "::getHwModeSet() const {\n"; OS << " // Collect HwModes and store them as a bit set.\n"; OS << " unsigned Modes = 0;\n"; for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) { const HwMode &HM = CGH.getMode(M); OS << " if (checkFeatures(\"" << HM.Features << "\")) Modes |= (1 << " << (M - 1) << ");\n"; } OS << " return Modes;\n}\n"; // End emitting for getHwModeSet(). auto handlePerMode = [&](std::string ModeType, unsigned ModeInBitSet) { OS << " case HwMode_" << ModeType << ":\n" << " Modes &= " << ModeInBitSet << ";\n" << " if (!Modes)\n return Modes;\n" << " if (!llvm::has_single_bit(Modes))\n" << " llvm_unreachable(\"Two or more HwModes for " << ModeType << " were found!\");\n" << " return llvm::countr_zero(Modes) + 1;\n"; }; // Start emitting for getHwMode(). OS << "unsigned " << ClassName << "::getHwMode(enum HwModeType type) const {\n"; OS << " unsigned Modes = getHwModeSet();\n\n"; OS << " if (!Modes)\n return Modes;\n\n"; OS << " switch (type) {\n"; OS << " case HwMode_Default:\n return llvm::countr_zero(Modes) + 1;\n"; handlePerMode("ValueType", ValueTypeModes); handlePerMode("RegInfo", RegInfoModes); handlePerMode("EncodingInfo", EncodingInfoModes); OS << " }\n"; OS << " llvm_unreachable(\"unexpected HwModeType\");\n" << " return 0; // should not get here\n}\n"; // End emitting for getHwMode(). } void SubtargetEmitter::emitGetMacroFusions(const std::string &ClassName, raw_ostream &OS) { if (!TGT.hasMacroFusion()) return; OS << "std::vector " << ClassName << "::getMacroFusions() const {\n"; OS.indent(2) << "std::vector Fusions;\n"; for (auto *Fusion : TGT.getMacroFusions()) { std::string Name = Fusion->getNameInitAsString(); OS.indent(2) << "if (hasFeature(" << Target << "::" << Name << ")) Fusions.push_back(llvm::is" << Name << ");\n"; } OS.indent(2) << "return Fusions;\n"; OS << "}\n"; } // Produces a subtarget specific function for parsing // the subtarget features string. void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS) { std::vector Features = Records.getAllDerivedDefinitions("SubtargetFeature"); llvm::sort(Features, LessRecord()); OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" << "// subtarget options.\n" << "void llvm::"; OS << Target; OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, " << "StringRef FS) {\n" << " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" << " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n" << " LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n"; if (Features.empty()) { OS << "}\n"; return; } if (Target == "AArch64") OS << " CPU = AArch64::resolveCPUAlias(CPU);\n" << " TuneCPU = AArch64::resolveCPUAlias(TuneCPU);\n"; OS << " InitMCProcessorInfo(CPU, TuneCPU, FS);\n" << " const FeatureBitset &Bits = getFeatureBits();\n"; for (Record *R : Features) { // Next record StringRef Instance = R->getName(); StringRef Value = R->getValueAsString("Value"); StringRef FieldName = R->getValueAsString("FieldName"); if (Value == "true" || Value == "false") OS << " if (Bits[" << Target << "::" << Instance << "]) " << FieldName << " = " << Value << ";\n"; else OS << " if (Bits[" << Target << "::" << Instance << "] && " << FieldName << " < " << Value << ") " << FieldName << " = " << Value << ";\n"; } OS << "}\n"; } void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) { OS << "namespace " << Target << "_MC {\n" << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n" << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n"; emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true); OS << "}\n"; OS << "} // end namespace " << Target << "_MC\n\n"; OS << "struct " << Target << "GenMCSubtargetInfo : public MCSubtargetInfo {\n"; OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT,\n" << " StringRef CPU, StringRef TuneCPU, StringRef FS,\n" << " ArrayRef PF,\n" << " ArrayRef PD,\n" << " const MCWriteProcResEntry *WPR,\n" << " const MCWriteLatencyEntry *WL,\n" << " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n" << " const unsigned *OC, const unsigned *FP) :\n" << " MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n" << " WPR, WL, RA, IS, OC, FP) { }\n\n" << " unsigned resolveVariantSchedClass(unsigned SchedClass,\n" << " const MCInst *MI, const MCInstrInfo *MCII,\n" << " unsigned CPUID) const override {\n" << " return " << Target << "_MC" << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"; OS << " }\n"; if (TGT.getHwModes().getNumModeIds() > 1) { OS << " unsigned getHwModeSet() const override;\n"; OS << " unsigned getHwMode(enum HwModeType type = HwMode_Default) const " "override;\n"; } if (Target == "AArch64") OS << " bool isCPUStringValid(StringRef CPU) const override {\n" << " CPU = AArch64::resolveCPUAlias(CPU);\n" << " return MCSubtargetInfo::isCPUStringValid(CPU);\n" << " }\n"; OS << "};\n"; EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS); } void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) { OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n"; OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; STIPredicateExpander PE(Target); PE.setExpandForMC(true); PE.setByRef(true); for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) PE.expandSTIPredicate(OS, Fn); OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n"; OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; std::string