//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the DAG Matcher optimizer. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "DAGISelMatcher.h" #include "SDNodeProperties.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "isel-opt" /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' /// into single compound nodes like RecordChild. static void ContractNodes(std::unique_ptr &MatcherPtr, const CodeGenDAGPatterns &CGP) { // If we reached the end of the chain, we're done. Matcher *N = MatcherPtr.get(); if (!N) return; // If we have a scope node, walk down all of the children. if (ScopeMatcher *Scope = dyn_cast(N)) { for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { std::unique_ptr Child(Scope->takeChild(i)); ContractNodes(Child, CGP); Scope->resetChild(i, Child.release()); } return; } // If we found a movechild node with a node that comes in a 'foochild' form, // transform it. if (MoveChildMatcher *MC = dyn_cast(N)) { Matcher *New = nullptr; if (RecordMatcher *RM = dyn_cast(MC->getNext())) if (MC->getChildNo() < 8) // Only have RecordChild0...7 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), RM->getResultNo()); if (CheckTypeMatcher *CT = dyn_cast(MC->getNext())) if (MC->getChildNo() < 8 && // Only have CheckChildType0...7 CT->getResNo() == 0) // CheckChildType checks res #0 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); if (CheckSameMatcher *CS = dyn_cast(MC->getNext())) if (MC->getChildNo() < 4) // Only have CheckChildSame0...3 New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber()); if (CheckIntegerMatcher *CI = dyn_cast(MC->getNext())) if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4 New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue()); if (auto *CCC = dyn_cast(MC->getNext())) if (MC->getChildNo() == 2) // Only have CheckChild2CondCode New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName()); if (New) { // Insert the new node. New->setNext(MatcherPtr.release()); MatcherPtr.reset(New); // Remove the old one. MC->setNext(MC->getNext()->takeNext()); return ContractNodes(MatcherPtr, CGP); } } // Zap movechild -> moveparent. if (MoveChildMatcher *MC = dyn_cast(N)) if (MoveParentMatcher *MP = dyn_cast(MC->getNext())) { MatcherPtr.reset(MP->takeNext()); return ContractNodes(MatcherPtr, CGP); } // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. if (EmitNodeMatcher *EN = dyn_cast(N)) if (CompleteMatchMatcher *CM = dyn_cast(EN->getNext())) { // We can only use MorphNodeTo if the result values match up. unsigned RootResultFirst = EN->getFirstResultSlot(); bool ResultsMatch = true; for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) if (CM->getResult(i) != RootResultFirst + i) ResultsMatch = false; // If the selected node defines a subset of the glue/chain results, we // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the // matched pattern has a chain but the root node doesn't. const PatternToMatch &Pattern = CM->getPattern(); if (!EN->hasChain() && Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP)) ResultsMatch = false; // If the matched node has glue and the output root doesn't, we can't // use MorphNodeTo. // // NOTE: Strictly speaking, we don't have to check for glue here // because the code in the pattern generator doesn't handle it right. We // do it anyway for thoroughness. if (!EN->hasOutGlue() && Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP)) ResultsMatch = false; #if 0 // If the root result node defines more results than the source root node // *and* has a chain or glue input, then we can't match it because it // would end up replacing the extra result with the chain/glue. if ((EN->hasGlue() || EN->hasChain()) && EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...) ResultMatch = false; #endif if (ResultsMatch) { const SmallVectorImpl &VTs = EN->getVTList(); const SmallVectorImpl &Operands = EN->getOperandList(); MatcherPtr.reset(new MorphNodeToMatcher( EN->getInstruction(), VTs, Operands, EN->hasChain(), EN->hasInGlue(), EN->hasOutGlue(), EN->hasMemRefs(), EN->getNumFixedArityOperands(), Pattern)); return; } // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode // variants. } ContractNodes(N->getNextPtr(), CGP); // If we have a CheckType/CheckChildType/Record node followed by a // CheckOpcode, invert the two nodes. We prefer to do structural checks // before type checks, as this opens opportunities for factoring on targets // like X86 where many operations are valid on multiple types. if ((isa(N) || isa(N) || isa(N)) && isa(N->getNext())) { // Unlink the two nodes from the list. Matcher *CheckType = MatcherPtr.release(); Matcher *CheckOpcode = CheckType->takeNext(); Matcher *Tail = CheckOpcode->takeNext(); // Relink them. MatcherPtr.reset(CheckOpcode); CheckOpcode->setNext(CheckType); CheckType->setNext(Tail); return ContractNodes(MatcherPtr, CGP); } // If we have a MoveParent followed by a MoveChild, we convert it to // MoveSibling. if (auto *MP = dyn_cast(N)) { if (auto *MC = dyn_cast(MP->getNext())) { auto *MS = new MoveSiblingMatcher(MC->getChildNo()); MS->setNext(MC->takeNext()); MatcherPtr.reset(MS); return ContractNodes(MatcherPtr, CGP); } if (auto *RC = dyn_cast(MP->getNext())) { if (auto *MC = dyn_cast(RC->getNext())) { if (RC->getChildNo() == MC->getChildNo()) { auto *MS = new MoveSiblingMatcher(MC->getChildNo()); auto *RM = new RecordMatcher(RC->getWhatFor(), RC->getResultNo()); // Insert the new node. RM->setNext(MC->takeNext()); MS->setNext(RM); MatcherPtr.reset(MS); return ContractNodes(MatcherPtr, CGP); } } } } } /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a /// specified kind. Return null if we didn't find one otherwise return the /// matcher. static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { for (; M; M = M->getNext()) if (M->getKind() == Kind) return M; return nullptr; } /// FactorNodes - Turn matches like this: /// Scope /// OPC_CheckType i32 /// ABC /// OPC_CheckType i32 /// XYZ /// into: /// OPC_CheckType i32 /// Scope /// ABC /// XYZ /// static void FactorNodes(std::unique_ptr &InputMatcherPtr) { // Look for a push node. Iterates instead of recurses to reduce stack usage. ScopeMatcher *Scope = nullptr; std::unique_ptr *RebindableMatcherPtr = &InputMatcherPtr; while (!Scope) { // If we reached the end of the chain, we're done. Matcher *N = RebindableMatcherPtr->get(); if (!N) return; // If this is not a push node, just scan for one. Scope = dyn_cast(N); if (!Scope) RebindableMatcherPtr = &(N->getNextPtr()); } std::unique_ptr &MatcherPtr = *RebindableMatcherPtr; // Okay, pull together the children of the scope node into a vector so we can // inspect it more easily. SmallVector OptionsToMatch; for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { // Factor the subexpression. std::unique_ptr Child(Scope->takeChild(i)); FactorNodes(Child); // If the child is a ScopeMatcher we can just merge its contents. if (auto *SM = dyn_cast(Child.get())) { for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j) OptionsToMatch.push_back(SM->takeChild(j)); } else { OptionsToMatch.push_back(Child.release()); } } // Loop over options to match, merging neighboring patterns with identical // starting nodes into a shared matcher. auto E = OptionsToMatch.end(); for (auto I = OptionsToMatch.begin(); I != E; ++I) { // If there are no other matchers left, there's nothing to merge with. auto J = std::next(I); if (J == E) break; // Remember where we started. We'll use this to move non-equal elements. auto K = J; // Find the set of matchers that start with this node. Matcher *Optn = *I; // See if the next option starts with the same matcher. If the two // neighbors *do* start with the same matcher, we can factor the matcher out // of at least these two patterns. See what the maximal set we can merge // together is. SmallVector EqualMatchers; EqualMatchers.push_back(Optn); // Factor all of the known-equal matchers after this one into the same // group. while (J != E && (*J)->isEqual(Optn)) EqualMatchers.push_back(*J++); // If we found a non-equal matcher, see if it is contradictory with the // current node. If so, we know that the ordering relation between the // current sets of nodes and this node don't matter. Look past it to see if // we can merge anything else into this matching group. while (J != E) { Matcher *ScanMatcher = *J; // If we found an entry that matches out matcher, merge it into the set to // handle. if (Optn->isEqual(ScanMatcher)) { // It is equal after all, add the option to EqualMatchers. EqualMatchers.push_back(ScanMatcher); ++J; continue; } // If the option we're checking for contradicts the start of the list, // move it earlier in OptionsToMatch for the next iteration of the outer // loop. Then continue searching for equal or contradictory matchers. if (Optn->isContradictory(ScanMatcher)) { *K++ = *J++; continue; } // If we're scanning for a simple node, see if it occurs later in the // sequence. If so, and if we can move it up, it might be contradictory // or the same as what we're looking for. If so, reorder it. if (Optn->isSimplePredicateOrRecordNode()) { Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind()); if (M2 && M2 != ScanMatcher && M2->canMoveBefore(ScanMatcher) && (M2->isEqual(Optn) || M2->isContradictory(Optn))) { Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2); M2->setNext(MatcherWithoutM2); *J = M2; continue; } } // Otherwise, we don't know how to handle this entry, we have to bail. break; } if (J != E && // Don't print if it's obvious nothing extract could be merged anyway. std::next(J) != E) { LLVM_DEBUG(errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4); errs() << "into this:\n"; (*J)->print(errs(), 4); (*std::next(J))->printOne(errs()); if (std::next(J, 2) != E) (*std::next(J, 2))->printOne(errs()); errs() << "\n"); } // If we removed any equal matchers, we may need to slide the rest of the // elements down for the next iteration of the outer loop. if (J != K) { while (J != E) *K++ = *J++; // Update end pointer for outer loop. E = K; } // If we only found one option starting with this matcher, no factoring is // possible. Put the Matcher back in OptionsToMatch. if (EqualMatchers.size() == 1) { *I = EqualMatchers[0]; continue; } // Factor these checks by pulling the first node off each entry and // discarding it. Take the first one off the first entry to reuse. Matcher *Shared = Optn; Optn = Optn->takeNext(); EqualMatchers[0] = Optn; // Remove and delete the first node from the other matchers we're factoring. for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { Matcher *Tmp = EqualMatchers[i]->takeNext(); delete EqualMatchers[i]; EqualMatchers[i] = Tmp; assert(!Optn == !Tmp && "Expected all to be null if any are null"); } if (EqualMatchers[0]) { Shared->setNext(new ScopeMatcher(std::move(EqualMatchers))); // Recursively factor the newly created node. FactorNodes(Shared->getNextPtr()); } // Put the new Matcher where we started in OptionsToMatch. *I = Shared; } // Trim the array to match the updated end. if (E != OptionsToMatch.end()) OptionsToMatch.erase(E, OptionsToMatch.end()); // If we're down to a single pattern to match, then we don't need this scope // anymore. if (OptionsToMatch.size() == 1) { MatcherPtr.reset(OptionsToMatch[0]); return; } if (OptionsToMatch.empty()) { MatcherPtr.reset(); return; } // If our factoring failed (didn't achieve anything) see if we can simplify in // other ways. // Check to see if all of the leading entries are now opcode checks. If so, // we can convert this Scope to be a OpcodeSwitch instead. bool AllOpcodeChecks = true, AllTypeChecks = true; for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) { // Check to see if this breaks a series of CheckOpcodeMatchers. if (AllOpcodeChecks && !isa(OptionsToMatch[i])) { #if 0 if (i > 3) { errs() << "FAILING OPC #" << i << "\n"; OptionsToMatch[i]->dump(); } #endif AllOpcodeChecks = false; } // Check to see if this breaks a series of CheckTypeMatcher's. if (AllTypeChecks) { CheckTypeMatcher *CTM = cast_or_null( FindNodeWithKind(OptionsToMatch[i], Matcher::CheckType)); if (!CTM || // iPTR checks could alias any other case without us knowing, don't // bother with them. CTM->getType() == MVT::iPTR || // SwitchType only works for result #0. CTM->getResNo() != 0 || // If the CheckType isn't at the start of the list, see if we can move // it there. !CTM->canMoveBefore(OptionsToMatch[i])) { #if 0 if (i > 3 && AllTypeChecks) { errs() << "FAILING TYPE #" << i << "\n"; OptionsToMatch[i]->dump(); } #endif AllTypeChecks = false; } } } // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. if (AllOpcodeChecks) { StringSet<> Opcodes; SmallVector, 8> Cases; for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) { CheckOpcodeMatcher *COM = cast(OptionsToMatch[i]); assert(Opcodes.insert(COM->getOpcode().getEnumName()).second && "Duplicate opcodes not factored?"); Cases.push_back(std::make_pair(&COM->getOpcode(), COM->takeNext())); delete COM; } MatcherPtr.reset(new SwitchOpcodeMatcher(std::move(Cases))); return; } // If all the options are CheckType's, we can form the SwitchType, woot. if (AllTypeChecks) { DenseMap TypeEntry; SmallVector, 8> Cases; for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) { Matcher *M = FindNodeWithKind(OptionsToMatch[i], Matcher::CheckType); assert(M && isa(M) && "Unknown Matcher type"); auto *CTM = cast(M); Matcher *MatcherWithoutCTM = OptionsToMatch[i]->unlinkNode(CTM); MVT::SimpleValueType CTMTy = CTM->getType(); delete CTM; unsigned &Entry = TypeEntry[CTMTy]; if (Entry != 0) { // If we have unfactored duplicate types, then we should factor them. Matcher *PrevMatcher = Cases[Entry - 1].second; if (ScopeMatcher *SM = dyn_cast(PrevMatcher)) { SM->setNumChildren(SM->getNumChildren() + 1); SM->resetChild(SM->getNumChildren() - 1, MatcherWithoutCTM); continue; } SmallVector Entries = {PrevMatcher, MatcherWithoutCTM}; Cases[Entry - 1].second = new ScopeMatcher(std::move(Entries)); continue; } Entry = Cases.size() + 1; Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM)); } // Make sure we recursively factor any scopes we may have created. for (auto &M : Cases) { if (ScopeMatcher *SM = dyn_cast(M.second)) { std::unique_ptr Scope(SM); FactorNodes(Scope); M.second = Scope.release(); assert(M.second && "null matcher"); } } if (Cases.size() != 1) { MatcherPtr.reset(new SwitchTypeMatcher(std::move(Cases))); } else { // If we factored and ended up with one case, create it now. MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0)); MatcherPtr->setNext(Cases[0].second); } return; } // Reassemble the Scope node with the adjusted children. Scope->setNumChildren(OptionsToMatch.size()); for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) Scope->resetChild(i, OptionsToMatch[i]); } void llvm::OptimizeMatcher(std::unique_ptr &MatcherPtr, const CodeGenDAGPatterns &CGP) { ContractNodes(MatcherPtr, CGP); FactorNodes(MatcherPtr); }