//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This tablegen backend emits code for use by the GlobalISel instruction /// selector. See include/llvm/CodeGen/TargetGlobalISel.td. /// /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen /// backend, filters out the ones that are unsupported, maps /// SelectionDAG-specific constructs to their GlobalISel counterpart /// (when applicable: MVT to LLT; SDNode to generic Instruction). /// /// Not all patterns are supported: pass the tablegen invocation /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, /// as well as why. /// /// The generated file defines a single method: /// bool InstructionSelector::selectImpl(MachineInstr &I) const; /// intended to be used in InstructionSelector::select as the first-step /// selector for the patterns that don't require complex C++. /// /// FIXME: We'll probably want to eventually define a base /// "TargetGenInstructionSelector" class. /// //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "CodeGenInstruction.h" #include "SubtargetFeatureInfo.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CodeGenCoverage.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Error.h" #include "llvm/Support/LowLevelTypeImpl.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include #include using namespace llvm; #define DEBUG_TYPE "gisel-emitter" STATISTIC(NumPatternTotal, "Total number of patterns"); STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG"); STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped"); STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information"); STATISTIC(NumPatternEmitted, "Number of patterns emitted"); cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel"); static cl::opt WarnOnSkippedPatterns( "warn-on-skipped-patterns", cl::desc("Explain why a pattern was skipped for inclusion " "in the GlobalISel selector"), cl::init(false), cl::cat(GlobalISelEmitterCat)); static cl::opt GenerateCoverage( "instrument-gisel-coverage", cl::desc("Generate coverage instrumentation for GlobalISel"), cl::init(false), cl::cat(GlobalISelEmitterCat)); static cl::opt UseCoverageFile( "gisel-coverage-file", cl::init(""), cl::desc("Specify file to retrieve coverage information from"), cl::cat(GlobalISelEmitterCat)); static cl::opt OptimizeMatchTable( "optimize-match-table", cl::desc("Generate an optimized version of the match table"), cl::init(true), cl::cat(GlobalISelEmitterCat)); namespace { //===- Helper functions ---------------------------------------------------===// /// Get the name of the enum value used to number the predicate function. std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) { if (Predicate.hasGISelPredicateCode()) return "GIPFP_MI_" + Predicate.getFnName(); return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" + Predicate.getFnName(); } /// Get the opcode used to check this predicate. std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) { return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate"; } /// This class stands in for LLT wherever we want to tablegen-erate an /// equivalent at compiler run-time. class LLTCodeGen { private: LLT Ty; public: LLTCodeGen() = default; LLTCodeGen(const LLT &Ty) : Ty(Ty) {} std::string getCxxEnumValue() const { std::string Str; raw_string_ostream OS(Str); emitCxxEnumValue(OS); return Str; } void emitCxxEnumValue(raw_ostream &OS) const { if (Ty.isScalar()) { OS << "GILLT_s" << Ty.getSizeInBits(); return; } if (Ty.isVector()) { OS << (Ty.isScalable() ? "GILLT_nxv" : "GILLT_v") << Ty.getElementCount().getKnownMinValue() << "s" << Ty.getScalarSizeInBits(); return; } if (Ty.isPointer()) { OS << "GILLT_p" << Ty.getAddressSpace(); if (Ty.getSizeInBits() > 0) OS << "s" << Ty.getSizeInBits(); return; } llvm_unreachable("Unhandled LLT"); } void emitCxxConstructorCall(raw_ostream &OS) const { if (Ty.isScalar()) { OS << "LLT::scalar(" << Ty.getSizeInBits() << ")"; return; } if (Ty.isVector()) { OS << "LLT::vector(" << (Ty.isScalable() ? "ElementCount::getScalable(" : "ElementCount::getFixed(") << Ty.getElementCount().getKnownMinValue() << "), " << Ty.getScalarSizeInBits() << ")"; return; } if (Ty.isPointer() && Ty.getSizeInBits() > 0) { OS << "LLT::pointer(" << Ty.getAddressSpace() << ", " << Ty.getSizeInBits() << ")"; return; } llvm_unreachable("Unhandled LLT"); } const LLT &get() const { return Ty; } /// This ordering is used for std::unique() and llvm::sort(). There's no /// particular logic behind the order but either A < B or B < A must be /// true if A != B. bool operator<(const LLTCodeGen &Other) const { if (Ty.isValid() != Other.Ty.isValid()) return Ty.isValid() < Other.Ty.isValid(); if (!Ty.isValid()) return false; if (Ty.isVector() != Other.Ty.isVector()) return Ty.isVector() < Other.Ty.isVector(); if (Ty.isScalar() != Other.Ty.isScalar()) return Ty.isScalar() < Other.Ty.isScalar(); if (Ty.isPointer() != Other.Ty.isPointer()) return Ty.isPointer() < Other.Ty.isPointer(); if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace()) return Ty.getAddressSpace() < Other.Ty.getAddressSpace(); if (Ty.isVector() && Ty.getElementCount() != Other.Ty.getElementCount()) return std::make_tuple(Ty.isScalable(), Ty.getElementCount().getKnownMinValue()) < std::make_tuple(Other.Ty.isScalable(), Other.Ty.getElementCount().getKnownMinValue()); assert((!Ty.isVector() || Ty.isScalable() == Other.Ty.isScalable()) && "Unexpected mismatch of scalable property"); return Ty.isVector() ? std::make_tuple(Ty.isScalable(), Ty.getSizeInBits().getKnownMinSize()) < std::make_tuple(Other.Ty.isScalable(), Other.Ty.getSizeInBits().getKnownMinSize()) : Ty.getSizeInBits().getFixedSize() < Other.Ty.getSizeInBits().getFixedSize(); } bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; } }; // Track all types that are used so we can emit the corresponding enum. std::set KnownTypes; class InstructionMatcher; /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...). static Optional MVTToLLT(MVT::SimpleValueType SVT) { MVT VT(SVT); if (VT.isVector() && !VT.getVectorElementCount().isScalar()) return LLTCodeGen( LLT::vector(VT.getVectorElementCount(), VT.getScalarSizeInBits())); if (VT.isInteger() || VT.isFloatingPoint()) return LLTCodeGen(LLT::scalar(VT.getSizeInBits())); return None; } static std::string explainPredicates(const TreePatternNode *N) { std::string Explanation; StringRef Separator = ""; for (const TreePredicateCall &Call : N->getPredicateCalls()) { const TreePredicateFn &P = Call.Fn; Explanation += (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); Separator = ", "; if (P.isAlwaysTrue()) Explanation += " always-true"; if (P.isImmediatePattern()) Explanation += " immediate"; if (P.isUnindexed()) Explanation += " unindexed"; if (P.isNonExtLoad()) Explanation += " non-extload"; if (P.isAnyExtLoad()) Explanation += " extload"; if (P.isSignExtLoad()) Explanation += " sextload"; if (P.isZeroExtLoad()) Explanation += " zextload"; if (P.isNonTruncStore()) Explanation += " non-truncstore"; if (P.isTruncStore()) Explanation += " truncstore"; if (Record *VT = P.getMemoryVT()) Explanation += (" MemVT=" + VT->getName()).str(); if (Record *VT = P.getScalarMemoryVT()) Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); if (ListInit *AddrSpaces = P.getAddressSpaces()) { raw_string_ostream OS(Explanation); OS << " AddressSpaces=["; StringRef AddrSpaceSeparator; for (Init *Val : AddrSpaces->getValues()) { IntInit *IntVal = dyn_cast(Val); if (!IntVal) continue; OS << AddrSpaceSeparator << IntVal->getValue(); AddrSpaceSeparator = ", "; } OS << ']'; } int64_t MinAlign = P.getMinAlignment(); if (MinAlign > 0) Explanation += " MinAlign=" + utostr(MinAlign); if (P.isAtomicOrderingMonotonic()) Explanation += " monotonic"; if (P.isAtomicOrderingAcquire()) Explanation += " acquire"; if (P.isAtomicOrderingRelease()) Explanation += " release"; if (P.isAtomicOrderingAcquireRelease()) Explanation += " acq_rel"; if (P.isAtomicOrderingSequentiallyConsistent()) Explanation += " seq_cst"; if (P.isAtomicOrderingAcquireOrStronger()) Explanation += " >=acquire"; if (P.isAtomicOrderingWeakerThanAcquire()) Explanation += " isSubClassOf("SDNode")) return (" (" + Operator->getValueAsString("Opcode") + ")").str(); if (Operator->isSubClassOf("Intrinsic")) return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str(); if (Operator->isSubClassOf("ComplexPattern")) return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + ")") .str(); if (Operator->isSubClassOf("SDNodeXForm")) return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + ")") .str(); return (" (Operator " + Operator->getName() + " not understood)").str(); } /// Helper function to let the emitter report skip reason error messages. static Error failedImport(const Twine &Reason) { return make_error(Reason, inconvertibleErrorCode()); } static Error isTrivialOperatorNode(const TreePatternNode *N) { std::string Explanation; std::string Separator; bool HasUnsupportedPredicate = false; for (const TreePredicateCall &Call : N->getPredicateCalls()) { const TreePredicateFn &Predicate = Call.Fn; if (Predicate.isAlwaysTrue()) continue; if (Predicate.isImmediatePattern()) continue; if (Predicate.hasNoUse()) continue; if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) continue; if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) continue; if (Predicate.isLoad() && Predicate.getMemoryVT()) continue; if (Predicate.isLoad() || Predicate.isStore()) { if (Predicate.isUnindexed()) continue; } if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { const ListInit *AddrSpaces = Predicate.getAddressSpaces(); if (AddrSpaces && !AddrSpaces->empty()) continue; if (Predicate.getMinAlignment() > 0) continue; } if (Predicate.isAtomic() && Predicate.getMemoryVT()) continue; if (Predicate.isAtomic() && (Predicate.isAtomicOrderingMonotonic() || Predicate.isAtomicOrderingAcquire() || Predicate.isAtomicOrderingRelease() || Predicate.isAtomicOrderingAcquireRelease() || Predicate.isAtomicOrderingSequentiallyConsistent() || Predicate.isAtomicOrderingAcquireOrStronger() || Predicate.isAtomicOrderingWeakerThanAcquire() || Predicate.isAtomicOrderingReleaseOrStronger() || Predicate.isAtomicOrderingWeakerThanRelease())) continue; if (Predicate.hasGISelPredicateCode()) continue; HasUnsupportedPredicate = true; Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")"; Separator = ", "; Explanation += (Separator + "first-failing:" + Predicate.getOrigPatFragRecord()->getRecord()->getName()) .str(); break; } if (!HasUnsupportedPredicate) return Error::success(); return failedImport(Explanation); } static Record *getInitValueAsRegClass(Init *V) { if (DefInit *VDefInit = dyn_cast(V)) { if (VDefInit->getDef()->isSubClassOf("RegisterOperand")) return VDefInit->getDef()->getValueAsDef("RegClass"); if (VDefInit->getDef()->isSubClassOf("RegisterClass")) return VDefInit->getDef(); } return nullptr; } std::string getNameForFeatureBitset(const std::vector &FeatureBitset) { std::string Name = "GIFBS"; for (const auto &Feature : FeatureBitset) Name += ("_" + Feature->getName()).str(); return Name; } static std::string getScopedName(unsigned Scope, const std::string &Name) { return ("pred:" + Twine(Scope) + ":" + Name).str(); } //===- MatchTable Helpers -------------------------------------------------===// class MatchTable; /// A record to be stored in a MatchTable. /// /// This class represents any and all output that may be required to emit the /// MatchTable. Instances are most often configured to represent an opcode or /// value that will be emitted to the table with some formatting but it can also /// represent commas, comments, and other formatting instructions. struct MatchTableRecord { enum RecordFlagsBits { MTRF_None = 0x0, /// Causes EmitStr to be formatted as comment when emitted. MTRF_Comment = 0x1, /// Causes the record value to be followed by a comma when emitted. MTRF_CommaFollows = 0x2, /// Causes the record value to be followed by a line break when emitted. MTRF_LineBreakFollows = 0x4, /// Indicates that the record defines a label and causes an additional /// comment to be emitted containing the index of the label. MTRF_Label = 0x8, /// Causes the record to be emitted as the index of the label specified by /// LabelID along with a comment indicating where that label is. MTRF_JumpTarget = 0x10, /// Causes the formatter to add a level of indentation before emitting the /// record. MTRF_Indent = 0x20, /// Causes the formatter to remove a level of indentation after emitting the /// record. MTRF_Outdent = 0x40, }; /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to /// reference or define. unsigned LabelID; /// The string to emit. Depending on the MTRF_* flags it may be a comment, a /// value, a label name. std::string EmitStr; private: /// The number of MatchTable elements described by this record. Comments are 0 /// while values are typically 1. Values >1 may occur when we need to emit /// values that exceed the size of a MatchTable element. unsigned NumElements; public: /// A bitfield of RecordFlagsBits flags. unsigned Flags; /// The actual run-time value, if known int64_t RawValue; MatchTableRecord(Optional LabelID_, StringRef EmitStr, unsigned NumElements, unsigned Flags, int64_t RawValue = std::numeric_limits::min()) : LabelID(LabelID_.value_or(~0u)), EmitStr(EmitStr), NumElements(NumElements), Flags(Flags), RawValue(RawValue) { assert((!LabelID_ || LabelID != ~0u) && "This value is reserved for non-labels"); } MatchTableRecord(const MatchTableRecord &Other) = default; MatchTableRecord(MatchTableRecord &&Other) = default; /// Useful if a Match Table Record gets optimized out void turnIntoComment() { Flags |= MTRF_Comment; Flags &= ~MTRF_CommaFollows; NumElements = 0; } /// For Jump Table generation purposes bool operator<(const MatchTableRecord &Other) const { return RawValue < Other.RawValue; } int64_t getRawValue() const { return RawValue; } void emit(raw_ostream &OS, bool LineBreakNextAfterThis, const MatchTable &Table) const; unsigned size() const { return NumElements; } }; class Matcher; /// Holds the contents of a generated MatchTable to enable formatting and the /// necessary index tracking needed to support GIM_Try. class MatchTable { /// An unique identifier for the table. The generated table will be named /// MatchTable${ID}. unsigned ID; /// The records that make up the table. Also includes comments describing the /// values being emitted and line breaks to format it. std::vector Contents; /// The currently defined labels. DenseMap LabelMap; /// Tracks the sum of MatchTableRecord::NumElements as the table is built. unsigned CurrentSize = 0; /// A unique identifier for a MatchTable label. unsigned CurrentLabelID = 0; /// Determines if the table should be instrumented for rule coverage tracking. bool IsWithCoverage; public: static MatchTableRecord LineBreak; static MatchTableRecord Comment(StringRef Comment) { return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment); } static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) { unsigned ExtraFlags = 0; if (IndentAdjust > 0) ExtraFlags |= MatchTableRecord::MTRF_Indent; if (IndentAdjust < 0) ExtraFlags |= MatchTableRecord::MTRF_Outdent; return MatchTableRecord(None, Opcode, 1, MatchTableRecord::MTRF_CommaFollows | ExtraFlags); } static MatchTableRecord NamedValue(StringRef NamedValue) { return MatchTableRecord(None, NamedValue, 1, MatchTableRecord::MTRF_CommaFollows); } static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) { return MatchTableRecord(None, NamedValue, 1, MatchTableRecord::MTRF_CommaFollows, RawValue); } static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue) { return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, MatchTableRecord::MTRF_CommaFollows); } static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue, int64_t RawValue) { return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1, MatchTableRecord::MTRF_CommaFollows, RawValue); } static MatchTableRecord IntValue(int64_t IntValue) { return MatchTableRecord(None, llvm::to_string(IntValue), 1, MatchTableRecord::MTRF_CommaFollows); } static MatchTableRecord Label(unsigned LabelID) { return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0, MatchTableRecord::MTRF_Label | MatchTableRecord::MTRF_Comment | MatchTableRecord::MTRF_LineBreakFollows); } static MatchTableRecord JumpTarget(unsigned LabelID) { return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1, MatchTableRecord::MTRF_JumpTarget | MatchTableRecord::MTRF_Comment | MatchTableRecord::MTRF_CommaFollows); } static MatchTable buildTable(ArrayRef Rules, bool WithCoverage); MatchTable(bool WithCoverage, unsigned ID = 0) : ID(ID), IsWithCoverage(WithCoverage) {} bool isWithCoverage() const { return IsWithCoverage; } void push_back(const MatchTableRecord &Value) { if (Value.Flags & MatchTableRecord::MTRF_Label) defineLabel(Value.LabelID); Contents.push_back(Value); CurrentSize += Value.size(); } unsigned allocateLabelID() { return CurrentLabelID++; } void defineLabel(unsigned LabelID) { LabelMap.insert(std::make_pair(LabelID, CurrentSize)); } unsigned getLabelIndex(unsigned LabelID) const { const auto I = LabelMap.find(LabelID); assert(I != LabelMap.end() && "Use of undeclared label"); return I->second; } void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; } void emitDeclaration(raw_ostream &OS) const { unsigned Indentation = 4; OS << " constexpr static int64_t MatchTable" << ID << "[] = {"; LineBreak.emit(OS, true, *this); OS << std::string(Indentation, ' '); for (auto I = Contents.begin(), E = Contents.end(); I != E; ++I) { bool LineBreakIsNext = false; const auto &NextI = std::next(I); if (NextI != E) { if (NextI->EmitStr == "" && NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows) LineBreakIsNext = true; } if (I->Flags & MatchTableRecord::MTRF_Indent) Indentation += 2; I->emit(OS, LineBreakIsNext, *this); if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows) OS << std::string(Indentation, ' '); if (I->Flags & MatchTableRecord::MTRF_Outdent) Indentation -= 2; } OS << "};\n"; } }; MatchTableRecord MatchTable::LineBreak = { None, "" /* Emit String */, 0 /* Elements */, MatchTableRecord::MTRF_LineBreakFollows}; void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis, const MatchTable &Table) const { bool UseLineComment = LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows); if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows)) UseLineComment = false; if (Flags & MTRF_Comment) OS << (UseLineComment ? "// " : "/*"); OS << EmitStr; if (Flags & MTRF_Label) OS << ": @" << Table.getLabelIndex(LabelID); if ((Flags & MTRF_Comment) && !UseLineComment) OS << "*/"; if (Flags & MTRF_JumpTarget) { if (Flags & MTRF_Comment) OS << " "; OS << Table.getLabelIndex(LabelID); } if (Flags & MTRF_CommaFollows) { OS << ","; if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows)) OS << " "; } if (Flags & MTRF_LineBreakFollows) OS << "\n"; } MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) { Table.push_back(Value); return Table; } //===- Matchers -----------------------------------------------------------===// class OperandMatcher; class MatchAction; class PredicateMatcher; class Matcher { public: virtual ~Matcher() = default; virtual void optimize() {} virtual void emit(MatchTable &Table) = 0; virtual bool hasFirstCondition() const = 0; virtual const PredicateMatcher &getFirstCondition() const = 0; virtual std::unique_ptr popFirstCondition() = 0; }; MatchTable MatchTable::buildTable(ArrayRef Rules, bool WithCoverage) { MatchTable Table(WithCoverage); for (Matcher *Rule : Rules) Rule->emit(Table); return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; } class GroupMatcher final : public Matcher { /// Conditions that form a common prefix of all the matchers contained. SmallVector, 1> Conditions; /// All the nested matchers, sharing a common prefix. std::vector Matchers; /// An owning collection for any auxiliary matchers created while optimizing /// nested matchers contained. std::vector> MatcherStorage; public: /// Add a matcher to the collection of nested matchers if it meets the /// requirements, and return true. If it doesn't, do nothing and return false. /// /// Expected to preserve its argument, so it could be moved out later on. bool addMatcher(Matcher &Candidate); /// Mark the matcher as fully-built and ensure any invariants expected by both /// optimize() and emit(...) methods. Generally, both sequences of calls /// are expected to lead to a sensible result: /// /// addMatcher(...)*; finalize(); optimize(); emit(...); and /// addMatcher(...)