ClassPrefix = Target + "MCInstrAnalysis"; PE.setExpandDefinition(true); PE.setClassPrefix(ClassPrefix); PE.setIndentLevel(0); for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) PE.expandSTIPredicate(OS, Fn); OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; } // // SubtargetEmitter::run - Main subtarget enumeration emitter. // void SubtargetEmitter::run(raw_ostream &OS) { emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; DenseMap FeatureMap; OS << "namespace llvm {\n"; Enumeration(OS, FeatureMap); OS << "} // end namespace llvm\n\n"; OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; EmitSubtargetInfoMacroCalls(OS); OS << "namespace llvm {\n"; #if 0 OS << "namespace {\n"; #endif unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap); OS << "\n"; EmitSchedModel(OS); OS << "\n"; unsigned NumProcs = CPUKeyValues(OS, FeatureMap); OS << "\n"; #if 0 OS << "} // end anonymous namespace\n\n"; #endif // MCInstrInfo initialization routine. emitGenMCSubtargetInfo(OS); OS << "\nstatic inline MCSubtargetInfo *create" << Target << "MCSubtargetInfoImpl(" << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n"; if (Target == "AArch64") OS << " CPU = AArch64::resolveCPUAlias(CPU);\n" << " TuneCPU = AArch64::resolveCPUAlias(TuneCPU);\n"; OS << " return new " << Target << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, "; if (NumFeatures) OS << Target << "FeatureKV, "; else OS << "std::nullopt, "; if (NumProcs) OS << Target << "SubTypeKV, "; else OS << "std::nullopt, "; OS << '\n'; OS.indent(22); OS << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, " << Target << "ReadAdvanceTable, "; OS << '\n'; OS.indent(22); if (SchedModels.hasItineraries()) { OS << Target << "Stages, " << Target << "OperandCycles, " << Target << "ForwardingPaths"; } else OS << "nullptr, nullptr, nullptr"; OS << ");\n}\n\n"; OS << "} // end namespace llvm\n\n"; OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; OS << "#include \"llvm/Support/Debug.h\"\n"; OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; if (Target == "AArch64") OS << "#include \"llvm/TargetParser/AArch64TargetParser.h\"\n\n"; ParseFeaturesFunction(OS); OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; std::string ClassName = Target + "GenSubtargetInfo"; OS << "namespace llvm {\n"; OS << "class DFAPacketizer;\n"; OS << "namespace " << Target << "_MC {\n" << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass," << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n" << "} // end namespace " << Target << "_MC\n\n"; OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " << "StringRef TuneCPU, StringRef FS);\n" << "public:\n" << " unsigned resolveSchedClass(unsigned SchedClass, " << " const MachineInstr *DefMI," << " const TargetSchedModel *SchedModel) const override;\n" << " unsigned resolveVariantSchedClass(unsigned SchedClass," << " const MCInst *MI, const MCInstrInfo *MCII," << " unsigned CPUID) const override;\n" << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" << " const;\n"; if (TGT.getHwModes().getNumModeIds() > 1) { OS << " unsigned getHwModeSet() const override;\n"; OS << " unsigned getHwMode(enum HwModeType type = HwMode_Default) const " "override;\n"; } if (TGT.hasMacroFusion()) OS << " std::vector getMacroFusions() const " "override;\n"; STIPredicateExpander PE(Target); PE.setByRef(false); for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) PE.expandSTIPredicate(OS, Fn); OS << "};\n" << "} // end namespace llvm\n\n"; OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; OS << "namespace llvm {\n"; OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n"; OS << "extern const llvm::MCWriteProcResEntry " << Target << "WriteProcResTable[];\n"; OS << "extern const llvm::MCWriteLatencyEntry " << Target << "WriteLatencyTable[];\n"; OS << "extern const llvm::MCReadAdvanceEntry " << Target << "ReadAdvanceTable[];\n"; if (SchedModels.hasItineraries()) { OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; OS << "extern const unsigned " << Target << "OperandCycles[];\n"; OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; } OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " << "StringRef TuneCPU, StringRef FS)\n"; if (Target == "AArch64") OS << " : TargetSubtargetInfo(TT, AArch64::resolveCPUAlias(CPU),\n" << " AArch64::resolveCPUAlias(TuneCPU), FS, "; else OS << " : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, "; if (NumFeatures) OS << "ArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; else OS << "std::nullopt, "; if (NumProcs) OS << "ArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; else OS << "std::nullopt, "; OS << '\n'; OS.indent(24); OS << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, " << Target << "ReadAdvanceTable, "; OS << '\n'; OS.indent(24); if (SchedModels.hasItineraries()) { OS << Target << "Stages, " << Target << "OperandCycles, " << Target << "ForwardingPaths"; } else OS << "nullptr, nullptr, nullptr"; OS << ") {}\n\n"; EmitSchedModelHelpers(ClassName, OS); EmitHwModeCheck(ClassName, OS); emitGetMacroFusions(ClassName, OS); OS << "} // end namespace llvm\n\n"; OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; EmitMCInstrAnalysisPredicateFunctions(OS); } static TableGen::Emitter::OptClass X("gen-subtarget", "Generate subtarget enumerations");