*; finalize(); emit(...); /// /// or generally /// /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }* /// /// Multiple calls to optimize() are expected to be handled gracefully, though /// optimize() is not expected to be idempotent. Multiple calls to finalize() /// aren't generally supported. emit(...) is expected to be non-mutating and /// producing the exact same results upon repeated calls. /// /// addMatcher() calls after the finalize() call are not supported. /// /// finalize() and optimize() are both allowed to mutate the contained /// matchers, so moving them out after finalize() is not supported. void finalize(); void optimize() override; void emit(MatchTable &Table) override; /// Could be used to move out the matchers added previously, unless finalize() /// has been already called. If any of the matchers are moved out, the group /// becomes safe to destroy, but not safe to re-use for anything else. iterator_range::iterator> matchers() { return make_range(Matchers.begin(), Matchers.end()); } size_t size() const { return Matchers.size(); } bool empty() const { return Matchers.empty(); } std::unique_ptr popFirstCondition() override { assert(!Conditions.empty() && "Trying to pop a condition from a condition-less group"); std::unique_ptr P = std::move(Conditions.front()); Conditions.erase(Conditions.begin()); return P; } const PredicateMatcher &getFirstCondition() const override { assert(!Conditions.empty() && "Trying to get a condition from a condition-less group"); return *Conditions.front(); } bool hasFirstCondition() const override { return !Conditions.empty(); } private: /// See if a candidate matcher could be added to this group solely by /// analyzing its first condition. bool candidateConditionMatches(const PredicateMatcher &Predicate) const; }; class SwitchMatcher : public Matcher { /// All the nested matchers, representing distinct switch-cases. The first /// conditions (as Matcher::getFirstCondition() reports) of all the nested /// matchers must share the same type and path to a value they check, in other /// words, be isIdenticalDownToValue, but have different values they check /// against. std::vector Matchers; /// The representative condition, with a type and a path (InsnVarID and OpIdx /// in most cases) shared by all the matchers contained. std::unique_ptr Condition = nullptr; /// Temporary set used to check that the case values don't repeat within the /// same switch. std::set Values; /// An owning collection for any auxiliary matchers created while optimizing /// nested matchers contained. std::vector> MatcherStorage; public: bool addMatcher(Matcher &Candidate); void finalize(); void emit(MatchTable &Table) override; iterator_range::iterator> matchers() { return make_range(Matchers.begin(), Matchers.end()); } size_t size() const { return Matchers.size(); } bool empty() const { return Matchers.empty(); } std::unique_ptr popFirstCondition() override { // SwitchMatcher doesn't have a common first condition for its cases, as all // the cases only share a kind of a value (a type and a path to it) they // match, but deliberately differ in the actual value they match. llvm_unreachable("Trying to pop a condition from a condition-less group"); } const PredicateMatcher &getFirstCondition() const override { llvm_unreachable("Trying to pop a condition from a condition-less group"); } bool hasFirstCondition() const override { return false; } private: /// See if the predicate type has a Switch-implementation for it. static bool isSupportedPredicateType(const PredicateMatcher &Predicate); bool candidateConditionMatches(const PredicateMatcher &Predicate) const; /// emit()-helper static void emitPredicateSpecificOpcodes(const PredicateMatcher &P, MatchTable &Table); }; /// Generates code to check that a match rule matches. class RuleMatcher : public Matcher { public: using ActionList = std::list>; using action_iterator = ActionList::iterator; protected: /// A list of matchers that all need to succeed for the current rule to match. /// FIXME: This currently supports a single match position but could be /// extended to support multiple positions to support div/rem fusion or /// load-multiple instructions. using MatchersTy = std::vector> ; MatchersTy Matchers; /// A list of actions that need to be taken when all predicates in this rule /// have succeeded. ActionList Actions; using DefinedInsnVariablesMap = std::map; /// A map of instruction matchers to the local variables DefinedInsnVariablesMap InsnVariableIDs; using MutatableInsnSet = SmallPtrSet; // The set of instruction matchers that have not yet been claimed for mutation // by a BuildMI. MutatableInsnSet MutatableInsns; /// A map of named operands defined by the matchers that may be referenced by /// the renderers. StringMap DefinedOperands; /// A map of anonymous physical register operands defined by the matchers that /// may be referenced by the renderers. DenseMap PhysRegOperands; /// ID for the next instruction variable defined with implicitlyDefineInsnVar() unsigned NextInsnVarID; /// ID for the next output instruction allocated with allocateOutputInsnID() unsigned NextOutputInsnID; /// ID for the next temporary register ID allocated with allocateTempRegID() unsigned NextTempRegID; std::vector RequiredFeatures; std::vector> EpilogueMatchers; ArrayRef SrcLoc; typedef std::tuple DefinedComplexPatternSubOperand; typedef StringMap DefinedComplexPatternSubOperandMap; /// A map of Symbolic Names to ComplexPattern sub-operands. DefinedComplexPatternSubOperandMap ComplexSubOperands; /// A map used to for multiple referenced error check of ComplexSubOperand. /// ComplexSubOperand can't be referenced multiple from different operands, /// however multiple references from same operand are allowed since that is /// how 'same operand checks' are generated. StringMap ComplexSubOperandsParentName; uint64_t RuleID; static uint64_t NextRuleID; public: RuleMatcher(ArrayRef SrcLoc) : NextInsnVarID(0), NextOutputInsnID(0), NextTempRegID(0), SrcLoc(SrcLoc), RuleID(NextRuleID++) {} RuleMatcher(RuleMatcher &&Other) = default; RuleMatcher &operator=(RuleMatcher &&Other) = default; uint64_t getRuleID() const { return RuleID; } InstructionMatcher &addInstructionMatcher(StringRef SymbolicName); void addRequiredFeature(Record *Feature); const std::vector &getRequiredFeatures() const; template Kind &addAction(Args &&... args); template action_iterator insertAction(action_iterator InsertPt, Args &&... args); /// Define an instruction without emitting any code to do so. unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher); unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const; DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const { return InsnVariableIDs.begin(); } DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const { return InsnVariableIDs.end(); } iterator_range defined_insn_vars() const { return make_range(defined_insn_vars_begin(), defined_insn_vars_end()); } MutatableInsnSet::const_iterator mutatable_insns_begin() const { return MutatableInsns.begin(); } MutatableInsnSet::const_iterator mutatable_insns_end() const { return MutatableInsns.end(); } iterator_range mutatable_insns() const { return make_range(mutatable_insns_begin(), mutatable_insns_end()); } void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) { bool R = MutatableInsns.erase(InsnMatcher); assert(R && "Reserving a mutatable insn that isn't available"); (void)R; } action_iterator actions_begin() { return Actions.begin(); } action_iterator actions_end() { return Actions.end(); } iterator_range actions() { return make_range(actions_begin(), actions_end()); } void defineOperand(StringRef SymbolicName, OperandMatcher &OM); void definePhysRegOperand(Record *Reg, OperandMatcher &OM); Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern, unsigned RendererID, unsigned SubOperandID, StringRef ParentSymbolicName) { std::string ParentName(ParentSymbolicName); if (ComplexSubOperands.count(SymbolicName)) { const std::string &RecordedParentName = ComplexSubOperandsParentName[SymbolicName]; if (RecordedParentName != ParentName) return failedImport("Error: Complex suboperand " + SymbolicName + " referenced by different operands: " + RecordedParentName + " and " + ParentName + "."); // Complex suboperand referenced more than once from same the operand is // used to generate 'same operand check'. Emitting of // GIR_ComplexSubOperandRenderer for them is already handled. return Error::success(); } ComplexSubOperands[SymbolicName] = std::make_tuple(ComplexPattern, RendererID, SubOperandID); ComplexSubOperandsParentName[SymbolicName] = ParentName; return Error::success(); } Optional getComplexSubOperand(StringRef SymbolicName) const { const auto &I = ComplexSubOperands.find(SymbolicName); if (I == ComplexSubOperands.end()) return None; return I->second; } InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const; const OperandMatcher &getOperandMatcher(StringRef Name) const; const OperandMatcher &getPhysRegOperandMatcher(Record *) const; void optimize() override; void emit(MatchTable &Table) override; /// Compare the priority of this object and B. /// /// Returns true if this object is more important than B. bool isHigherPriorityThan(const RuleMatcher &B) const; /// Report the maximum number of temporary operands needed by the rule /// matcher. unsigned countRendererFns() const; std::unique_ptr popFirstCondition() override; const PredicateMatcher &getFirstCondition() const override; LLTCodeGen getFirstConditionAsRootType(); bool hasFirstCondition() const override; unsigned getNumOperands() const; StringRef getOpcode() const; // FIXME: Remove this as soon as possible InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); } unsigned allocateOutputInsnID() { return NextOutputInsnID++; } unsigned allocateTempRegID() { return NextTempRegID++; } iterator_range insnmatchers() { return make_range(Matchers.begin(), Matchers.end()); } bool insnmatchers_empty() const { return Matchers.empty(); } void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); } }; uint64_t RuleMatcher::NextRuleID = 0; using action_iterator = RuleMatcher::action_iterator; template class PredicateListMatcher { private: /// Template instantiations should specialize this to return a string to use /// for the comment emitted when there are no predicates. std::string getNoPredicateComment() const; protected: using PredicatesTy = std::deque>; PredicatesTy Predicates; /// Track if the list of predicates was manipulated by one of the optimization /// methods. bool Optimized = false; public: typename PredicatesTy::iterator predicates_begin() { return Predicates.begin(); } typename PredicatesTy::iterator predicates_end() { return Predicates.end(); } iterator_range predicates() { return make_range(predicates_begin(), predicates_end()); } typename PredicatesTy::size_type predicates_size() const { return Predicates.size(); } bool predicates_empty() const { return Predicates.empty(); } std::unique_ptr predicates_pop_front() { std::unique_ptr Front = std::move(Predicates.front()); Predicates.pop_front(); Optimized = true; return Front; } void prependPredicate(std::unique_ptr &&Predicate) { Predicates.push_front(std::move(Predicate)); } void eraseNullPredicates() { const auto NewEnd = std::stable_partition(Predicates.begin(), Predicates.end(), std::logical_not>()); if (NewEnd != Predicates.begin()) { Predicates.erase(Predicates.begin(), NewEnd); Optimized = true; } } /// Emit MatchTable opcodes that tests whether all the predicates are met. template void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) { if (Predicates.empty() && !Optimized) { Table << MatchTable::Comment(getNoPredicateComment()) << MatchTable::LineBreak; return; } for (const auto &Predicate : predicates()) Predicate->emitPredicateOpcodes(Table, std::forward(args)...); } /// Provide a function to avoid emitting certain predicates. This is used to /// defer some predicate checks until after others using PredicateFilterFunc = std::function; /// Emit MatchTable opcodes for predicates which satisfy \p /// ShouldEmitPredicate. This should be called multiple times to ensure all /// predicates are eventually added to the match table. template void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate, MatchTable &Table, Args &&... args) { if (Predicates.empty() && !Optimized) { Table << MatchTable::Comment(getNoPredicateComment()) << MatchTable::LineBreak; return; } for (const auto &Predicate : predicates()) { if (ShouldEmitPredicate(*Predicate)) Predicate->emitPredicateOpcodes(Table, std::forward(args)...); } } }; class PredicateMatcher { public: /// This enum is used for RTTI and also defines the priority that is given to /// the predicate when generating the matcher code. Kinds with higher priority /// must be tested first. /// /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter /// but OPM_Int must have priority over OPM_RegBank since constant integers /// are represented by a virtual register defined by a G_CONSTANT instruction. /// /// Note: The relative priority between IPM_ and OPM_ does not matter, they /// are currently not compared between each other. enum PredicateKind { IPM_Opcode, IPM_NumOperands, IPM_ImmPredicate, IPM_Imm, IPM_AtomicOrderingMMO, IPM_MemoryLLTSize, IPM_MemoryVsLLTSize, IPM_MemoryAddressSpace, IPM_MemoryAlignment, IPM_VectorSplatImm, IPM_NoUse, IPM_GenericPredicate, OPM_SameOperand, OPM_ComplexPattern, OPM_IntrinsicID, OPM_CmpPredicate, OPM_Instruction, OPM_Int, OPM_LiteralInt, OPM_LLT, OPM_PointerToAny, OPM_RegBank, OPM_MBB, OPM_RecordNamedOperand, }; protected: PredicateKind Kind; unsigned InsnVarID; unsigned OpIdx; public: PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0) : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {} unsigned getInsnVarID() const { return InsnVarID; } unsigned getOpIdx() const { return OpIdx; } virtual ~PredicateMatcher() = default; /// Emit MatchTable opcodes that check the predicate for the given operand. virtual void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const = 0; PredicateKind getKind() const { return Kind; } bool dependsOnOperands() const { // Custom predicates really depend on the context pattern of the // instruction, not just the individual instruction. This therefore // implicitly depends on all other pattern constraints. return Kind == IPM_GenericPredicate; } virtual bool isIdentical(const PredicateMatcher &B) const { return B.getKind() == getKind() && InsnVarID == B.InsnVarID && OpIdx == B.OpIdx; } virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const { return hasValue() && PredicateMatcher::isIdentical(B); } virtual MatchTableRecord getValue() const { assert(hasValue() && "Can not get a value of a value-less predicate!"); llvm_unreachable("Not implemented yet"); } virtual bool hasValue() const { return false; } /// Report the maximum number of temporary operands needed by the predicate /// matcher. virtual unsigned countRendererFns() const { return 0; } }; /// Generates code to check a predicate of an operand. /// /// Typical predicates include: /// * Operand is a particular register. /// * Operand is assigned a particular register bank. /// * Operand is an MBB. class OperandPredicateMatcher : public PredicateMatcher { public: OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx) : PredicateMatcher(Kind, InsnVarID, OpIdx) {} virtual ~OperandPredicateMatcher() {} /// Compare the priority of this object and B. /// /// Returns true if this object is more important than B. virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const; }; template <> std::string PredicateListMatcher::getNoPredicateComment() const { return "No operand predicates"; } /// Generates code to check that a register operand is defined by the same exact /// one as another. class SameOperandMatcher : public OperandPredicateMatcher { std::string MatchingName; unsigned OrigOpIdx; public: SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName, unsigned OrigOpIdx) : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx), MatchingName(MatchingName), OrigOpIdx(OrigOpIdx) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_SameOperand; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override; bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && OrigOpIdx == cast(&B)->OrigOpIdx && MatchingName == cast(&B)->MatchingName; } }; /// Generates code to check that an operand is a particular LLT. class LLTOperandMatcher : public OperandPredicateMatcher { protected: LLTCodeGen Ty; public: static std::map TypeIDValues; static void initTypeIDValuesMap() { TypeIDValues.clear(); unsigned ID = 0; for (const LLTCodeGen &LLTy : KnownTypes) TypeIDValues[LLTy] = ID++; } LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty) : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) { KnownTypes.insert(Ty); } static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_LLT; } bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && Ty == cast(&B)->Ty; } MatchTableRecord getValue() const override { const auto VI = TypeIDValues.find(Ty); if (VI == TypeIDValues.end()) return MatchTable::NamedValue(getTy().getCxxEnumValue()); return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second); } bool hasValue() const override { if (TypeIDValues.size() != KnownTypes.size()) initTypeIDValuesMap(); return TypeIDValues.count(Ty); } LLTCodeGen getTy() const { return Ty; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type") << getValue() << MatchTable::LineBreak; } }; std::map LLTOperandMatcher::TypeIDValues; /// Generates code to check that an operand is a pointer to any address space. /// /// In SelectionDAG, the types did not describe pointers or address spaces. As a /// result, iN is used to describe a pointer of N bits to any address space and /// PatFrag predicates are typically used to constrain the address space. There's /// no reliable means to derive the missing type information from the pattern so /// imported rules must test the components of a pointer separately. /// /// If SizeInBits is zero, then the pointer size will be obtained from the /// subtarget. class PointerToAnyOperandMatcher : public OperandPredicateMatcher { protected: unsigned SizeInBits; public: PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx, unsigned SizeInBits) : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx), SizeInBits(SizeInBits) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_PointerToAny; } bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && SizeInBits == cast(&B)->SizeInBits; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckPointerToAny") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::Comment("SizeInBits") << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak; } }; /// Generates code to record named operand in RecordedOperands list at StoreIdx. /// Predicates with 'let PredicateCodeUsesOperands = 1' get RecordedOperands as /// an argument to predicate's c++ code once all operands have been matched. class RecordNamedOperandMatcher : public OperandPredicateMatcher { protected: unsigned StoreIdx; std::string Name; public: RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx, unsigned StoreIdx, StringRef Name) : OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx), StoreIdx(StoreIdx), Name(Name) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_RecordNamedOperand; } bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && StoreIdx == cast(&B)->StoreIdx && Name == cast(&B)->Name; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_RecordNamedOperand") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx) << MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak; } }; /// Generates code to check that an operand is a particular target constant. class ComplexPatternOperandMatcher : public OperandPredicateMatcher { protected: const OperandMatcher &Operand; const Record &TheDef; unsigned getAllocatedTemporariesBaseID() const; public: bool isIdentical(const PredicateMatcher &B) const override { return false; } ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const OperandMatcher &Operand, const Record &TheDef) : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx), Operand(Operand), TheDef(TheDef) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_ComplexPattern; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { unsigned ID = getAllocatedTemporariesBaseID(); Table << MatchTable::Opcode("GIM_CheckComplexPattern") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID) << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str()) << MatchTable::LineBreak; } unsigned countRendererFns() const override { return 1; } }; /// Generates code to check that an operand is in a particular register bank. class RegisterBankOperandMatcher : public OperandPredicateMatcher { protected: const CodeGenRegisterClass &RC; public: RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const CodeGenRegisterClass &RC) : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {} bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && RC.getDef() == cast(&B)->RC.getDef(); } static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_RegBank; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckRegBankForClass") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::Comment("RC") << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") << MatchTable::LineBreak; } }; /// Generates code to check that an operand is a basic block. class MBBOperandMatcher : public OperandPredicateMatcher { public: MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx) : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_MBB; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; } }; class ImmOperandMatcher : public OperandPredicateMatcher { public: ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx) : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_Imm; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; } }; /// Generates code to check that an operand is a G_CONSTANT with a particular /// int. class ConstantIntOperandMatcher : public OperandPredicateMatcher { protected: int64_t Value; public: ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {} bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && Value == cast(&B)->Value; } static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_Int; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckConstantInt") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::IntValue(Value) << MatchTable::LineBreak; } }; /// Generates code to check that an operand is a raw int (where MO.isImm() or /// MO.isCImm() is true). class LiteralIntOperandMatcher : public OperandPredicateMatcher { protected: int64_t Value; public: LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value) : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx), Value(Value) {} bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && Value == cast(&B)->Value; } static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_LiteralInt; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckLiteralInt") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::IntValue(Value) << MatchTable::LineBreak; } }; /// Generates code to check that an operand is an CmpInst predicate class CmpPredicateOperandMatcher : public OperandPredicateMatcher { protected: std::string PredName; public: CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx, std::string P) : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {} bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && PredName == cast(&B)->PredName; } static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_CmpPredicate; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckCmpPredicate") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Predicate") << MatchTable::NamedValue("CmpInst", PredName) << MatchTable::LineBreak; } }; /// Generates code to check that an operand is an intrinsic ID. class IntrinsicIDOperandMatcher : public OperandPredicateMatcher { protected: const CodeGenIntrinsic *II; public: IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const CodeGenIntrinsic *II) : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {} bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && II == cast(&B)->II; } static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_IntrinsicID; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckIntrinsicID") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::NamedValue("Intrinsic::" + II->EnumName) << MatchTable::LineBreak; } }; /// Generates code to check that this operand is an immediate whose value meets /// an immediate predicate. class OperandImmPredicateMatcher : public OperandPredicateMatcher { protected: TreePredicateFn Predicate; public: OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx, const TreePredicateFn &Predicate) : OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx), Predicate(Predicate) {} bool isIdentical(const PredicateMatcher &B) const override { return OperandPredicateMatcher::isIdentical(B) && Predicate.getOrigPatFragRecord() == cast(&B) ->Predicate.getOrigPatFragRecord(); } static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_ImmPredicate; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Predicate") << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) << MatchTable::LineBreak; } }; /// Generates code to check that a set of predicates match for a particular /// operand. class OperandMatcher : public PredicateListMatcher { protected: InstructionMatcher &Insn; unsigned OpIdx; std::string SymbolicName; /// The index of the first temporary variable allocated to this operand. The /// number of allocated temporaries can be found with /// countRendererFns(). unsigned AllocatedTemporariesBaseID; public: OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx, const std::string &SymbolicName, unsigned AllocatedTemporariesBaseID) : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName), AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {} bool hasSymbolicName() const { return !SymbolicName.empty(); } StringRef getSymbolicName() const { return SymbolicName; } void setSymbolicName(StringRef Name) { assert(SymbolicName.empty() && "Operand already has a symbolic name"); SymbolicName = std::string(Name); } /// Construct a new operand predicate and add it to the matcher. template Optional addPredicate(Args &&... args) { if (isSameAsAnotherOperand()) return None; Predicates.emplace_back(std::make_unique( getInsnVarID(), getOpIdx(), std::forward(args)...)); return static_cast(Predicates.back().get()); } unsigned getOpIdx() const { return OpIdx; } unsigned getInsnVarID() const; std::string getOperandExpr(unsigned InsnVarID) const { return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" + llvm::to_string(OpIdx) + ")"; } InstructionMatcher &getInstructionMatcher() const { return Insn; } Error addTypeCheckPredicate(const TypeSetByHwMode &VTy, bool OperandIsAPointer); /// Emit MatchTable opcodes that test whether the instruction named in /// InsnVarID matches all the predicates and all the operands. void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { if (!Optimized) { std::string Comment; raw_string_ostream CommentOS(Comment); CommentOS << "MIs[" << getInsnVarID() << "] "; if (SymbolicName.empty()) CommentOS << "Operand " << OpIdx; else CommentOS << SymbolicName; Table << MatchTable::Comment(Comment) << MatchTable::LineBreak; } emitPredicateListOpcodes(Table, Rule); } /// Compare the priority of this object and B. /// /// Returns true if this object is more important than B. bool isHigherPriorityThan(OperandMatcher &B) { // Operand matchers involving more predicates have higher priority. if (predicates_size() > B.predicates_size()) return true; if (predicates_size() < B.predicates_size()) return false; // This assumes that predicates are added in a consistent order. for (auto &&Predicate : zip(predicates(), B.predicates())) { if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate))) return true; if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate))) return false; } return false; }; /// Report the maximum number of temporary operands needed by the operand /// matcher. unsigned countRendererFns() { return std::accumulate( predicates().begin(), predicates().end(), 0, [](unsigned A, const std::unique_ptr &Predicate) { return A + Predicate->countRendererFns(); }); } unsigned getAllocatedTemporariesBaseID() const { return AllocatedTemporariesBaseID; } bool isSameAsAnotherOperand() { for (const auto &Predicate : predicates()) if (isa(Predicate)) return true; return false; } }; Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy, bool OperandIsAPointer) { if (!VTy.isMachineValueType()) return failedImport("unsupported typeset"); if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) { addPredicate(0); return Error::success(); } auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy); if (!OpTyOrNone) return failedImport("unsupported type"); if (OperandIsAPointer) addPredicate(OpTyOrNone->get().getSizeInBits()); else if (VTy.isPointer()) addPredicate(LLT::pointer(VTy.getPtrAddrSpace(), OpTyOrNone->get().getSizeInBits())); else addPredicate(*OpTyOrNone); return Error::success(); } unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const { return Operand.getAllocatedTemporariesBaseID(); } /// Generates code to check a predicate on an instruction. /// /// Typical predicates include: /// * The opcode of the instruction is a particular value. /// * The nsw/nuw flag is/isn't set. class InstructionPredicateMatcher : public PredicateMatcher { public: InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID) : PredicateMatcher(Kind, InsnVarID) {} virtual ~InstructionPredicateMatcher() {} /// Compare the priority of this object and B. /// /// Returns true if this object is more important than B. virtual bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const { return Kind < B.Kind; }; }; template <> std::string PredicateListMatcher::getNoPredicateComment() const { return "No instruction predicates"; } /// Generates code to check the opcode of an instruction. class InstructionOpcodeMatcher : public InstructionPredicateMatcher { protected: // Allow matching one to several, similar opcodes that share properties. This // is to handle patterns where one SelectionDAG operation maps to multiple // GlobalISel ones (e.g. G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC). The first // is treated as the canonical opcode. SmallVector Insts; static DenseMap OpcodeValues; MatchTableRecord getInstValue(const CodeGenInstruction *I) const { const auto VI = OpcodeValues.find(I); if (VI != OpcodeValues.end()) return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), VI->second); return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); } public: static void initOpcodeValuesMap(const CodeGenTarget &Target) { OpcodeValues.clear(); unsigned OpcodeValue = 0; for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue()) OpcodeValues[I] = OpcodeValue++; } InstructionOpcodeMatcher(unsigned InsnVarID, ArrayRef I) : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), Insts(I.begin(), I.end()) { assert((Insts.size() == 1 || Insts.size() == 2) && "unexpected number of opcode alternatives"); } static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_Opcode; } bool isIdentical(const PredicateMatcher &B) const override { return InstructionPredicateMatcher::isIdentical(B) && Insts == cast(&B)->Insts; } bool hasValue() const override { return Insts.size() == 1 && OpcodeValues.count(Insts[0]); } // TODO: This is used for the SwitchMatcher optimization. We should be able to // return a list of the opcodes to match. MatchTableRecord getValue() const override { assert(Insts.size() == 1); const CodeGenInstruction *I = Insts[0]; const auto VI = OpcodeValues.find(I); if (VI != OpcodeValues.end()) return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(), VI->second); return MatchTable::NamedValue(I->Namespace, I->TheDef->getName()); } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { StringRef CheckType = Insts.size() == 1 ? "GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither"; Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID); for (const CodeGenInstruction *I : Insts) Table << getInstValue(I); Table << MatchTable::LineBreak; } /// Compare the priority of this object and B. /// /// Returns true if this object is more important than B. bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const override { if (InstructionPredicateMatcher::isHigherPriorityThan(B)) return true; if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this)) return false; // Prioritize opcodes for cosmetic reasons in the generated source. Although // this is cosmetic at the moment, we may want to drive a similar ordering // using instruction frequency information to improve compile time. if (const InstructionOpcodeMatcher *BO = dyn_cast(&B)) return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName(); return false; }; bool isConstantInstruction() const { return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT"; } // The first opcode is the canonical opcode, and later are alternatives. StringRef getOpcode() const { return Insts[0]->TheDef->getName(); } ArrayRef getAlternativeOpcodes() { return Insts; } bool isVariadicNumOperands() const { // If one is variadic, they all should be. return Insts[0]->Operands.isVariadic; } StringRef getOperandType(unsigned OpIdx) const { // Types expected to be uniform for all alternatives. return Insts[0]->Operands[OpIdx].OperandType; } }; DenseMap InstructionOpcodeMatcher::OpcodeValues; class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher { unsigned NumOperands = 0; public: InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands) : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID), NumOperands(NumOperands) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_NumOperands; } bool isIdentical(const PredicateMatcher &B) const override { return InstructionPredicateMatcher::isIdentical(B) && NumOperands == cast(&B)->NumOperands; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckNumOperands") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Expected") << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak; } }; /// Generates code to check that this instruction is a constant whose value /// meets an immediate predicate. /// /// Immediates are slightly odd since they are typically used like an operand /// but are represented as an operator internally. We typically write simm8:$src /// in a tablegen pattern, but this is just syntactic sugar for /// (imm:i32)<>:$imm which more directly describes the nodes /// that will be matched and the predicate (which is attached to the imm /// operator) that will be tested. In SelectionDAG this describes a /// ConstantSDNode whose internal value will be tested using the simm8 predicate. /// /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In /// this representation, the immediate could be tested with an /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a /// OperandPredicateMatcher-subclass to check the Value meets the predicate but /// there are two implementation issues with producing that matcher /// configuration from the SelectionDAG pattern: /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that /// were we to sink the immediate predicate to the operand we would have to /// have two partial implementations of PatFrag support, one for immediates /// and one for non-immediates. /// * At the point we handle the predicate, the OperandMatcher hasn't been /// created yet. If we were to sink the predicate to the OperandMatcher we /// would also have to complicate (or duplicate) the code that descends and /// creates matchers for the subtree. /// Overall, it's simpler to handle it in the place it was found. class InstructionImmPredicateMatcher : public InstructionPredicateMatcher { protected: TreePredicateFn Predicate; public: InstructionImmPredicateMatcher(unsigned InsnVarID, const TreePredicateFn &Predicate) : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID), Predicate(Predicate) {} bool isIdentical(const PredicateMatcher &B) const override { return InstructionPredicateMatcher::isIdentical(B) && Predicate.getOrigPatFragRecord() == cast(&B) ->Predicate.getOrigPatFragRecord(); } static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_ImmPredicate; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate)) << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Predicate") << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) << MatchTable::LineBreak; } }; /// Generates code to check that a memory instruction has a atomic ordering /// MachineMemoryOperand. class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher { public: enum AOComparator { AO_Exactly, AO_OrStronger, AO_WeakerThan, }; protected: StringRef Order; AOComparator Comparator; public: AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order, AOComparator Comparator = AO_Exactly) : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID), Order(Order), Comparator(Comparator) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_AtomicOrderingMMO; } bool isIdentical(const PredicateMatcher &B) const override { if (!InstructionPredicateMatcher::isIdentical(B)) return false; const auto &R = *cast(&B); return Order == R.Order && Comparator == R.Comparator; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { StringRef Opcode = "GIM_CheckAtomicOrdering"; if (Comparator == AO_OrStronger) Opcode = "GIM_CheckAtomicOrderingOrStrongerThan"; if (Comparator == AO_WeakerThan) Opcode = "GIM_CheckAtomicOrderingWeakerThan"; Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order") << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str()) << MatchTable::LineBreak; } }; /// Generates code to check that the size of an MMO is exactly N bytes. class MemorySizePredicateMatcher : public InstructionPredicateMatcher { protected: unsigned MMOIdx; uint64_t Size; public: MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size) : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID), MMOIdx(MMOIdx), Size(Size) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_MemoryLLTSize; } bool isIdentical(const PredicateMatcher &B) const override { return InstructionPredicateMatcher::isIdentical(B) && MMOIdx == cast(&B)->MMOIdx && Size == cast(&B)->Size; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) << MatchTable::Comment("Size") << MatchTable::IntValue(Size) << MatchTable::LineBreak; } }; class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher { protected: unsigned MMOIdx; SmallVector AddrSpaces; public: MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, ArrayRef AddrSpaces) : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID), MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_MemoryAddressSpace; } bool isIdentical(const PredicateMatcher &B) const override { if (!InstructionPredicateMatcher::isIdentical(B)) return false; auto *Other = cast(&B); return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) // Encode number of address spaces to expect. << MatchTable::Comment("NumAddrSpace") << MatchTable::IntValue(AddrSpaces.size()); for (unsigned AS : AddrSpaces) Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS); Table << MatchTable::LineBreak; } }; class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher { protected: unsigned MMOIdx; int MinAlign; public: MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, int MinAlign) : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID), MMOIdx(MMOIdx), MinAlign(MinAlign) { assert(MinAlign > 0); } static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_MemoryAlignment; } bool isIdentical(const PredicateMatcher &B) const override { if (!InstructionPredicateMatcher::isIdentical(B)) return false; auto *Other = cast(&B); return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckMemoryAlignment") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign) << MatchTable::LineBreak; } }; /// Generates code to check that the size of an MMO is less-than, equal-to, or /// greater than a given LLT. class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher { public: enum RelationKind { GreaterThan, EqualTo, LessThan, }; protected: unsigned MMOIdx; RelationKind Relation; unsigned OpIdx; public: MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, enum RelationKind Relation, unsigned OpIdx) : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID), MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_MemoryVsLLTSize; } bool isIdentical(const PredicateMatcher &B) const override { return InstructionPredicateMatcher::isIdentical(B) && MMOIdx == cast(&B)->MMOIdx && Relation == cast(&B)->Relation && OpIdx == cast(&B)->OpIdx; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode(Relation == EqualTo ? "GIM_CheckMemorySizeEqualToLLT" : Relation == GreaterThan ? "GIM_CheckMemorySizeGreaterThanLLT" : "GIM_CheckMemorySizeLessThanLLT") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx) << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak; } }; // Matcher for immAllOnesV/immAllZerosV class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher { public: enum SplatKind { AllZeros, AllOnes }; private: SplatKind Kind; public: VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K) : InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_VectorSplatImm; } bool isIdentical(const PredicateMatcher &B) const override { return InstructionPredicateMatcher::isIdentical(B) && Kind == static_cast(B).Kind; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { if (Kind == AllOnes) Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes"); else Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros"); Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID); Table << MatchTable::LineBreak; } }; /// Generates code to check an arbitrary C++ instruction predicate. class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher { protected: TreePredicateFn Predicate; public: GenericInstructionPredicateMatcher(unsigned InsnVarID, TreePredicateFn Predicate) : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID), Predicate(Predicate) {} static bool classof(const InstructionPredicateMatcher *P) { return P->getKind() == IPM_GenericPredicate; } bool isIdentical(const PredicateMatcher &B) const override { return InstructionPredicateMatcher::isIdentical(B) && Predicate == static_cast(B) .Predicate; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("FnId") << MatchTable::NamedValue(getEnumNameForPredicate(Predicate)) << MatchTable::LineBreak; } }; /// Generates code to check for the absence of use of the result. // TODO? Generalize this to support checking for one use. class NoUsePredicateMatcher : public InstructionPredicateMatcher { public: NoUsePredicateMatcher(unsigned InsnVarID) : InstructionPredicateMatcher(IPM_NoUse, InsnVarID) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == IPM_NoUse; } bool isIdentical(const PredicateMatcher &B) const override { return InstructionPredicateMatcher::isIdentical(B); } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIM_CheckHasNoUse") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::LineBreak; } }; /// Generates code to check that a set of predicates and operands match for a /// particular instruction. /// /// Typical predicates include: /// * Has a specific opcode. /// * Has an nsw/nuw flag or doesn't. class InstructionMatcher final : public PredicateListMatcher { protected: typedef std::vector> OperandVec; RuleMatcher &Rule; /// The operands to match. All rendered operands must be present even if the /// condition is always true. OperandVec Operands; bool NumOperandsCheck = true; std::string SymbolicName; unsigned InsnVarID; /// PhysRegInputs - List list has an entry for each explicitly specified /// physreg input to the pattern. The first elt is the Register node, the /// second is the recorded slot number the input pattern match saved it in. SmallVector, 2> PhysRegInputs; public: InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName, bool NumOpsCheck = true) : Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) { // We create a new instruction matcher. // Get a new ID for that instruction. InsnVarID = Rule.implicitlyDefineInsnVar(*this); } /// Construct a new instruction predicate and add it to the matcher. template Optional addPredicate(Args &&... args) { Predicates.emplace_back( std::make_unique(getInsnVarID(), std::forward(args)...)); return static_cast(Predicates.back().get()); } RuleMatcher &getRuleMatcher() const { return Rule; } unsigned getInsnVarID() const { return InsnVarID; } /// Add an operand to the matcher. OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName, unsigned AllocatedTemporariesBaseID) { Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName, AllocatedTemporariesBaseID)); if (!SymbolicName.empty()) Rule.defineOperand(SymbolicName, *Operands.back()); return *Operands.back(); } OperandMatcher &getOperand(unsigned OpIdx) { auto I = llvm::find_if(Operands, [&OpIdx](const std::unique_ptr &X) { return X->getOpIdx() == OpIdx; }); if (I != Operands.end()) return **I; llvm_unreachable("Failed to lookup operand"); } OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx, unsigned TempOpIdx) { assert(SymbolicName.empty()); OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx); Operands.emplace_back(OM); Rule.definePhysRegOperand(Reg, *OM); PhysRegInputs.emplace_back(Reg, OpIdx); return *OM; } ArrayRef> getPhysRegInputs() const { return PhysRegInputs; } StringRef getSymbolicName() const { return SymbolicName; } unsigned getNumOperands() const { return Operands.size(); } OperandVec::iterator operands_begin() { return Operands.begin(); } OperandVec::iterator operands_end() { return Operands.end(); } iterator_range operands() { return make_range(operands_begin(), operands_end()); } OperandVec::const_iterator operands_begin() const { return Operands.begin(); } OperandVec::const_iterator operands_end() const { return Operands.end(); } iterator_range operands() const { return make_range(operands_begin(), operands_end()); } bool operands_empty() const { return Operands.empty(); } void pop_front() { Operands.erase(Operands.begin()); } void optimize(); /// Emit MatchTable opcodes that test whether the instruction named in /// InsnVarName matches all the predicates and all the operands. void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) { if (NumOperandsCheck) InstructionNumOperandsMatcher(InsnVarID, getNumOperands()) .emitPredicateOpcodes(Table, Rule); // First emit all instruction level predicates need to be verified before we // can verify operands. emitFilteredPredicateListOpcodes( [](const PredicateMatcher &P) { return !P.dependsOnOperands(); }, Table, Rule); // Emit all operand constraints. for (const auto &Operand : Operands) Operand->emitPredicateOpcodes(Table, Rule); // All of the tablegen defined predicates should now be matched. Now emit // any custom predicates that rely on all generated checks. emitFilteredPredicateListOpcodes( [](const PredicateMatcher &P) { return P.dependsOnOperands(); }, Table, Rule); } /// Compare the priority of this object and B. /// /// Returns true if this object is more important than B. bool isHigherPriorityThan(InstructionMatcher &B) { // Instruction matchers involving more operands have higher priority. if (Operands.size() > B.Operands.size()) return true; if (Operands.size() < B.Operands.size()) return false; for (auto &&P : zip(predicates(), B.predicates())) { auto L = static_cast(std::get<0>(P).get()); auto R = static_cast(std::get<1>(P).get()); if (L->isHigherPriorityThan(*R)) return true; if (R->isHigherPriorityThan(*L)) return false; } for (auto Operand : zip(Operands, B.Operands)) { if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand))) return true; if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand))) return false; } return false; }; /// Report the maximum number of temporary operands needed by the instruction /// matcher. unsigned countRendererFns() { return std::accumulate( predicates().begin(), predicates().end(), 0, [](unsigned A, const std::unique_ptr &Predicate) { return A + Predicate->countRendererFns(); }) + std::accumulate( Operands.begin(), Operands.end(), 0, [](unsigned A, const std::unique_ptr &Operand) { return A + Operand->countRendererFns(); }); } InstructionOpcodeMatcher &getOpcodeMatcher() { for (auto &P : predicates()) if (auto *OpMatcher = dyn_cast(P.get())) return *OpMatcher; llvm_unreachable("Didn't find an opcode matcher"); } bool isConstantInstruction() { return getOpcodeMatcher().isConstantInstruction(); } StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); } }; StringRef RuleMatcher::getOpcode() const { return Matchers.front()->getOpcode(); } unsigned RuleMatcher::getNumOperands() const { return Matchers.front()->getNumOperands(); } LLTCodeGen RuleMatcher::getFirstConditionAsRootType() { InstructionMatcher &InsnMatcher = *Matchers.front(); if (!InsnMatcher.predicates_empty()) if (const auto *TM = dyn_cast(&**InsnMatcher.predicates_begin())) if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0) return TM->getTy(); return {}; } /// Generates code to check that the operand is a register defined by an /// instruction that matches the given instruction matcher. /// /// For example, the pattern: /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3)) /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match /// the: /// (G_ADD $src1, $src2) /// subpattern. class InstructionOperandMatcher : public OperandPredicateMatcher { protected: std::unique_ptr InsnMatcher; public: InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx, RuleMatcher &Rule, StringRef SymbolicName, bool NumOpsCheck = true) : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx), InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {} static bool classof(const PredicateMatcher *P) { return P->getKind() == OPM_Instruction; } InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; } void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const { const unsigned NewInsnVarID = InsnMatcher->getInsnVarID(); Table << MatchTable::Opcode("GIM_RecordInsn") << MatchTable::Comment("DefineMI") << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI") << MatchTable::IntValue(getInsnVarID()) << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx()) << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]") << MatchTable::LineBreak; } void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { emitCaptureOpcodes(Table, Rule); InsnMatcher->emitPredicateOpcodes(Table, Rule); } bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override { if (OperandPredicateMatcher::isHigherPriorityThan(B)) return true; if (B.OperandPredicateMatcher::isHigherPriorityThan(*this)) return false; if (const InstructionOperandMatcher *BP = dyn_cast(&B)) if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher)) return true; return false; } }; void InstructionMatcher::optimize() { SmallVector, 8> Stash; const auto &OpcMatcher = getOpcodeMatcher(); Stash.push_back(predicates_pop_front()); if (Stash.back().get() == &OpcMatcher) { if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands()) Stash.emplace_back( new InstructionNumOperandsMatcher(InsnVarID, getNumOperands())); NumOperandsCheck = false; for (auto &OM : Operands) for (auto &OP : OM->predicates()) if (isa(OP)) { Stash.push_back(std::move(OP)); OM->eraseNullPredicates(); break; } } if (InsnVarID > 0) { assert(!Operands.empty() && "Nested instruction is expected to def a vreg"); for (auto &OP : Operands[0]->predicates()) OP.reset(); Operands[0]->eraseNullPredicates(); } for (auto &OM : Operands) { for (auto &OP : OM->predicates()) if (isa(OP)) Stash.push_back(std::move(OP)); OM->eraseNullPredicates(); } while (!Stash.empty()) prependPredicate(Stash.pop_back_val()); } //===- Actions ------------------------------------------------------------===// class OperandRenderer { public: enum RendererKind { OR_Copy, OR_CopyOrAddZeroReg, OR_CopySubReg, OR_CopyPhysReg, OR_CopyConstantAsImm, OR_CopyFConstantAsFPImm, OR_Imm, OR_SubRegIndex, OR_Register, OR_TempRegister, OR_ComplexPattern, OR_Custom, OR_CustomOperand }; protected: RendererKind Kind; public: OperandRenderer(RendererKind Kind) : Kind(Kind) {} virtual ~OperandRenderer() {} RendererKind getKind() const { return Kind; } virtual void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const = 0; }; /// A CopyRenderer emits code to copy a single operand from an existing /// instruction to the one being built. class CopyRenderer : public OperandRenderer { protected: unsigned NewInsnID; /// The name of the operand. const StringRef SymbolicName; public: CopyRenderer(unsigned NewInsnID, StringRef SymbolicName) : OperandRenderer(OR_Copy), NewInsnID(NewInsnID), SymbolicName(SymbolicName) { assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); } static bool classof(const OperandRenderer *R) { return R->getKind() == OR_Copy; } StringRef getSymbolicName() const { return SymbolicName; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") << MatchTable::IntValue(Operand.getOpIdx()) << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; } }; /// A CopyRenderer emits code to copy a virtual register to a specific physical /// register. class CopyPhysRegRenderer : public OperandRenderer { protected: unsigned NewInsnID; Record *PhysReg; public: CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg) : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID), PhysReg(Reg) { assert(PhysReg); } static bool classof(const OperandRenderer *R) { return R->getKind() == OR_CopyPhysReg; } Record *getPhysReg() const { return PhysReg; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg); unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") << MatchTable::IntValue(Operand.getOpIdx()) << MatchTable::Comment(PhysReg->getName()) << MatchTable::LineBreak; } }; /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an /// existing instruction to the one being built. If the operand turns out to be /// a 'G_CONSTANT 0' then it replaces the operand with a zero register. class CopyOrAddZeroRegRenderer : public OperandRenderer { protected: unsigned NewInsnID; /// The name of the operand. const StringRef SymbolicName; const Record *ZeroRegisterDef; public: CopyOrAddZeroRegRenderer(unsigned NewInsnID, StringRef SymbolicName, Record *ZeroRegisterDef) : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID), SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) { assert(!SymbolicName.empty() && "Cannot copy from an unspecified source"); } static bool classof(const OperandRenderer *R) { return R->getKind() == OR_CopyOrAddZeroReg; } StringRef getSymbolicName() const { return SymbolicName; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg") << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") << MatchTable::IntValue(Operand.getOpIdx()) << MatchTable::NamedValue( (ZeroRegisterDef->getValue("Namespace") ? ZeroRegisterDef->getValueAsString("Namespace") : ""), ZeroRegisterDef->getName()) << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; } }; /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to /// an extended immediate operand. class CopyConstantAsImmRenderer : public OperandRenderer { protected: unsigned NewInsnID; /// The name of the operand. const std::string SymbolicName; bool Signed; public: CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName) : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID), SymbolicName(SymbolicName), Signed(true) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_CopyConstantAsImm; } StringRef getSymbolicName() const { return SymbolicName; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm" : "GIR_CopyConstantAsUImm") << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; } }; /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT /// instruction to an extended immediate operand. class CopyFConstantAsFPImmRenderer : public OperandRenderer { protected: unsigned NewInsnID; /// The name of the operand. const std::string SymbolicName; public: CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName) : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID), SymbolicName(SymbolicName) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_CopyFConstantAsFPImm; } StringRef getSymbolicName() const { return SymbolicName; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm") << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; } }; /// A CopySubRegRenderer emits code to copy a single register operand from an /// existing instruction to the one being built and indicate that only a /// subregister should be copied. class CopySubRegRenderer : public OperandRenderer { protected: unsigned NewInsnID; /// The name of the operand. const StringRef SymbolicName; /// The subregister to extract. const CodeGenSubRegIndex *SubReg; public: CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName, const CodeGenSubRegIndex *SubReg) : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID), SymbolicName(SymbolicName), SubReg(SubReg) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_CopySubReg; } StringRef getSymbolicName() const { return SymbolicName; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName); unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher()); Table << MatchTable::Opcode("GIR_CopySubReg") << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID") << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx") << MatchTable::IntValue(Operand.getOpIdx()) << MatchTable::Comment("SubRegIdx") << MatchTable::IntValue(SubReg->EnumValue) << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; } }; /// Adds a specific physical register to the instruction being built. /// This is typically useful for WZR/XZR on AArch64. class AddRegisterRenderer : public OperandRenderer { protected: unsigned InsnID; const Record *RegisterDef; bool IsDef; const CodeGenTarget &Target; public: AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target, const Record *RegisterDef, bool IsDef = false) : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef), IsDef(IsDef), Target(Target) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_Register; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIR_AddRegister") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID); if (RegisterDef->getName() != "zero_reg") { Table << MatchTable::NamedValue( (RegisterDef->getValue("Namespace") ? RegisterDef->getValueAsString("Namespace") : ""), RegisterDef->getName()); } else { Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister"); } Table << MatchTable::Comment("AddRegisterRegFlags"); // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are // really needed for a physical register reference. We can pack the // register and flags in a single field. if (IsDef) Table << MatchTable::NamedValue("RegState::Define"); else Table << MatchTable::IntValue(0); Table << MatchTable::LineBreak; } }; /// Adds a specific temporary virtual register to the instruction being built. /// This is used to chain instructions together when emitting multiple /// instructions. class TempRegRenderer : public OperandRenderer { protected: unsigned InsnID; unsigned TempRegID; const CodeGenSubRegIndex *SubRegIdx; bool IsDef; bool IsDead; public: TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false, const CodeGenSubRegIndex *SubReg = nullptr, bool IsDead = false) : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID), SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_TempRegister; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { if (SubRegIdx) { assert(!IsDef); Table << MatchTable::Opcode("GIR_AddTempSubRegister"); } else Table << MatchTable::Opcode("GIR_AddTempRegister"); Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) << MatchTable::Comment("TempRegFlags"); if (IsDef) { SmallString<32> RegFlags; RegFlags += "RegState::Define"; if (IsDead) RegFlags += "|RegState::Dead"; Table << MatchTable::NamedValue(RegFlags); } else Table << MatchTable::IntValue(0); if (SubRegIdx) Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName()); Table << MatchTable::LineBreak; } }; /// Adds a specific immediate to the instruction being built. class ImmRenderer : public OperandRenderer { protected: unsigned InsnID; int64_t Imm; public: ImmRenderer(unsigned InsnID, int64_t Imm) : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_Imm; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm") << MatchTable::IntValue(Imm) << MatchTable::LineBreak; } }; /// Adds an enum value for a subreg index to the instruction being built. class SubRegIndexRenderer : public OperandRenderer { protected: unsigned InsnID; const CodeGenSubRegIndex *SubRegIdx; public: SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI) : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_SubRegIndex; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex") << MatchTable::IntValue(SubRegIdx->EnumValue) << MatchTable::LineBreak; } }; /// Adds operands by calling a renderer function supplied by the ComplexPattern /// matcher function. class RenderComplexPatternOperand : public OperandRenderer { private: unsigned InsnID; const Record &TheDef; /// The name of the operand. const StringRef SymbolicName; /// The renderer number. This must be unique within a rule since it's used to /// identify a temporary variable to hold the renderer function. unsigned RendererID; /// When provided, this is the suboperand of the ComplexPattern operand to /// render. Otherwise all the suboperands will be rendered. Optional SubOperand; unsigned getNumOperands() const { return TheDef.getValueAsDag("Operands")->getNumArgs(); } public: RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef, StringRef SymbolicName, unsigned RendererID, Optional SubOperand = None) : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef), SymbolicName(SymbolicName), RendererID(RendererID), SubOperand(SubOperand) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_ComplexPattern; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode(SubOperand ? "GIR_ComplexSubOperandRenderer" : "GIR_ComplexRenderer") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("RendererID") << MatchTable::IntValue(RendererID); if (SubOperand) Table << MatchTable::Comment("SubOperand") << MatchTable::IntValue(SubOperand.value()); Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; } }; class CustomRenderer : public OperandRenderer { protected: unsigned InsnID; const Record &Renderer; /// The name of the operand. const std::string SymbolicName; public: CustomRenderer(unsigned InsnID, const Record &Renderer, StringRef SymbolicName) : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer), SymbolicName(SymbolicName) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_Custom; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName); unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher); Table << MatchTable::Opcode("GIR_CustomRenderer") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("OldInsnID") << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("Renderer") << MatchTable::NamedValue( "GICR_" + Renderer.getValueAsString("RendererFn").str()) << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; } }; class CustomOperandRenderer : public OperandRenderer { protected: unsigned InsnID; const Record &Renderer; /// The name of the operand. const std::string SymbolicName; public: CustomOperandRenderer(unsigned InsnID, const Record &Renderer, StringRef SymbolicName) : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer), SymbolicName(SymbolicName) {} static bool classof(const OperandRenderer *R) { return R->getKind() == OR_CustomOperand; } void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName); Table << MatchTable::Opcode("GIR_CustomOperandRenderer") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("OldInsnID") << MatchTable::IntValue(OpdMatcher.getInsnVarID()) << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpdMatcher.getOpIdx()) << MatchTable::Comment("OperandRenderer") << MatchTable::NamedValue( "GICR_" + Renderer.getValueAsString("RendererFn").str()) << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak; } }; /// An action taken when all Matcher predicates succeeded for a parent rule. /// /// Typical actions include: /// * Changing the opcode of an instruction. /// * Adding an operand to an instruction. class MatchAction { public: virtual ~MatchAction() {} /// Emit the MatchTable opcodes to implement the action. virtual void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const = 0; }; /// Generates a comment describing the matched rule being acted upon. class DebugCommentAction : public MatchAction { private: std::string S; public: DebugCommentAction(StringRef S) : S(std::string(S)) {} void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Comment(S) << MatchTable::LineBreak; } }; /// Generates code to build an instruction or mutate an existing instruction /// into the desired instruction when this is possible. class BuildMIAction : public MatchAction { private: unsigned InsnID; const CodeGenInstruction *I; InstructionMatcher *Matched; std::vector> OperandRenderers; /// True if the instruction can be built solely by mutating the opcode. bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const { if (!Insn) return false; if (OperandRenderers.size() != Insn->getNumOperands()) return false; for (const auto &Renderer : enumerate(OperandRenderers)) { if (const auto *Copy = dyn_cast(&*Renderer.value())) { const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName()); if (Insn != &OM.getInstructionMatcher() || OM.getOpIdx() != Renderer.index()) return false; } else return false; } return true; } public: BuildMIAction(unsigned InsnID, const CodeGenInstruction *I) : InsnID(InsnID), I(I), Matched(nullptr) {} unsigned getInsnID() const { return InsnID; } const CodeGenInstruction *getCGI() const { return I; } void chooseInsnToMutate(RuleMatcher &Rule) { for (auto *MutateCandidate : Rule.mutatable_insns()) { if (canMutate(Rule, MutateCandidate)) { // Take the first one we're offered that we're able to mutate. Rule.reserveInsnMatcherForMutation(MutateCandidate); Matched = MutateCandidate; return; } } } template Kind &addRenderer(Args&&... args) { OperandRenderers.emplace_back( std::make_unique(InsnID, std::forward(args)...)); return *static_cast(OperandRenderers.back().get()); } void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { if (Matched) { assert(canMutate(Rule, Matched) && "Arranged to mutate an insn that isn't mutatable"); unsigned RecycleInsnID = Rule.getInsnVarID(*Matched); Table << MatchTable::Opcode("GIR_MutateOpcode") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("RecycleInsnID") << MatchTable::IntValue(RecycleInsnID) << MatchTable::Comment("Opcode") << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) << MatchTable::LineBreak; if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) { for (auto Def : I->ImplicitDefs) { auto Namespace = Def->getValue("Namespace") ? Def->getValueAsString("Namespace") : ""; Table << MatchTable::Opcode("GIR_AddImplicitDef") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::NamedValue(Namespace, Def->getName()) << MatchTable::LineBreak; } for (auto Use : I->ImplicitUses) { auto Namespace = Use->getValue("Namespace") ? Use->getValueAsString("Namespace") : ""; Table << MatchTable::Opcode("GIR_AddImplicitUse") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::NamedValue(Namespace, Use->getName()) << MatchTable::LineBreak; } } return; } // TODO: Simple permutation looks like it could be almost as common as // mutation due to commutative operations. Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode") << MatchTable::NamedValue(I->Namespace, I->TheDef->getName()) << MatchTable::LineBreak; for (const auto &Renderer : OperandRenderers) Renderer->emitRenderOpcodes(Table, Rule); if (I->mayLoad || I->mayStore) { Table << MatchTable::Opcode("GIR_MergeMemOperands") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("MergeInsnID's"); // Emit the ID's for all the instructions that are matched by this rule. // TODO: Limit this to matched instructions that mayLoad/mayStore or have // some other means of having a memoperand. Also limit this to // emitted instructions that expect to have a memoperand too. For // example, (G_SEXT (G_LOAD x)) that results in separate load and // sign-extend instructions shouldn't put the memoperand on the // sign-extend since it has no effect there. std::vector MergeInsnIDs; for (const auto &IDMatcherPair : Rule.defined_insn_vars()) MergeInsnIDs.push_back(IDMatcherPair.second); llvm::sort(MergeInsnIDs); for (const auto &MergeInsnID : MergeInsnIDs) Table << MatchTable::IntValue(MergeInsnID); Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList") << MatchTable::LineBreak; } // FIXME: This is a hack but it's sufficient for ISel. We'll need to do // better for combines. Particularly when there are multiple match // roots. if (InsnID == 0) Table << MatchTable::Opcode("GIR_EraseFromParent") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::LineBreak; } }; /// Generates code to constrain the operands of an output instruction to the /// register classes specified by the definition of that instruction. class ConstrainOperandsToDefinitionAction : public MatchAction { unsigned InsnID; public: ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {} void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::LineBreak; } }; /// Generates code to constrain the specified operand of an output instruction /// to the specified register class. class ConstrainOperandToRegClassAction : public MatchAction { unsigned InsnID; unsigned OpIdx; const CodeGenRegisterClass &RC; public: ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx, const CodeGenRegisterClass &RC) : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {} void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIR_ConstrainOperandRC") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx) << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID") << MatchTable::LineBreak; } }; /// Generates code to create a temporary register which can be used to chain /// instructions together. class MakeTempRegisterAction : public MatchAction { private: LLTCodeGen Ty; unsigned TempRegID; public: MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID) : Ty(Ty), TempRegID(TempRegID) { KnownTypes.insert(Ty); } void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override { Table << MatchTable::Opcode("GIR_MakeTempReg") << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID) << MatchTable::Comment("TypeID") << MatchTable::NamedValue(Ty.getCxxEnumValue()) << MatchTable::LineBreak; } }; InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) { Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName)); MutatableInsns.insert(Matchers.back().get()); return *Matchers.back(); } void RuleMatcher::addRequiredFeature(Record *Feature) { RequiredFeatures.push_back(Feature); } const std::vector &RuleMatcher::getRequiredFeatures() const { return RequiredFeatures; } // Emplaces an action of the specified Kind at the end of the action list. // // Returns a reference to the newly created action. // // Like std::vector::emplace_back(), may invalidate all iterators if the new // size exceeds the capacity. Otherwise, only invalidates the past-the-end // iterator. template Kind &RuleMatcher::addAction(Args &&... args) { Actions.emplace_back(std::make_unique(std::forward(args)...)); return *static_cast(Actions.back().get()); } // Emplaces an action of the specified Kind before the given insertion point. // // Returns an iterator pointing at the newly created instruction. // // Like std::vector::insert(), may invalidate all iterators if the new size // exceeds the capacity. Otherwise, only invalidates the iterators from the // insertion point onwards. template action_iterator RuleMatcher::insertAction(action_iterator InsertPt, Args &&... args) { return Actions.emplace(InsertPt, std::make_unique(std::forward(args)...)); } unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) { unsigned NewInsnVarID = NextInsnVarID++; InsnVariableIDs[&Matcher] = NewInsnVarID; return NewInsnVarID; } unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const { const auto &I = InsnVariableIDs.find(&InsnMatcher); if (I != InsnVariableIDs.end()) return I->second; llvm_unreachable("Matched Insn was not captured in a local variable"); } void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) { if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) { DefinedOperands[SymbolicName] = &OM; return; } // If the operand is already defined, then we must ensure both references in // the matcher have the exact same node. OM.addPredicate( OM.getSymbolicName(), getOperandMatcher(OM.getSymbolicName()).getOpIdx()); } void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) { if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) { PhysRegOperands[Reg] = &OM; return; } } InstructionMatcher & RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const { for (const auto &I : InsnVariableIDs) if (I.first->getSymbolicName() == SymbolicName) return *I.first; llvm_unreachable( ("Failed to lookup instruction " + SymbolicName).str().c_str()); } const OperandMatcher & RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const { const auto &I = PhysRegOperands.find(Reg); if (I == PhysRegOperands.end()) { PrintFatalError(SrcLoc, "Register " + Reg->getName() + " was not declared in matcher"); } return *I->second; } const OperandMatcher & RuleMatcher::getOperandMatcher(StringRef Name) const { const auto &I = DefinedOperands.find(Name); if (I == DefinedOperands.end()) PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher"); return *I->second; } void RuleMatcher::emit(MatchTable &Table) { if (Matchers.empty()) llvm_unreachable("Unexpected empty matcher!"); // The representation supports rules that require multiple roots such as: // %ptr(p0) = ... // %elt0(s32) = G_LOAD %ptr // %1(p0) = G_ADD %ptr, 4 // %elt1(s32) = G_LOAD p0 %1 // which could be usefully folded into: // %ptr(p0) = ... // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr // on some targets but we don't need to make use of that yet. assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet"); unsigned LabelID = Table.allocateLabelID(); Table << MatchTable::Opcode("GIM_Try", +1) << MatchTable::Comment("On fail goto") << MatchTable::JumpTarget(LabelID) << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str()) << MatchTable::LineBreak; if (!RequiredFeatures.empty()) { Table << MatchTable::Opcode("GIM_CheckFeatures") << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures)) << MatchTable::LineBreak; } Matchers.front()->emitPredicateOpcodes(Table, *this); // We must also check if it's safe to fold the matched instructions. if (InsnVariableIDs.size() >= 2) { // Invert the map to create stable ordering (by var names) SmallVector InsnIDs; for (const auto &Pair : InsnVariableIDs) { // Skip the root node since it isn't moving anywhere. Everything else is // sinking to meet it. if (Pair.first == Matchers.front().get()) continue; InsnIDs.push_back(Pair.second); } llvm::sort(InsnIDs); for (const auto &InsnID : InsnIDs) { // Reject the difficult cases until we have a more accurate check. Table << MatchTable::Opcode("GIM_CheckIsSafeToFold") << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID) << MatchTable::LineBreak; // FIXME: Emit checks to determine it's _actually_ safe to fold and/or // account for unsafe cases. // // Example: // MI1--> %0 = ... // %1 = ... %0 // MI0--> %2 = ... %0 // It's not safe to erase MI1. We currently handle this by not // erasing %0 (even when it's dead). // // Example: // MI1--> %0 = load volatile @a // %1 = load volatile @a // MI0--> %2 = ... %0 // It's not safe to sink %0's def past %1. We currently handle // this by rejecting all loads. // // Example: // MI1--> %0 = load @a // %1 = store @a // MI0--> %2 = ... %0 // It's not safe to sink %0's def past %1. We currently handle // this by rejecting all loads. // // Example: // G_CONDBR %cond, @BB1 // BB0: // MI1--> %0 = load @a // G_BR @BB1 // BB1: // MI0--> %2 = ... %0 // It's not always safe to sink %0 across control flow. In this // case it may introduce a memory fault. We currentl handle this // by rejecting all loads. } } for (const auto &PM : EpilogueMatchers) PM->emitPredicateOpcodes(Table, *this); for (const auto &MA : Actions) MA->emitActionOpcodes(Table, *this); if (Table.isWithCoverage()) Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID) << MatchTable::LineBreak; else Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str()) << MatchTable::LineBreak; Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak << MatchTable::Label(LabelID); ++NumPatternEmitted; } bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const { // Rules involving more match roots have higher priority. if (Matchers.size() > B.Matchers.size()) return true; if (Matchers.size() < B.Matchers.size()) return false; for (auto Matcher : zip(Matchers, B.Matchers)) { if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher))) return true; if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher))) return false; } return false; } unsigned RuleMatcher::countRendererFns() const { return std::accumulate( Matchers.begin(), Matchers.end(), 0, [](unsigned A, const std::unique_ptr &Matcher) { return A + Matcher->countRendererFns(); }); } bool OperandPredicateMatcher::isHigherPriorityThan( const OperandPredicateMatcher &B) const { // Generally speaking, an instruction is more important than an Int or a // LiteralInt because it can cover more nodes but theres an exception to // this. G_CONSTANT's are less important than either of those two because they // are more permissive. const InstructionOperandMatcher *AOM = dyn_cast(this); const InstructionOperandMatcher *BOM = dyn_cast(&B); bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction(); bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction(); if (AOM && BOM) { // The relative priorities between a G_CONSTANT and any other instruction // don't actually matter but this code is needed to ensure a strict weak // ordering. This is particularly important on Windows where the rules will // be incorrectly sorted without it. if (AIsConstantInsn != BIsConstantInsn) return AIsConstantInsn < BIsConstantInsn; return false; } if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt)) return false; if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt)) return true; return Kind < B.Kind; } void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const { const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName); unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher()); assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID()); Table << MatchTable::Opcode("GIM_CheckIsSameOperand") << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx) << MatchTable::Comment("OtherMI") << MatchTable::IntValue(OtherInsnVarID) << MatchTable::Comment("OtherOpIdx") << MatchTable::IntValue(OtherOM.getOpIdx()) << MatchTable::LineBreak; } //===- GlobalISelEmitter class --------------------------------------------===// static Expected getInstResultType(const TreePatternNode *Dst) { ArrayRef ChildTypes = Dst->getExtTypes(); if (ChildTypes.size() != 1) return failedImport("Dst pattern child has multiple results"); Optional MaybeOpTy; if (ChildTypes.front().isMachineValueType()) { MaybeOpTy = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); } if (!MaybeOpTy) return failedImport("Dst operand has an unsupported type"); return *MaybeOpTy; } class GlobalISelEmitter { public: explicit GlobalISelEmitter(RecordKeeper &RK); void run(raw_ostream &OS); private: const RecordKeeper &RK; const CodeGenDAGPatterns CGP; const CodeGenTarget &Target; CodeGenRegBank &CGRegs; /// Keep track of the equivalence between SDNodes and Instruction by mapping /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to /// check for attributes on the relation such as CheckMMOIsNonAtomic. /// This is defined using 'GINodeEquiv' in the target description. DenseMap NodeEquivs; /// Keep track of the equivalence between ComplexPattern's and /// GIComplexOperandMatcher. Map entries are specified by subclassing /// GIComplexPatternEquiv. DenseMap ComplexPatternEquivs; /// Keep track of the equivalence between SDNodeXForm's and /// GICustomOperandRenderer. Map entries are specified by subclassing /// GISDNodeXFormEquiv. DenseMap SDNodeXFormEquivs; /// Keep track of Scores of PatternsToMatch similar to how the DAG does. /// This adds compatibility for RuleMatchers to use this for ordering rules. DenseMap RuleMatcherScores; // Map of predicates to their subtarget features. SubtargetFeatureInfoMap SubtargetFeatures; // Rule coverage information. Optional RuleCoverage; /// Variables used to help with collecting of named operands for predicates /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set /// to the number of named operands that predicate expects. Store locations in /// StoreIdxForName correspond to the order in which operand names appear in /// predicate's argument list. /// When we visit named leaf operand and WaitingForNamedOperands is not zero, /// add matcher that will record operand and decrease counter. unsigned WaitingForNamedOperands = 0; StringMap StoreIdxForName; void gatherOpcodeValues(); void gatherTypeIDValues(); void gatherNodeEquivs(); Record *findNodeEquiv(Record *N) const; const CodeGenInstruction *getEquivNode(Record &Equiv, const TreePatternNode *N) const; Error importRulePredicates(RuleMatcher &M, ArrayRef Predicates); Expected createAndImportSelDAGMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, unsigned &TempOpIdx); Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const; Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, const TreePatternNode *SrcChild, bool OperandIsAPointer, bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx); Expected createAndImportInstructionRenderer( RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, const TreePatternNode *Dst); Expected createAndImportSubInstructionRenderer( action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, unsigned TempReg); Expected createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst); Expected importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, const TreePatternNode *Dst); Expected importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, const llvm::TreePatternNode *Dst); Expected importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, TreePatternNode *DstChild); Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const; Error importImplicitDefRenderers(BuildMIAction &DstMIBuilder, const std::vector &ImplicitDefs) const; void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier, StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs, StringRef AdditionalDeclarations, std::function Filter); void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType, std::function Filter); void emitMIPredicateFns(raw_ostream &OS); /// Analyze pattern \p P, returning a matcher for it if possible. /// Otherwise, return an Error explaining why we don't support it. Expected runOnPattern(const PatternToMatch &P); void declareSubtargetFeature(Record *Predicate); MatchTable buildMatchTable(MutableArrayRef Rules, bool Optimize, bool WithCoverage); /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned /// CodeGenRegisterClass will support the CodeGenRegisterClass of /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. /// If no register class is found, return None. Optional inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode, TreePatternNode *SubRegIdxNode); Optional inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode); /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. /// Return None if no such class exists. Optional inferSuperRegisterClass(const TypeSetByHwMode &Ty, TreePatternNode *SubRegIdxNode); /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. Optional getRegClassFromLeaf(TreePatternNode *Leaf); /// Return a CodeGenRegisterClass for \p N if one can be found. Return None /// otherwise. Optional inferRegClassFromPattern(TreePatternNode *N); /// Return the size of the MemoryVT in this predicate, if possible. Optional getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate); // Add builtin predicates. Expected addBuiltinPredicates(const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate, InstructionMatcher &InsnMatcher, bool &HasAddedMatcher); public: /// Takes a sequence of \p Rules and group them based on the predicates /// they share. \p MatcherStorage is used as a memory container /// for the group that are created as part of this process. /// /// What this optimization does looks like if GroupT = GroupMatcher: /// Output without optimization: /// \verbatim /// # R1 /// # predicate A /// # predicate B /// ... /// # R2 /// # predicate A // <-- effectively this is going to be checked twice. /// // Once in R1 and once in R2. /// # predicate C /// \endverbatim /// Output with optimization: /// \verbatim /// # Group1_2 /// # predicate A // <-- Check is now shared. /// # R1 /// # predicate B /// # R2 /// # predicate C /// \endverbatim template static std::vector optimizeRules( ArrayRef Rules, std::vector> &MatcherStorage); }; void GlobalISelEmitter::gatherOpcodeValues() { InstructionOpcodeMatcher::initOpcodeValuesMap(Target); } void GlobalISelEmitter::gatherTypeIDValues() { LLTOperandMatcher::initTypeIDValuesMap(); } void GlobalISelEmitter::gatherNodeEquivs() { assert(NodeEquivs.empty()); for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv")) NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv; assert(ComplexPatternEquivs.empty()); for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) { Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); if (!SelDAGEquiv) continue; ComplexPatternEquivs[SelDAGEquiv] = Equiv; } assert(SDNodeXFormEquivs.empty()); for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) { Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent"); if (!SelDAGEquiv) continue; SDNodeXFormEquivs[SelDAGEquiv] = Equiv; } } Record *GlobalISelEmitter::findNodeEquiv(Record *N) const { return NodeEquivs.lookup(N); } const CodeGenInstruction * GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const { if (N->getNumChildren() >= 1) { // setcc operation maps to two different G_* instructions based on the type. if (!Equiv.isValueUnset("IfFloatingPoint") && MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint()) return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint")); } for (const TreePredicateCall &Call : N->getPredicateCalls()) { const TreePredicateFn &Predicate = Call.Fn; if (!Equiv.isValueUnset("IfSignExtend") && (Predicate.isLoad() || Predicate.isAtomic()) && Predicate.isSignExtLoad()) return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend")); if (!Equiv.isValueUnset("IfZeroExtend") && (Predicate.isLoad() || Predicate.isAtomic()) && Predicate.isZeroExtLoad()) return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend")); } return &Target.getInstruction(Equiv.getValueAsDef("I")); } GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK) : RK(RK), CGP(RK), Target(CGP.getTargetInfo()), CGRegs(Target.getRegBank()) {} //===- Emitter ------------------------------------------------------------===// Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M, ArrayRef Predicates) { for (Record *Pred : Predicates) { if (Pred->getValueAsString("CondString").empty()) continue; declareSubtargetFeature(Pred); M.addRequiredFeature(Pred); } return Error::success(); } Optional GlobalISelEmitter::getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate) { Optional MemTyOrNone = MVTToLLT(getValueType(Predicate.getMemoryVT())); if (!MemTyOrNone) return None; // Align so unusual types like i1 don't get rounded down. return llvm::alignTo( static_cast(MemTyOrNone->get().getSizeInBits()), 8); } Expected GlobalISelEmitter::addBuiltinPredicates( const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate, InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) { if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { SmallVector ParsedAddrSpaces; for (Init *Val : AddrSpaces->getValues()) { IntInit *IntVal = dyn_cast(Val); if (!IntVal) return failedImport("Address space is not an integer"); ParsedAddrSpaces.push_back(IntVal->getValue()); } if (!ParsedAddrSpaces.empty()) { InsnMatcher.addPredicate( 0, ParsedAddrSpaces); return InsnMatcher; } } int64_t MinAlign = Predicate.getMinAlignment(); if (MinAlign > 0) { InsnMatcher.addPredicate(0, MinAlign); return InsnMatcher; } } // G_LOAD is used for both non-extending and any-extending loads. if (Predicate.isLoad() && Predicate.isNonExtLoad()) { InsnMatcher.addPredicate( 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); return InsnMatcher; } if (Predicate.isLoad() && Predicate.isAnyExtLoad()) { InsnMatcher.addPredicate( 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); return InsnMatcher; } if (Predicate.isStore()) { if (Predicate.isTruncStore()) { if (Predicate.getMemoryVT() != nullptr) { // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); if (!MemSizeInBits) return failedImport("MemVT could not be converted to LLT"); InsnMatcher.addPredicate(0, *MemSizeInBits / 8); } else { InsnMatcher.addPredicate( 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0); } return InsnMatcher; } if (Predicate.isNonTruncStore()) { // We need to check the sizes match here otherwise we could incorrectly // match truncating stores with non-truncating ones. InsnMatcher.addPredicate( 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0); } } // No check required. We already did it by swapping the opcode. if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") && Predicate.isSignExtLoad()) return InsnMatcher; // No check required. We already did it by swapping the opcode. if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") && Predicate.isZeroExtLoad()) return InsnMatcher; // No check required. G_STORE by itself is a non-extending store. if (Predicate.isNonTruncStore()) return InsnMatcher; if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { if (Predicate.getMemoryVT() != nullptr) { auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); if (!MemSizeInBits) return failedImport("MemVT could not be converted to LLT"); InsnMatcher.addPredicate(0, *MemSizeInBits / 8); return InsnMatcher; } } if (Predicate.isLoad() || Predicate.isStore()) { // No check required. A G_LOAD/G_STORE is an unindexed load. if (Predicate.isUnindexed()) return InsnMatcher; } if (Predicate.isAtomic()) { if (Predicate.isAtomicOrderingMonotonic()) { InsnMatcher.addPredicate("Monotonic"); return InsnMatcher; } if (Predicate.isAtomicOrderingAcquire()) { InsnMatcher.addPredicate("Acquire"); return InsnMatcher; } if (Predicate.isAtomicOrderingRelease()) { InsnMatcher.addPredicate("Release"); return InsnMatcher; } if (Predicate.isAtomicOrderingAcquireRelease()) { InsnMatcher.addPredicate( "AcquireRelease"); return InsnMatcher; } if (Predicate.isAtomicOrderingSequentiallyConsistent()) { InsnMatcher.addPredicate( "SequentiallyConsistent"); return InsnMatcher; } } if (Predicate.isAtomicOrderingAcquireOrStronger()) { InsnMatcher.addPredicate( "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); return InsnMatcher; } if (Predicate.isAtomicOrderingWeakerThanAcquire()) { InsnMatcher.addPredicate( "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); return InsnMatcher; } if (Predicate.isAtomicOrderingReleaseOrStronger()) { InsnMatcher.addPredicate( "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); return InsnMatcher; } if (Predicate.isAtomicOrderingWeakerThanRelease()) { InsnMatcher.addPredicate( "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); return InsnMatcher; } HasAddedMatcher = false; return InsnMatcher; } Expected GlobalISelEmitter::createAndImportSelDAGMatcher( RuleMatcher &Rule, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, unsigned &TempOpIdx) { Record *SrcGIEquivOrNull = nullptr; const CodeGenInstruction *SrcGIOrNull = nullptr; // Start with the defined operands (i.e., the results of the root operator). if (Src->getExtTypes().size() > 1) return failedImport("Src pattern has multiple results"); if (Src->isLeaf()) { Init *SrcInit = Src->getLeafValue(); if (isa(SrcInit)) { InsnMatcher.addPredicate( &Target.getInstruction(RK.getDef("G_CONSTANT"))); } else return failedImport( "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); } else { SrcGIEquivOrNull = findNodeEquiv(Src->getOperator()); if (!SrcGIEquivOrNull) return failedImport("Pattern operator lacks an equivalent Instruction" + explainOperator(Src->getOperator())); SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src); // The operators look good: match the opcode InsnMatcher.addPredicate(SrcGIOrNull); } unsigned OpIdx = 0; for (const TypeSetByHwMode &VTy : Src->getExtTypes()) { // Results don't have a name unless they are the root node. The caller will // set the name if appropriate. OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) return failedImport(toString(std::move(Error)) + " for result of Src pattern operator"); } for (const TreePredicateCall &Call : Src->getPredicateCalls()) { const TreePredicateFn &Predicate = Call.Fn; bool HasAddedBuiltinMatcher = true; if (Predicate.isAlwaysTrue()) continue; if (Predicate.isImmediatePattern()) { InsnMatcher.addPredicate(Predicate); continue; } auto InsnMatcherOrError = addBuiltinPredicates( SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher); if (auto Error = InsnMatcherOrError.takeError()) return std::move(Error); // FIXME: This should be part of addBuiltinPredicates(). If we add this at // the start of addBuiltinPredicates() without returning, then there might // be cases where we hit the last return before which the // HasAddedBuiltinMatcher will be set to false. The predicate could be // missed if we add it in the middle or at the end due to return statements // after the addPredicate<>() calls. if (Predicate.hasNoUse()) { InsnMatcher.addPredicate(); HasAddedBuiltinMatcher = true; } if (Predicate.hasGISelPredicateCode()) { if (Predicate.usesOperands()) { assert(WaitingForNamedOperands == 0 && "previous predicate didn't find all operands or " "nested predicate that uses operands"); TreePattern *TP = Predicate.getOrigPatFragRecord(); WaitingForNamedOperands = TP->getNumArgs(); for (unsigned i = 0; i < WaitingForNamedOperands; ++i) StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i; } InsnMatcher.addPredicate(Predicate); continue; } if (!HasAddedBuiltinMatcher) { return failedImport("Src pattern child has predicate (" + explainPredicates(Src) + ")"); } } bool IsAtomic = false; if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic")) InsnMatcher.addPredicate("NotAtomic"); else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) { IsAtomic = true; InsnMatcher.addPredicate( "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger); } if (Src->isLeaf()) { Init *SrcInit = Src->getLeafValue(); if (IntInit *SrcIntInit = dyn_cast(SrcInit)) { OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx); OM.addPredicate(SrcIntInit->getValue()); } else return failedImport( "Unable to deduce gMIR opcode to handle Src (which is a leaf)"); } else { assert(SrcGIOrNull && "Expected to have already found an equivalent Instruction"); if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") { // imm/fpimm still have operands but we don't need to do anything with it // here since we don't support ImmLeaf predicates yet. However, we still // need to note the hidden operand to get GIM_CheckNumOperands correct. InsnMatcher.addOperand(OpIdx++, "", TempOpIdx); return InsnMatcher; } // Special case because the operand order is changed from setcc. The // predicate operand needs to be swapped from the last operand to the first // source. unsigned NumChildren = Src->getNumChildren(); bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP"; if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") { TreePatternNode *SrcChild = Src->getChild(NumChildren - 1); if (SrcChild->isLeaf()) { DefInit *DI = dyn_cast(SrcChild->getLeafValue()); Record *CCDef = DI ? DI->getDef() : nullptr; if (!CCDef || !CCDef->isSubClassOf("CondCode")) return failedImport("Unable to handle CondCode"); OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") : CCDef->getValueAsString("ICmpPredicate"); if (!PredType.empty()) { OM.addPredicate(std::string(PredType)); // Process the other 2 operands normally. --NumChildren; } } } // Hack around an unfortunate mistake in how atomic store (and really // atomicrmw in general) operands were ordered. A ISD::STORE used the order // , order. ISD::ATOMIC_STORE used the opposite, // , . In GlobalISel there's just the one store // opcode, so we need to swap the operands here to get the right type check. if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") { assert(NumChildren == 2 && "wrong operands for atomic store"); TreePatternNode *PtrChild = Src->getChild(0); TreePatternNode *ValueChild = Src->getChild(1); if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true, false, 1, TempOpIdx)) return std::move(Error); if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false, false, 0, TempOpIdx)) return std::move(Error); return InsnMatcher; } // Match the used operands (i.e. the children of the operator). bool IsIntrinsic = SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS"; const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP); if (IsIntrinsic && !II) return failedImport("Expected IntInit containing intrinsic ID)"); for (unsigned i = 0; i != NumChildren; ++i) { TreePatternNode *SrcChild = Src->getChild(i); // We need to determine the meaning of a literal integer based on the // context. If this is a field required to be an immediate (such as an // immarg intrinsic argument), the required predicates are different than // a constant which may be materialized in a register. If we have an // argument that is required to be an immediate, we should not emit an LLT // type check, and should not be looking for a G_CONSTANT defined // register. bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i); // SelectionDAG allows pointers to be represented with iN since it doesn't // distinguish between pointers and integers but they are different types in GlobalISel. // Coerce integers to pointers to address space 0 if the context indicates a pointer. // bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i); if (IsIntrinsic) { // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately // following the defs is an intrinsic ID. if (i == 0) { OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx); OM.addPredicate(II); continue; } // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. // // Note that we have to look at the i-1th parameter, because we don't // have the intrinsic ID in the intrinsic's parameter list. OperandIsAPointer |= II->isParamAPointer(i - 1); OperandIsImmArg |= II->isParamImmArg(i - 1); } if (auto Error = importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, OperandIsImmArg, OpIdx++, TempOpIdx)) return std::move(Error); } } return InsnMatcher; } Error GlobalISelEmitter::importComplexPatternOperandMatcher( OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const { const auto &ComplexPattern = ComplexPatternEquivs.find(R); if (ComplexPattern == ComplexPatternEquivs.end()) return failedImport("SelectionDAG ComplexPattern (" + R->getName() + ") not mapped to GlobalISel"); OM.addPredicate(OM, *ComplexPattern->second); TempOpIdx++; return Error::success(); } // Get the name to use for a pattern operand. For an anonymous physical register // input, this should use the register name. static StringRef getSrcChildName(const TreePatternNode *SrcChild, Record *&PhysReg) { StringRef SrcChildName = SrcChild->getName(); if (SrcChildName.empty() && SrcChild->isLeaf()) { if (auto *ChildDefInit = dyn_cast(SrcChild->getLeafValue())) { auto *ChildRec = ChildDefInit->getDef(); if (ChildRec->isSubClassOf("Register")) { SrcChildName = ChildRec->getName(); PhysReg = ChildRec; } } } return SrcChildName; } Error GlobalISelEmitter::importChildMatcher( RuleMatcher &Rule, InstructionMatcher &InsnMatcher, const TreePatternNode *SrcChild, bool OperandIsAPointer, bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { Record *PhysReg = nullptr; std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg)); if (!SrcChild->isLeaf() && SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is // "MY_PAT:op1:op2" and the ones with same "name" represent same operand. std::string PatternName = std::string(SrcChild->getOperator()->getName()); for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) { PatternName += ":"; PatternName += SrcChild->getChild(i)->getName(); } SrcChildName = PatternName; } OperandMatcher &OM = PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx) : InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx); if (OM.isSameAsAnotherOperand()) return Error::success(); ArrayRef ChildTypes = SrcChild->getExtTypes(); if (ChildTypes.size() != 1) return failedImport("Src pattern child has multiple results"); // Check MBB's before the type check since they are not a known type. if (!SrcChild->isLeaf()) { if (SrcChild->getOperator()->isSubClassOf("SDNode")) { auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator()); if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { OM.addPredicate(); return Error::success(); } if (SrcChild->getOperator()->getName() == "timm") { OM.addPredicate(); // Add predicates, if any for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) { const TreePredicateFn &Predicate = Call.Fn; // Only handle immediate patterns for now if (Predicate.isImmediatePattern()) { OM.addPredicate(Predicate); } } return Error::success(); } } } // Immediate arguments have no meaningful type to check as they don't have // registers. if (!OperandIsImmArg) { if (auto Error = OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer)) return failedImport(toString(std::move(Error)) + " for Src operand (" + to_string(*SrcChild) + ")"); } // Check for nested instructions. if (!SrcChild->isLeaf()) { if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) { // When a ComplexPattern is used as an operator, it should do the same // thing as when used as a leaf. However, the children of the operator // name the sub-operands that make up the complex operand and we must // prepare to reference them in the renderer too. unsigned RendererID = TempOpIdx; if (auto Error = importComplexPatternOperandMatcher( OM, SrcChild->getOperator(), TempOpIdx)) return Error; for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) { auto *SubOperand = SrcChild->getChild(i); if (!SubOperand->getName().empty()) { if (auto Error = Rule.defineComplexSubOperand( SubOperand->getName(), SrcChild->getOperator(), RendererID, i, SrcChildName)) return Error; } } return Error::success(); } auto MaybeInsnOperand = OM.addPredicate( InsnMatcher.getRuleMatcher(), SrcChild->getName()); if (!MaybeInsnOperand) { // This isn't strictly true. If the user were to provide exactly the same // matchers as the original operand then we could allow it. However, it's // simpler to not permit the redundant specification. return failedImport("Nested instruction cannot be the same as another operand"); } // Map the node to a gMIR instruction. InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; auto InsnMatcherOrError = createAndImportSelDAGMatcher( Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx); if (auto Error = InsnMatcherOrError.takeError()) return Error; return Error::success(); } if (SrcChild->hasAnyPredicate()) return failedImport("Src pattern child has unsupported predicate"); // Check for constant immediates. if (auto *ChildInt = dyn_cast(SrcChild->getLeafValue())) { if (OperandIsImmArg) { // Checks for argument directly in operand list OM.addPredicate(ChildInt->getValue()); } else { // Checks for materialized constant OM.addPredicate(ChildInt->getValue()); } return Error::success(); } // Check for def's like register classes or ComplexPattern's. if (auto *ChildDefInit = dyn_cast(SrcChild->getLeafValue())) { auto *ChildRec = ChildDefInit->getDef(); if (WaitingForNamedOperands) { auto PA = SrcChild->getNamesAsPredicateArg().begin(); std::string Name = getScopedName(PA->getScope(), PA->getIdentifier()); OM.addPredicate(StoreIdxForName[Name], Name); --WaitingForNamedOperands; } // Check for register classes. if (ChildRec->isSubClassOf("RegisterClass") || ChildRec->isSubClassOf("RegisterOperand")) { OM.addPredicate( Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit))); return Error::success(); } if (ChildRec->isSubClassOf("Register")) { // This just be emitted as a copy to the specific register. ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); const CodeGenRegisterClass *RC = CGRegs.getMinimalPhysRegClass(ChildRec, &VT); if (!RC) { return failedImport( "Could not determine physical register class of pattern source"); } OM.addPredicate(*RC); return Error::success(); } // Check for ValueType. if (ChildRec->isSubClassOf("ValueType")) { // We already added a type check as standard practice so this doesn't need // to do anything. return Error::success(); } // Check for ComplexPattern's. if (ChildRec->isSubClassOf("ComplexPattern")) return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx); if (ChildRec->isSubClassOf("ImmLeaf")) { return failedImport( "Src pattern child def is an unsupported tablegen class (ImmLeaf)"); } // Place holder for SRCVALUE nodes. Nothing to do here. if (ChildRec->getName() == "srcvalue") return Error::success(); const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV"; if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") { auto MaybeInsnOperand = OM.addPredicate( InsnMatcher.getRuleMatcher(), SrcChild->getName(), false); InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode(); const CodeGenInstruction &BuildVector = Target.getInstruction(RK.getDef("G_BUILD_VECTOR")); const CodeGenInstruction &BuildVectorTrunc = Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC")); // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC // as an alternative. InsnOperand.getInsnMatcher().addPredicate( makeArrayRef({&BuildVector, &BuildVectorTrunc})); // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could // theoretically not emit any opcode check, but getOpcodeMatcher currently // has to succeed. OperandMatcher &OM = InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx); if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */)) return failedImport(toString(std::move(Error)) + " for result of Src pattern operator"); InsnOperand.getInsnMatcher().addPredicate( ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes : VectorSplatImmPredicateMatcher::AllZeros); return Error::success(); } return failedImport( "Src pattern child def is an unsupported tablegen class"); } return failedImport("Src pattern child is an unsupported kind"); } Expected GlobalISelEmitter::importExplicitUseRenderer( action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder, TreePatternNode *DstChild) { const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName()); if (SubOperand) { DstMIBuilder.addRenderer( *std::get<0>(*SubOperand), DstChild->getName(), std::get<1>(*SubOperand), std::get<2>(*SubOperand)); return InsertPt; } if (!DstChild->isLeaf()) { if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) { auto Child = DstChild->getChild(0); auto I = SDNodeXFormEquivs.find(DstChild->getOperator()); if (I != SDNodeXFormEquivs.end()) { Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode"); if (XFormOpc->getName() == "timm") { // If this is a TargetConstant, there won't be a corresponding // instruction to transform. Instead, this will refer directly to an // operand in an instruction's operand list. DstMIBuilder.addRenderer(*I->second, Child->getName()); } else { DstMIBuilder.addRenderer(*I->second, Child->getName()); } return InsertPt; } return failedImport("SDNodeXForm " + Child->getName() + " has no custom renderer"); } // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't // inline, but in MI it's just another operand. if (DstChild->getOperator()->isSubClassOf("SDNode")) { auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator()); if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") { DstMIBuilder.addRenderer(DstChild->getName()); return InsertPt; } } // Similarly, imm is an operator in TreePatternNode's view but must be // rendered as operands. // FIXME: The target should be able to choose sign-extended when appropriate // (e.g. on Mips). if (DstChild->getOperator()->getName() == "timm") { DstMIBuilder.addRenderer(DstChild->getName()); return InsertPt; } else if (DstChild->getOperator()->getName() == "imm") { DstMIBuilder.addRenderer(DstChild->getName()); return InsertPt; } else if (DstChild->getOperator()->getName() == "fpimm") { DstMIBuilder.addRenderer( DstChild->getName()); return InsertPt; } if (DstChild->getOperator()->isSubClassOf("Instruction")) { auto OpTy = getInstResultType(DstChild); if (!OpTy) return OpTy.takeError(); unsigned TempRegID = Rule.allocateTempRegID(); InsertPt = Rule.insertAction( InsertPt, *OpTy, TempRegID); DstMIBuilder.addRenderer(TempRegID); auto InsertPtOrError = createAndImportSubInstructionRenderer( ++InsertPt, Rule, DstChild, TempRegID); if (auto Error = InsertPtOrError.takeError()) return std::move(Error); return InsertPtOrError.get(); } return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild)); } // It could be a specific immediate in which case we should just check for // that immediate. if (const IntInit *ChildIntInit = dyn_cast(DstChild->getLeafValue())) { DstMIBuilder.addRenderer(ChildIntInit->getValue()); return InsertPt; } // Otherwise, we're looking for a bog-standard RegisterClass operand. if (auto *ChildDefInit = dyn_cast(DstChild->getLeafValue())) { auto *ChildRec = ChildDefInit->getDef(); ArrayRef ChildTypes = DstChild->getExtTypes(); if (ChildTypes.size() != 1) return failedImport("Dst pattern child has multiple results"); Optional OpTyOrNone = None; if (ChildTypes.front().isMachineValueType()) OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy); if (!OpTyOrNone) return failedImport("Dst operand has an unsupported type"); if (ChildRec->isSubClassOf("Register")) { DstMIBuilder.addRenderer(Target, ChildRec); return InsertPt; } if (ChildRec->isSubClassOf("RegisterClass") || ChildRec->isSubClassOf("RegisterOperand") || ChildRec->isSubClassOf("ValueType")) { if (ChildRec->isSubClassOf("RegisterOperand") && !ChildRec->isValueUnset("GIZeroRegister")) { DstMIBuilder.addRenderer( DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister")); return InsertPt; } DstMIBuilder.addRenderer(DstChild->getName()); return InsertPt; } if (ChildRec->isSubClassOf("SubRegIndex")) { CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec); DstMIBuilder.addRenderer(SubIdx->EnumValue); return InsertPt; } if (ChildRec->isSubClassOf("ComplexPattern")) { const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec); if (ComplexPattern == ComplexPatternEquivs.end()) return failedImport( "SelectionDAG ComplexPattern not mapped to GlobalISel"); const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName()); DstMIBuilder.addRenderer( *ComplexPattern->second, DstChild->getName(), OM.getAllocatedTemporariesBaseID()); return InsertPt; } return failedImport( "Dst pattern child def is an unsupported tablegen class"); } return failedImport("Dst pattern child is an unsupported kind"); } Expected GlobalISelEmitter::createAndImportInstructionRenderer( RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src, const TreePatternNode *Dst) { auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst); if (auto Error = InsertPtOrError.takeError()) return std::move(Error); action_iterator InsertPt = InsertPtOrError.get(); BuildMIAction &DstMIBuilder = *static_cast(InsertPt->get()); for (auto PhysInput : InsnMatcher.getPhysRegInputs()) { InsertPt = M.insertAction( InsertPt, M.allocateOutputInsnID(), &Target.getInstruction(RK.getDef("COPY"))); BuildMIAction &CopyToPhysRegMIBuilder = *static_cast(InsertPt->get()); CopyToPhysRegMIBuilder.addRenderer(Target, PhysInput.first, true); CopyToPhysRegMIBuilder.addRenderer(PhysInput.first); } if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst) .takeError()) return std::move(Error); if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) .takeError()) return std::move(Error); return DstMIBuilder; } Expected GlobalISelEmitter::createAndImportSubInstructionRenderer( const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst, unsigned TempRegID) { auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); // TODO: Assert there's exactly one result. if (auto Error = InsertPtOrError.takeError()) return std::move(Error); BuildMIAction &DstMIBuilder = *static_cast(InsertPtOrError.get()->get()); // Assign the result to TempReg. DstMIBuilder.addRenderer(TempRegID, true); InsertPtOrError = importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst); if (auto Error = InsertPtOrError.takeError()) return std::move(Error); // We need to make sure that when we import an INSERT_SUBREG as a // subinstruction that it ends up being constrained to the correct super // register and subregister classes. auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName(); if (OpName == "INSERT_SUBREG") { auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); if (!SubClass) return failedImport( "Cannot infer register class from INSERT_SUBREG operand #1"); Optional SuperClass = inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0), Dst->getChild(2)); if (!SuperClass) return failedImport( "Cannot infer register class for INSERT_SUBREG operand #0"); // The destination and the super register source of an INSERT_SUBREG must // be the same register class. M.insertAction( InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); M.insertAction( InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass); M.insertAction( InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); return InsertPtOrError.get(); } if (OpName == "EXTRACT_SUBREG") { // EXTRACT_SUBREG selects into a subregister COPY but unlike most // instructions, the result register class is controlled by the // subregisters of the operand. As a result, we must constrain the result // class rather than check that it's already the right one. auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); if (!SuperClass) return failedImport( "Cannot infer register class from EXTRACT_SUBREG operand #0"); auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); if (!SubIdx) return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); const auto SrcRCDstRCPair = (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); M.insertAction( InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second); M.insertAction( InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first); // We're done with this pattern! It's eligible for GISel emission; return // it. return InsertPtOrError.get(); } // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a // subinstruction. if (OpName == "SUBREG_TO_REG") { auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); if (!SubClass) return failedImport( "Cannot infer register class from SUBREG_TO_REG child #1"); auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0), Dst->getChild(2)); if (!SuperClass) return failedImport( "Cannot infer register class for SUBREG_TO_REG operand #0"); M.insertAction( InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); M.insertAction( InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass); return InsertPtOrError.get(); } if (OpName == "REG_SEQUENCE") { auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); M.insertAction( InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass); unsigned Num = Dst->getNumChildren(); for (unsigned I = 1; I != Num; I += 2) { TreePatternNode *SubRegChild = Dst->getChild(I + 1); auto SubIdx = inferSubRegIndexForNode(SubRegChild); if (!SubIdx) return failedImport("REG_SEQUENCE child is not a subreg index"); const auto SrcRCDstRCPair = (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); M.insertAction( InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second); } return InsertPtOrError.get(); } M.insertAction(InsertPt, DstMIBuilder.getInsnID()); return InsertPtOrError.get(); } Expected GlobalISelEmitter::createInstructionRenderer( action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) { Record *DstOp = Dst->getOperator(); if (!DstOp->isSubClassOf("Instruction")) { if (DstOp->isSubClassOf("ValueType")) return failedImport( "Pattern operator isn't an instruction (it's a ValueType)"); return failedImport("Pattern operator isn't an instruction"); } CodeGenInstruction *DstI = &Target.getInstruction(DstOp); // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. StringRef Name = DstI->TheDef->getName(); if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG") DstI = &Target.getInstruction(RK.getDef("COPY")); return M.insertAction(InsertPt, M.allocateOutputInsnID(), DstI); } Expected GlobalISelEmitter::importExplicitDefRenderers( action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, const TreePatternNode *Dst) { const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); const unsigned NumDefs = DstI->Operands.NumDefs; if (NumDefs == 0) return InsertPt; DstMIBuilder.addRenderer(DstI->Operands[0].Name); // Some instructions have multiple defs, but are missing a type entry // (e.g. s_cc_out operands). if (Dst->getExtTypes().size() < NumDefs) return failedImport("unhandled discarded def"); // Patterns only handle a single result, so any result after the first is an // implicitly dead def. for (unsigned I = 1; I < NumDefs; ++I) { const TypeSetByHwMode &ExtTy = Dst->getExtType(I); if (!ExtTy.isMachineValueType()) return failedImport("unsupported typeset"); auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy); if (!OpTy) return failedImport("unsupported type"); unsigned TempRegID = M.allocateTempRegID(); InsertPt = M.insertAction(InsertPt, *OpTy, TempRegID); DstMIBuilder.addRenderer(TempRegID, true, nullptr, true); } return InsertPt; } Expected GlobalISelEmitter::importExplicitUseRenderers( action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, const llvm::TreePatternNode *Dst) { const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator()); StringRef Name = OrigDstI->TheDef->getName(); unsigned ExpectedDstINumUses = Dst->getNumChildren(); // EXTRACT_SUBREG needs to use a subregister COPY. if (Name == "EXTRACT_SUBREG") { if (!Dst->getChild(1)->isLeaf()) return failedImport("EXTRACT_SUBREG child #1 is not a leaf"); DefInit *SubRegInit = dyn_cast(Dst->getChild(1)->getLeafValue()); if (!SubRegInit) return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); TreePatternNode *ValChild = Dst->getChild(0); if (!ValChild->isLeaf()) { // We really have to handle the source instruction, and then insert a // copy from the subregister. auto ExtractSrcTy = getInstResultType(ValChild); if (!ExtractSrcTy) return ExtractSrcTy.takeError(); unsigned TempRegID = M.allocateTempRegID(); InsertPt = M.insertAction( InsertPt, *ExtractSrcTy, TempRegID); auto InsertPtOrError = createAndImportSubInstructionRenderer( ++InsertPt, M, ValChild, TempRegID); if (auto Error = InsertPtOrError.takeError()) return std::move(Error); DstMIBuilder.addRenderer(TempRegID, false, SubIdx); return InsertPt; } // If this is a source operand, this is just a subregister copy. Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue()); if (!RCDef) return failedImport("EXTRACT_SUBREG child #0 could not " "be coerced to a register class"); CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); const auto SrcRCDstRCPair = RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx); if (SrcRCDstRCPair) { assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); if (SrcRCDstRCPair->first != RC) return failedImport("EXTRACT_SUBREG requires an additional COPY"); } DstMIBuilder.addRenderer(Dst->getChild(0)->getName(), SubIdx); return InsertPt; } if (Name == "REG_SEQUENCE") { if (!Dst->getChild(0)->isLeaf()) return failedImport("REG_SEQUENCE child #0 is not a leaf"); Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); if (!RCDef) return failedImport("REG_SEQUENCE child #0 could not " "be coerced to a register class"); if ((ExpectedDstINumUses - 1) % 2 != 0) return failedImport("Malformed REG_SEQUENCE"); for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { TreePatternNode *ValChild = Dst->getChild(I); TreePatternNode *SubRegChild = Dst->getChild(I + 1); if (DefInit *SubRegInit = dyn_cast(SubRegChild->getLeafValue())) { CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild); if (auto Error = InsertPtOrError.takeError()) return std::move(Error); InsertPt = InsertPtOrError.get(); DstMIBuilder.addRenderer(SubIdx); } } return InsertPt; } // Render the explicit uses. unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; if (Name == "COPY_TO_REGCLASS") { DstINumUses--; // Ignore the class constraint. ExpectedDstINumUses--; } // NumResults - This is the number of results produced by the instruction in // the "outs" list. unsigned NumResults = OrigDstI->Operands.NumDefs; // Number of operands we know the output instruction must have. If it is // variadic, we could have more operands. unsigned NumFixedOperands = DstI->Operands.size(); // Loop over all of the fixed operands of the instruction pattern, emitting // code to fill them all in. The node 'N' usually has number children equal to // the number of input operands of the instruction. However, in cases where // there are predicate operands for an instruction, we need to fill in the // 'execute always' values. Match up the node operands to the instruction // operands to do this. unsigned Child = 0; // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the // number of operands at the end of the list which have default values. // Those can come from the pattern if it provides enough arguments, or be // filled in with the default if the pattern hasn't provided them. But any // operand with a default value _before_ the last mandatory one will be // filled in with their defaults unconditionally. unsigned NonOverridableOperands = NumFixedOperands; while (NonOverridableOperands > NumResults && CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec)) --NonOverridableOperands; unsigned NumDefaultOps = 0; for (unsigned I = 0; I != DstINumUses; ++I) { unsigned InstOpNo = DstI->Operands.NumDefs + I; // Determine what to emit for this operand. Record *OperandNode = DstI->Operands[InstOpNo].Rec; // If the operand has default values, introduce them now. if (CGP.operandHasDefault(OperandNode) && (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) { // This is a predicate or optional def operand which the pattern has not // overridden, or which we aren't letting it override; emit the 'default // ops' operands. const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo]; DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps"); if (auto Error = importDefaultOperandRenderers( InsertPt, M, DstMIBuilder, DefaultOps)) return std::move(Error); ++NumDefaultOps; continue; } auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder, Dst->getChild(Child)); if (auto Error = InsertPtOrError.takeError()) return std::move(Error); InsertPt = InsertPtOrError.get(); ++Child; } if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) return failedImport("Expected " + llvm::to_string(DstINumUses) + " used operands but found " + llvm::to_string(ExpectedDstINumUses) + " explicit ones and " + llvm::to_string(NumDefaultOps) + " default ones"); return InsertPt; } Error GlobalISelEmitter::importDefaultOperandRenderers( action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const { for (const auto *DefaultOp : DefaultOps->getArgs()) { Optional OpTyOrNone = None; // Look through ValueType operators. if (const DagInit *DefaultDagOp = dyn_cast(DefaultOp)) { if (const DefInit *DefaultDagOperator = dyn_cast(DefaultDagOp->getOperator())) { if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) { OpTyOrNone = MVTToLLT(getValueType( DefaultDagOperator->getDef())); DefaultOp = DefaultDagOp->getArg(0); } } } if (const DefInit *DefaultDefOp = dyn_cast(DefaultOp)) { auto Def = DefaultDefOp->getDef(); if (Def->getName() == "undef_tied_input") { unsigned TempRegID = M.allocateTempRegID(); M.insertAction(InsertPt, OpTyOrNone.value(), TempRegID); InsertPt = M.insertAction( InsertPt, M.allocateOutputInsnID(), &Target.getInstruction(RK.getDef("IMPLICIT_DEF"))); BuildMIAction &IDMIBuilder = *static_cast( InsertPt->get()); IDMIBuilder.addRenderer(TempRegID); DstMIBuilder.addRenderer(TempRegID); } else { DstMIBuilder.addRenderer(Target, Def); } continue; } if (const IntInit *DefaultIntOp = dyn_cast(DefaultOp)) { DstMIBuilder.addRenderer(DefaultIntOp->getValue()); continue; } return failedImport("Could not add default op"); } return Error::success(); } Error GlobalISelEmitter::importImplicitDefRenderers( BuildMIAction &DstMIBuilder, const std::vector &ImplicitDefs) const { if (!ImplicitDefs.empty()) return failedImport("Pattern defines a physical register"); return Error::success(); } Optional GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) { assert(Leaf && "Expected node?"); assert(Leaf->isLeaf() && "Expected leaf?"); Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue()); if (!RCRec) return None; CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec); if (!RC) return None; return RC; } Optional GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) { if (!N) return None; if (N->isLeaf()) return getRegClassFromLeaf(N); // We don't have a leaf node, so we have to try and infer something. Check // that we have an instruction that we an infer something from. // Only handle things that produce a single type. if (N->getNumTypes() != 1) return None; Record *OpRec = N->getOperator(); // We only want instructions. if (!OpRec->isSubClassOf("Instruction")) return None; // Don't want to try and infer things when there could potentially be more // than one candidate register class. auto &Inst = Target.getInstruction(OpRec); if (Inst.Operands.NumDefs > 1) return None; // Handle any special-case instructions which we can safely infer register // classes from. StringRef InstName = Inst.TheDef->getName(); bool IsRegSequence = InstName == "REG_SEQUENCE"; if (IsRegSequence || InstName == "COPY_TO_REGCLASS") { // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It // has the desired register class as the first child. TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1); if (!RCChild->isLeaf()) return None; return getRegClassFromLeaf(RCChild); } if (InstName == "INSERT_SUBREG") { TreePatternNode *Child0 = N->getChild(0); assert(Child0->getNumTypes() == 1 && "Unexpected number of types!"); const TypeSetByHwMode &VTy = Child0->getExtType(0); return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2)); } if (InstName == "EXTRACT_SUBREG") { assert(N->getNumTypes() == 1 && "Unexpected number of types!"); const TypeSetByHwMode &VTy = N->getExtType(0); return inferSuperRegisterClass(VTy, N->getChild(1)); } // Handle destination record types that we can safely infer a register class // from. const auto &DstIOperand = Inst.Operands[0]; Record *DstIOpRec = DstIOperand.Rec; if (DstIOpRec->isSubClassOf("RegisterOperand")) { DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); return &RC; } if (DstIOpRec->isSubClassOf("RegisterClass")) { const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec); return &RC; } return None; } Optional GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty, TreePatternNode *SubRegIdxNode) { assert(SubRegIdxNode && "Expected subregister index node!"); // We need a ValueTypeByHwMode for getSuperRegForSubReg. if (!Ty.isValueTypeByHwMode(false)) return None; if (!SubRegIdxNode->isLeaf()) return None; DefInit *SubRegInit = dyn_cast(SubRegIdxNode->getLeafValue()); if (!SubRegInit) return None; CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef()); // Use the information we found above to find a minimal register class which // supports the subregister and type we want. auto RC = Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx, /* MustBeAllocatable */ true); if (!RC) return None; return *RC; } Optional GlobalISelEmitter::inferSuperRegisterClassForNode( const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode, TreePatternNode *SubRegIdxNode) { assert(SuperRegNode && "Expected super register node!"); // Check if we already have a defined register class for the super register // node. If we do, then we should preserve that rather than inferring anything // from the subregister index node. We can assume that whoever wrote the // pattern in the first place made sure that the super register and // subregister are compatible. if (Optional SuperRegisterClass = inferRegClassFromPattern(SuperRegNode)) return *SuperRegisterClass; return inferSuperRegisterClass(Ty, SubRegIdxNode); } Optional GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) { if (!SubRegIdxNode->isLeaf()) return None; DefInit *SubRegInit = dyn_cast(SubRegIdxNode->getLeafValue()); if (!SubRegInit) return None; return CGRegs.getSubRegIdx(SubRegInit->getDef()); } Expected GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { // Keep track of the matchers and actions to emit. int Score = P.getPatternComplexity(CGP); RuleMatcher M(P.getSrcRecord()->getLoc()); RuleMatcherScores[M.getRuleID()] = Score; M.addAction(llvm::to_string(*P.getSrcPattern()) + " => " + llvm::to_string(*P.getDstPattern())); SmallVector Predicates; P.getPredicateRecords(Predicates); if (auto Error = importRulePredicates(M, Predicates)) return std::move(Error); // Next, analyze the pattern operators. TreePatternNode *Src = P.getSrcPattern(); TreePatternNode *Dst = P.getDstPattern(); // If the root of either pattern isn't a simple operator, ignore it. if (auto Err = isTrivialOperatorNode(Dst)) return failedImport("Dst pattern root isn't a trivial operator (" + toString(std::move(Err)) + ")"); if (auto Err = isTrivialOperatorNode(Src)) return failedImport("Src pattern root isn't a trivial operator (" + toString(std::move(Err)) + ")"); // The different predicates and matchers created during // addInstructionMatcher use the RuleMatcher M to set up their // instruction ID (InsnVarID) that are going to be used when // M is going to be emitted. // However, the code doing the emission still relies on the IDs // returned during that process by the RuleMatcher when issuing // the recordInsn opcodes. // Because of that: // 1. The order in which we created the predicates // and such must be the same as the order in which we emit them, // and // 2. We need to reset the generation of the IDs in M somewhere between // addInstructionMatcher and emit // // FIXME: Long term, we don't want to have to rely on this implicit // naming being the same. One possible solution would be to have // explicit operator for operation capture and reference those. // The plus side is that it would expose opportunities to share // the capture accross rules. The downside is that it would // introduce a dependency between predicates (captures must happen // before their first use.) InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName()); unsigned TempOpIdx = 0; auto InsnMatcherOrError = createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx); if (auto Error = InsnMatcherOrError.takeError()) return std::move(Error); InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); if (Dst->isLeaf()) { Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue()); if (RCDef) { const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef); // We need to replace the def and all its uses with the specified // operand. However, we must also insert COPY's wherever needed. // For now, emit a copy and let the register allocator clean up. auto &DstI = Target.getInstruction(RK.getDef("COPY")); const auto &DstIOperand = DstI.Operands[0]; OperandMatcher &OM0 = InsnMatcher.getOperand(0); OM0.setSymbolicName(DstIOperand.Name); M.defineOperand(OM0.getSymbolicName(), OM0); OM0.addPredicate(RC); auto &DstMIBuilder = M.addAction(M.allocateOutputInsnID(), &DstI); DstMIBuilder.addRenderer(DstIOperand.Name); DstMIBuilder.addRenderer(Dst->getName()); M.addAction(0, 0, RC); // We're done with this pattern! It's eligible for GISel emission; return // it. ++NumPatternImported; return std::move(M); } return failedImport("Dst pattern root isn't a known leaf"); } // Start with the defined operands (i.e., the results of the root operator). Record *DstOp = Dst->getOperator(); if (!DstOp->isSubClassOf("Instruction")) return failedImport("Pattern operator isn't an instruction"); auto &DstI = Target.getInstruction(DstOp); StringRef DstIName = DstI.TheDef->getName(); unsigned DstNumDefs = DstI.Operands.NumDefs, SrcNumDefs = Src->getExtTypes().size(); if (DstNumDefs < SrcNumDefs) { if (DstNumDefs != 0) return failedImport("Src pattern result has more defs than dst MI (" + to_string(SrcNumDefs) + " def(s) vs " + to_string(DstNumDefs) + " def(s))"); bool FoundNoUsePred = false; for (const auto &Pred : InsnMatcher.predicates()) { if ((FoundNoUsePred = isa(Pred.get()))) break; } if (!FoundNoUsePred) return failedImport("Src pattern result has " + to_string(SrcNumDefs) + " def(s) without the HasNoUse predicate set to true " "but Dst MI has no def"); } // The root of the match also has constraints on the register bank so that it // matches the result instruction. unsigned OpIdx = 0; unsigned N = std::min(DstNumDefs, SrcNumDefs); for (unsigned I = 0; I < N; ++I) { const TypeSetByHwMode &VTy = Src->getExtType(I); const auto &DstIOperand = DstI.Operands[OpIdx]; Record *DstIOpRec = DstIOperand.Rec; if (DstIName == "COPY_TO_REGCLASS") { DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); if (DstIOpRec == nullptr) return failedImport( "COPY_TO_REGCLASS operand #1 isn't a register class"); } else if (DstIName == "REG_SEQUENCE") { DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue()); if (DstIOpRec == nullptr) return failedImport("REG_SEQUENCE operand #0 isn't a register class"); } else if (DstIName == "EXTRACT_SUBREG") { auto InferredClass = inferRegClassFromPattern(Dst->getChild(0)); if (!InferredClass) return failedImport("Could not infer class for EXTRACT_SUBREG operand #0"); // We can assume that a subregister is in the same bank as it's super // register. DstIOpRec = (*InferredClass)->getDef(); } else if (DstIName == "INSERT_SUBREG") { auto MaybeSuperClass = inferSuperRegisterClassForNode( VTy, Dst->getChild(0), Dst->getChild(2)); if (!MaybeSuperClass) return failedImport( "Cannot infer register class for INSERT_SUBREG operand #0"); // Move to the next pattern here, because the register class we found // doesn't necessarily have a record associated with it. So, we can't // set DstIOpRec using this. OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); OM.setSymbolicName(DstIOperand.Name); M.defineOperand(OM.getSymbolicName(), OM); OM.addPredicate(**MaybeSuperClass); ++OpIdx; continue; } else if (DstIName == "SUBREG_TO_REG") { auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2)); if (!MaybeRegClass) return failedImport( "Cannot infer register class for SUBREG_TO_REG operand #0"); OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); OM.setSymbolicName(DstIOperand.Name); M.defineOperand(OM.getSymbolicName(), OM); OM.addPredicate(**MaybeRegClass); ++OpIdx; continue; } else if (DstIOpRec->isSubClassOf("RegisterOperand")) DstIOpRec = DstIOpRec->getValueAsDef("RegClass"); else if (!DstIOpRec->isSubClassOf("RegisterClass")) return failedImport("Dst MI def isn't a register class" + to_string(*Dst)); OperandMatcher &OM = InsnMatcher.getOperand(OpIdx); OM.setSymbolicName(DstIOperand.Name); M.defineOperand(OM.getSymbolicName(), OM); OM.addPredicate( Target.getRegisterClass(DstIOpRec)); ++OpIdx; } auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst); if (auto Error = DstMIBuilderOrError.takeError()) return std::move(Error); BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); // Render the implicit defs. // These are only added to the root of the result. if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs())) return std::move(Error); DstMIBuilder.chooseInsnToMutate(M); // Constrain the registers to classes. This is normally derived from the // emitted instruction but a few instructions require special handling. if (DstIName == "COPY_TO_REGCLASS") { // COPY_TO_REGCLASS does not provide operand constraints itself but the // result is constrained to the class given by the second child. Record *DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue()); if (DstIOpRec == nullptr) return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class"); M.addAction( 0, 0, Target.getRegisterClass(DstIOpRec)); // We're done with this pattern! It's eligible for GISel emission; return // it. ++NumPatternImported; return std::move(M); } if (DstIName == "EXTRACT_SUBREG") { auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); if (!SuperClass) return failedImport( "Cannot infer register class from EXTRACT_SUBREG operand #0"); auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1)); if (!SubIdx) return failedImport("EXTRACT_SUBREG child #1 is not a subreg index"); // It would be nice to leave this constraint implicit but we're required // to pick a register class so constrain the result to a register class // that can hold the correct MVT. // // FIXME: This may introduce an extra copy if the chosen class doesn't // actually contain the subregisters. assert(Src->getExtTypes().size() == 1 && "Expected Src of EXTRACT_SUBREG to have one result type"); const auto SrcRCDstRCPair = (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); if (!SrcRCDstRCPair) { return failedImport("subreg index is incompatible " "with inferred reg class"); } assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass"); M.addAction(0, 0, *SrcRCDstRCPair->second); M.addAction(0, 1, *SrcRCDstRCPair->first); // We're done with this pattern! It's eligible for GISel emission; return // it. ++NumPatternImported; return std::move(M); } if (DstIName == "INSERT_SUBREG") { assert(Src->getExtTypes().size() == 1 && "Expected Src of INSERT_SUBREG to have one result type"); // We need to constrain the destination, a super regsister source, and a // subregister source. auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); if (!SubClass) return failedImport( "Cannot infer register class from INSERT_SUBREG operand #1"); auto SuperClass = inferSuperRegisterClassForNode( Src->getExtType(0), Dst->getChild(0), Dst->getChild(2)); if (!SuperClass) return failedImport( "Cannot infer register class for INSERT_SUBREG operand #0"); M.addAction(0, 0, **SuperClass); M.addAction(0, 1, **SuperClass); M.addAction(0, 2, **SubClass); ++NumPatternImported; return std::move(M); } if (DstIName == "SUBREG_TO_REG") { // We need to constrain the destination and subregister source. assert(Src->getExtTypes().size() == 1 && "Expected Src of SUBREG_TO_REG to have one result type"); // Attempt to infer the subregister source from the first child. If it has // an explicitly given register class, we'll use that. Otherwise, we will // fail. auto SubClass = inferRegClassFromPattern(Dst->getChild(1)); if (!SubClass) return failedImport( "Cannot infer register class from SUBREG_TO_REG child #1"); // We don't have a child to look at that might have a super register node. auto SuperClass = inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2)); if (!SuperClass) return failedImport( "Cannot infer register class for SUBREG_TO_REG operand #0"); M.addAction(0, 0, **SuperClass); M.addAction(0, 2, **SubClass); ++NumPatternImported; return std::move(M); } if (DstIName == "REG_SEQUENCE") { auto SuperClass = inferRegClassFromPattern(Dst->getChild(0)); M.addAction(0, 0, **SuperClass); unsigned Num = Dst->getNumChildren(); for (unsigned I = 1; I != Num; I += 2) { TreePatternNode *SubRegChild = Dst->getChild(I + 1); auto SubIdx = inferSubRegIndexForNode(SubRegChild); if (!SubIdx) return failedImport("REG_SEQUENCE child is not a subreg index"); const auto SrcRCDstRCPair = (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx); M.addAction(0, I, *SrcRCDstRCPair->second); } ++NumPatternImported; return std::move(M); } M.addAction(0); // We're done with this pattern! It's eligible for GISel emission; return it. ++NumPatternImported; return std::move(M); } // Emit imm predicate table and an enum to reference them with. // The 'Predicate_' part of the name is redundant but eliminating it is more // trouble than it's worth. void GlobalISelEmitter::emitCxxPredicateFns( raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier, StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs, StringRef AdditionalDeclarations, std::function Filter) { std::vector MatchedRecords; const auto &Defs = RK.getAllDerivedDefinitions("PatFrags"); std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords), [&](Record *Record) { return !Record->getValueAsString(CodeFieldName).empty() && Filter(Record); }); if (!MatchedRecords.empty()) { OS << "// PatFrag predicates.\n" << "enum {\n"; std::string EnumeratorSeparator = (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str(); for (const auto *Record : MatchedRecords) { OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName() << EnumeratorSeparator; EnumeratorSeparator = ",\n"; } OS << "};\n"; } OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " " << ArgName << AdditionalArgs <<") const {\n" << AdditionalDeclarations; if (!AdditionalDeclarations.empty()) OS << "\n"; if (!MatchedRecords.empty()) OS << " switch (PredicateID) {\n"; for (const auto *Record : MatchedRecords) { OS << " case GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName() << ": {\n" << " " << Record->getValueAsString(CodeFieldName) << "\n" << " llvm_unreachable(\"" << CodeFieldName << " should have returned\");\n" << " return false;\n" << " }\n"; } if (!MatchedRecords.empty()) OS << " }\n"; OS << " llvm_unreachable(\"Unknown predicate\");\n" << " return false;\n" << "}\n"; } void GlobalISelEmitter::emitImmPredicateFns( raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType, std::function Filter) { return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType, "Imm", "", "", Filter); } void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { return emitCxxPredicateFns( OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI", ", const std::array &Operands", " const MachineFunction &MF = *MI.getParent()->getParent();\n" " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" " (void)MRI;", [](const Record *R) { return true; }); } template std::vector GlobalISelEmitter::optimizeRules( ArrayRef Rules, std::vector> &MatcherStorage) { std::vector OptRules; std::unique_ptr CurrentGroup = std::make_unique(); assert(CurrentGroup->empty() && "Newly created group isn't empty!"); unsigned NumGroups = 0; auto ProcessCurrentGroup = [&]() { if (CurrentGroup->empty()) // An empty group is good to be reused: return; // If the group isn't large enough to provide any benefit, move all the // added rules out of it and make sure to re-create the group to properly // re-initialize it: if (CurrentGroup->size() < 2) append_range(OptRules, CurrentGroup->matchers()); else { CurrentGroup->finalize(); OptRules.push_back(CurrentGroup.get()); MatcherStorage.emplace_back(std::move(CurrentGroup)); ++NumGroups; } CurrentGroup = std::make_unique(); }; for (Matcher *Rule : Rules) { // Greedily add as many matchers as possible to the current group: if (CurrentGroup->addMatcher(*Rule)) continue; ProcessCurrentGroup(); assert(CurrentGroup->empty() && "A group wasn't properly re-initialized"); // Try to add the pending matcher to a newly created empty group: if (!CurrentGroup->addMatcher(*Rule)) // If we couldn't add the matcher to an empty group, that group type // doesn't support that kind of matchers at all, so just skip it: OptRules.push_back(Rule); } ProcessCurrentGroup(); LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n"); (void) NumGroups; assert(CurrentGroup->empty() && "The last group wasn't properly processed"); return OptRules; } MatchTable GlobalISelEmitter::buildMatchTable(MutableArrayRef Rules, bool Optimize, bool WithCoverage) { std::vector InputRules; for (Matcher &Rule : Rules) InputRules.push_back(&Rule); if (!Optimize) return MatchTable::buildTable(InputRules, WithCoverage); unsigned CurrentOrdering = 0; StringMap OpcodeOrder; for (RuleMatcher &Rule : Rules) { const StringRef Opcode = Rule.getOpcode(); assert(!Opcode.empty() && "Didn't expect an undefined opcode"); if (OpcodeOrder.count(Opcode) == 0) OpcodeOrder[Opcode] = CurrentOrdering++; } llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A, const Matcher *B) { auto *L = static_cast(A); auto *R = static_cast(B); return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) < std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands()); }); for (Matcher *Rule : InputRules) Rule->optimize(); std::vector> MatcherStorage; std::vector OptRules = optimizeRules(InputRules, MatcherStorage); for (Matcher *Rule : OptRules) Rule->optimize(); OptRules = optimizeRules(OptRules, MatcherStorage); return MatchTable::buildTable(OptRules, WithCoverage); } void GroupMatcher::optimize() { // Make sure we only sort by a specific predicate within a range of rules that // all have that predicate checked against a specific value (not a wildcard): auto F = Matchers.begin(); auto T = F; auto E = Matchers.end(); while (T != E) { while (T != E) { auto *R = static_cast(*T); if (!R->getFirstConditionAsRootType().get().isValid()) break; ++T; } std::stable_sort(F, T, [](Matcher *A, Matcher *B) { auto *L = static_cast(A); auto *R = static_cast(B); return L->getFirstConditionAsRootType() < R->getFirstConditionAsRootType(); }); if (T != E) F = ++T; } GlobalISelEmitter::optimizeRules(Matchers, MatcherStorage) .swap(Matchers); GlobalISelEmitter::optimizeRules(Matchers, MatcherStorage) .swap(Matchers); } void GlobalISelEmitter::run(raw_ostream &OS) { if (!UseCoverageFile.empty()) { RuleCoverage = CodeGenCoverage(); auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile); if (!RuleCoverageBufOrErr) { PrintWarning(SMLoc(), "Missing rule coverage data"); RuleCoverage = None; } else { if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) { PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data"); RuleCoverage = None; } } } // Track the run-time opcode values gatherOpcodeValues(); // Track the run-time LLT ID values gatherTypeIDValues(); // Track the GINodeEquiv definitions. gatherNodeEquivs(); emitSourceFileHeader(("Global Instruction Selector for the " + Target.getName() + " target").str(), OS); std::vector Rules; // Look through the SelectionDAG patterns we found, possibly emitting some. for (const PatternToMatch &Pat : CGP.ptms()) { ++NumPatternTotal; auto MatcherOrErr = runOnPattern(Pat); // The pattern analysis can fail, indicating an unsupported pattern. // Report that if we've been asked to do so. if (auto Err = MatcherOrErr.takeError()) { if (WarnOnSkippedPatterns) { PrintWarning(Pat.getSrcRecord()->getLoc(), "Skipped pattern: " + toString(std::move(Err))); } else { consumeError(std::move(Err)); } ++NumPatternImportsSkipped; continue; } if (RuleCoverage) { if (RuleCoverage->isCovered(MatcherOrErr->getRuleID())) ++NumPatternsTested; else PrintWarning(Pat.getSrcRecord()->getLoc(), "Pattern is not covered by a test"); } Rules.push_back(std::move(MatcherOrErr.get())); } // Comparison function to order records by name. auto orderByName = [](const Record *A, const Record *B) { return A->getName() < B->getName(); }; std::vector ComplexPredicates = RK.getAllDerivedDefinitions("GIComplexOperandMatcher"); llvm::sort(ComplexPredicates, orderByName); std::vector CustomRendererFns; transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"), std::back_inserter(CustomRendererFns), [](const auto &Record) { return Record->getValueAsString("RendererFn"); }); // Sort and remove duplicates to get a list of unique renderer functions, in // case some were mentioned more than once. llvm::sort(CustomRendererFns); CustomRendererFns.erase( std::unique(CustomRendererFns.begin(), CustomRendererFns.end()), CustomRendererFns.end()); unsigned MaxTemporaries = 0; for (const auto &Rule : Rules) MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns()); OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n" << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size() << ";\n" << "using PredicateBitset = " "llvm::PredicateBitsetImpl;\n" << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n"; OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n" << " mutable MatcherState State;\n" << " typedef " "ComplexRendererFns(" << Target.getName() << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n" << " typedef void(" << Target.getName() << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const " "MachineInstr &, int) " "const;\n" << " const ISelInfoTy " "ISelInfo;\n"; OS << " static " << Target.getName() << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n" << " static " << Target.getName() << "InstructionSelector::CustomRendererFn CustomRenderers[];\n" << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const " "override;\n" << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) " "const override;\n" << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat " "&Imm) const override;\n" << " const int64_t *getMatchTable() const override;\n" << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI" ", const std::array &Operands) " "const override;\n" << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n"; OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n" << ", State(" << MaxTemporaries << "),\n" << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets" << ", ComplexPredicateFns, CustomRenderers)\n" << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n"; OS << "#ifdef GET_GLOBALISEL_IMPL\n"; SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, OS); // Separate subtarget features by how often they must be recomputed. SubtargetFeatureInfoMap ModuleFeatures; std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), std::inserter(ModuleFeatures, ModuleFeatures.end()), [](const SubtargetFeatureInfoMap::value_type &X) { return !X.second.mustRecomputePerFunction(); }); SubtargetFeatureInfoMap FunctionFeatures; std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(), std::inserter(FunctionFeatures, FunctionFeatures.end()), [](const SubtargetFeatureInfoMap::value_type &X) { return X.second.mustRecomputePerFunction(); }); SubtargetFeatureInfo::emitComputeAvailableFeatures( Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures", ModuleFeatures, OS); OS << "void " << Target.getName() << "InstructionSelector" "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n" " AvailableFunctionFeatures = computeAvailableFunctionFeatures(" "(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n" "}\n"; SubtargetFeatureInfo::emitComputeAvailableFeatures( Target.getName(), "InstructionSelector", "computeAvailableFunctionFeatures", FunctionFeatures, OS, "const MachineFunction *MF"); // Emit a table containing the LLT objects needed by the matcher and an enum // for the matcher to reference them with. std::vector TypeObjects; append_range(TypeObjects, KnownTypes); llvm::sort(TypeObjects); OS << "// LLT Objects.\n" << "enum {\n"; for (const auto &TypeObject : TypeObjects) { OS << " "; TypeObject.emitCxxEnumValue(OS); OS << ",\n"; } OS << "};\n"; OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n" << "const static LLT TypeObjects[] = {\n"; for (const auto &TypeObject : TypeObjects) { OS << " "; TypeObject.emitCxxConstructorCall(OS); OS << ",\n"; } OS << "};\n\n"; // Emit a table containing the PredicateBitsets objects needed by the matcher // and an enum for the matcher to reference them with. std::vector> FeatureBitsets; for (auto &Rule : Rules) FeatureBitsets.push_back(Rule.getRequiredFeatures()); llvm::sort(FeatureBitsets, [&](const std::vector &A, const std::vector &B) { if (A.size() < B.size()) return true; if (A.size() > B.size()) return false; for (auto Pair : zip(A, B)) { if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) return true; if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) return false; } return false; }); FeatureBitsets.erase( std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), FeatureBitsets.end()); OS << "// Feature bitsets.\n" << "enum {\n" << " GIFBS_Invalid,\n"; for (const auto &FeatureBitset : FeatureBitsets) { if (FeatureBitset.empty()) continue; OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; } OS << "};\n" << "const static PredicateBitset FeatureBitsets[] {\n" << " {}, // GIFBS_Invalid\n"; for (const auto &FeatureBitset : FeatureBitsets) { if (FeatureBitset.empty()) continue; OS << " {"; for (const auto &Feature : FeatureBitset) { const auto &I = SubtargetFeatures.find(Feature); assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); OS << I->second.getEnumBitName() << ", "; } OS << "},\n"; } OS << "};\n\n"; // Emit complex predicate table and an enum to reference them with. OS << "// ComplexPattern predicates.\n" << "enum {\n" << " GICP_Invalid,\n"; for (const auto &Record : ComplexPredicates) OS << " GICP_" << Record->getName() << ",\n"; OS << "};\n" << "// See constructor for table contents\n\n"; emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) { bool Unset; return !R->getValueAsBitOrUnset("IsAPFloat", Unset) && !R->getValueAsBit("IsAPInt"); }); emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) { bool Unset; return R->getValueAsBitOrUnset("IsAPFloat", Unset); }); emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) { return R->getValueAsBit("IsAPInt"); }); emitMIPredicateFns(OS); OS << "\n"; OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n" << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n" << " nullptr, // GICP_Invalid\n"; for (const auto &Record : ComplexPredicates) OS << " &" << Target.getName() << "InstructionSelector::" << Record->getValueAsString("MatcherFn") << ", // " << Record->getName() << "\n"; OS << "};\n\n"; OS << "// Custom renderers.\n" << "enum {\n" << " GICR_Invalid,\n"; for (const auto &Fn : CustomRendererFns) OS << " GICR_" << Fn << ",\n"; OS << "};\n"; OS << Target.getName() << "InstructionSelector::CustomRendererFn\n" << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n" << " nullptr, // GICR_Invalid\n"; for (const auto &Fn : CustomRendererFns) OS << " &" << Target.getName() << "InstructionSelector::" << Fn << ",\n"; OS << "};\n\n"; llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) { int ScoreA = RuleMatcherScores[A.getRuleID()]; int ScoreB = RuleMatcherScores[B.getRuleID()]; if (ScoreA > ScoreB) return true; if (ScoreB > ScoreA) return false; if (A.isHigherPriorityThan(B)) { assert(!B.isHigherPriorityThan(A) && "Cannot be more important " "and less important at " "the same time"); return true; } return false; }); OS << "bool " << Target.getName() << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage " "&CoverageInfo) const {\n" << " MachineFunction &MF = *I.getParent()->getParent();\n" << " MachineRegisterInfo &MRI = MF.getRegInfo();\n" << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n" << " NewMIVector OutMIs;\n" << " State.MIs.clear();\n" << " State.MIs.push_back(&I);\n\n" << " if (executeMatchTable(*this, OutMIs, State, ISelInfo" << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures" << ", CoverageInfo)) {\n" << " return true;\n" << " }\n\n" << " return false;\n" << "}\n\n"; const MatchTable Table = buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage); OS << "const int64_t *" << Target.getName() << "InstructionSelector::getMatchTable() const {\n"; Table.emitDeclaration(OS); OS << " return "; Table.emitUse(OS); OS << ";\n}\n"; OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n"; OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n" << "PredicateBitset AvailableModuleFeatures;\n" << "mutable PredicateBitset AvailableFunctionFeatures;\n" << "PredicateBitset getAvailableFeatures() const {\n" << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n" << "}\n" << "PredicateBitset\n" << "computeAvailableModuleFeatures(const " << Target.getName() << "Subtarget *Subtarget) const;\n" << "PredicateBitset\n" << "computeAvailableFunctionFeatures(const " << Target.getName() << "Subtarget *Subtarget,\n" << " const MachineFunction *MF) const;\n" << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n" << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n"; OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n" << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n" << "AvailableFunctionFeatures()\n" << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n"; } void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) { if (SubtargetFeatures.count(Predicate) == 0) SubtargetFeatures.emplace( Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size())); } void RuleMatcher::optimize() { for (auto &Item : InsnVariableIDs) { InstructionMatcher &InsnMatcher = *Item.first; for (auto &OM : InsnMatcher.operands()) { // Complex Patterns are usually expensive and they relatively rarely fail // on their own: more often we end up throwing away all the work done by a // matching part of a complex pattern because some other part of the // enclosing pattern didn't match. All of this makes it beneficial to // delay complex patterns until the very end of the rule matching, // especially for targets having lots of complex patterns. for (auto &OP : OM->predicates()) if (isa(OP)) EpilogueMatchers.emplace_back(std::move(OP)); OM->eraseNullPredicates(); } InsnMatcher.optimize(); } llvm::sort(EpilogueMatchers, [](const std::unique_ptr &L, const std::unique_ptr &R) { return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) < std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx()); }); } bool RuleMatcher::hasFirstCondition() const { if (insnmatchers_empty()) return false; InstructionMatcher &Matcher = insnmatchers_front(); if (!Matcher.predicates_empty()) return true; for (auto &OM : Matcher.operands()) for (auto &OP : OM->predicates()) if (!isa(OP)) return true; return false; } const PredicateMatcher &RuleMatcher::getFirstCondition() const { assert(!insnmatchers_empty() && "Trying to get a condition from an empty RuleMatcher"); InstructionMatcher &Matcher = insnmatchers_front(); if (!Matcher.predicates_empty()) return **Matcher.predicates_begin(); // If there is no more predicate on the instruction itself, look at its // operands. for (auto &OM : Matcher.operands()) for (auto &OP : OM->predicates()) if (!isa(OP)) return *OP; llvm_unreachable("Trying to get a condition from an InstructionMatcher with " "no conditions"); } std::unique_ptr RuleMatcher::popFirstCondition() { assert(!insnmatchers_empty() && "Trying to pop a condition from an empty RuleMatcher"); InstructionMatcher &Matcher = insnmatchers_front(); if (!Matcher.predicates_empty()) return Matcher.predicates_pop_front(); // If there is no more predicate on the instruction itself, look at its // operands. for (auto &OM : Matcher.operands()) for (auto &OP : OM->predicates()) if (!isa(OP)) { std::unique_ptr Result = std::move(OP); OM->eraseNullPredicates(); return Result; } llvm_unreachable("Trying to pop a condition from an InstructionMatcher with " "no conditions"); } bool GroupMatcher::candidateConditionMatches( const PredicateMatcher &Predicate) const { if (empty()) { // Sharing predicates for nested instructions is not supported yet as we // currently don't hoist the GIM_RecordInsn's properly, therefore we can // only work on the original root instruction (InsnVarID == 0): if (Predicate.getInsnVarID() != 0) return false; // ... otherwise an empty group can handle any predicate with no specific // requirements: return true; } const Matcher &Representative = **Matchers.begin(); const auto &RepresentativeCondition = Representative.getFirstCondition(); // ... if not empty, the group can only accomodate matchers with the exact // same first condition: return Predicate.isIdentical(RepresentativeCondition); } bool GroupMatcher::addMatcher(Matcher &Candidate) { if (!Candidate.hasFirstCondition()) return false; const PredicateMatcher &Predicate = Candidate.getFirstCondition(); if (!candidateConditionMatches(Predicate)) return false; Matchers.push_back(&Candidate); return true; } void GroupMatcher::finalize() { assert(Conditions.empty() && "Already finalized?"); if (empty()) return; Matcher &FirstRule = **Matchers.begin(); for (;;) { // All the checks are expected to succeed during the first iteration: for (const auto &Rule : Matchers) if (!Rule->hasFirstCondition()) return; const auto &FirstCondition = FirstRule.getFirstCondition(); for (unsigned I = 1, E = Matchers.size(); I < E; ++I) if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition)) return; Conditions.push_back(FirstRule.popFirstCondition()); for (unsigned I = 1, E = Matchers.size(); I < E; ++I) Matchers[I]->popFirstCondition(); } } void GroupMatcher::emit(MatchTable &Table) { unsigned LabelID = ~0U; if (!Conditions.empty()) { LabelID = Table.allocateLabelID(); Table << MatchTable::Opcode("GIM_Try", +1) << MatchTable::Comment("On fail goto") << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak; } for (auto &Condition : Conditions) Condition->emitPredicateOpcodes( Table, *static_cast(*Matchers.begin())); for (const auto &M : Matchers) M->emit(Table); // Exit the group if (!Conditions.empty()) Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak << MatchTable::Label(LabelID); } bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) { return isa(P) || isa(P); } bool SwitchMatcher::candidateConditionMatches( const PredicateMatcher &Predicate) const { if (empty()) { // Sharing predicates for nested instructions is not supported yet as we // currently don't hoist the GIM_RecordInsn's properly, therefore we can // only work on the original root instruction (InsnVarID == 0): if (Predicate.getInsnVarID() != 0) return false; // ... while an attempt to add even a root matcher to an empty SwitchMatcher // could fail as not all the types of conditions are supported: if (!isSupportedPredicateType(Predicate)) return false; // ... or the condition might not have a proper implementation of // getValue() / isIdenticalDownToValue() yet: if (!Predicate.hasValue()) return false; // ... otherwise an empty Switch can accomodate the condition with no // further requirements: return true; } const Matcher &CaseRepresentative = **Matchers.begin(); const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition(); // Switch-cases must share the same kind of condition and path to the value it // checks: if (!Predicate.isIdenticalDownToValue(RepresentativeCondition)) return false; const auto Value = Predicate.getValue(); // ... but be unique with respect to the actual value they check: return Values.count(Value) == 0; } bool SwitchMatcher::addMatcher(Matcher &Candidate) { if (!Candidate.hasFirstCondition()) return false; const PredicateMatcher &Predicate = Candidate.getFirstCondition(); if (!candidateConditionMatches(Predicate)) return false; const auto Value = Predicate.getValue(); Values.insert(Value); Matchers.push_back(&Candidate); return true; } void SwitchMatcher::finalize() { assert(Condition == nullptr && "Already finalized"); assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); if (empty()) return; llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) { return L->getFirstCondition().getValue() < R->getFirstCondition().getValue(); }); Condition = Matchers[0]->popFirstCondition(); for (unsigned I = 1, E = Values.size(); I < E; ++I) Matchers[I]->popFirstCondition(); } void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P, MatchTable &Table) { assert(isSupportedPredicateType(P) && "Predicate type is not supported"); if (const auto *Condition = dyn_cast(&P)) { Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI") << MatchTable::IntValue(Condition->getInsnVarID()); return; } if (const auto *Condition = dyn_cast(&P)) { Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI") << MatchTable::IntValue(Condition->getInsnVarID()) << MatchTable::Comment("Op") << MatchTable::IntValue(Condition->getOpIdx()); return; } llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a " "predicate type that is claimed to be supported"); } void SwitchMatcher::emit(MatchTable &Table) { assert(Values.size() == Matchers.size() && "Broken SwitchMatcher"); if (empty()) return; assert(Condition != nullptr && "Broken SwitchMatcher, hasn't been finalized?"); std::vector LabelIDs(Values.size()); std::generate(LabelIDs.begin(), LabelIDs.end(), [&Table]() { return Table.allocateLabelID(); }); const unsigned Default = Table.allocateLabelID(); const int64_t LowerBound = Values.begin()->getRawValue(); const int64_t UpperBound = Values.rbegin()->getRawValue() + 1; emitPredicateSpecificOpcodes(*Condition, Table); Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound) << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")") << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default); int64_t J = LowerBound; auto VI = Values.begin(); for (unsigned I = 0, E = Values.size(); I < E; ++I) { auto V = *VI++; while (J++ < V.getRawValue()) Table << MatchTable::IntValue(0); V.turnIntoComment(); Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]); } Table << MatchTable::LineBreak; for (unsigned I = 0, E = Values.size(); I < E; ++I) { Table << MatchTable::Label(LabelIDs[I]); Matchers[I]->emit(Table); Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak; } Table << MatchTable::Label(Default); } unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); } } // end anonymous namespace //===----------------------------------------------------------------------===// namespace llvm { void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) { GlobalISelEmitter(RK).run(OS); } } // End llvm namespace