//===- DAGISelMatcherEmitter.cpp - Matcher Emitter ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains code to generate C++ code for a matcher. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "CodeGenInstruction.h" #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "DAGISelMatcher.h" #include "SDNodeProperties.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Format.h" #include "llvm/Support/SourceMgr.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" using namespace llvm; enum { IndexWidth = 6, FullIndexWidth = IndexWidth + 4, HistOpcWidth = 40, }; cl::OptionCategory DAGISelCat("Options for -gen-dag-isel"); // To reduce generated source code size. static cl::opt OmitComments("omit-comments", cl::desc("Do not generate comments"), cl::init(false), cl::cat(DAGISelCat)); static cl::opt InstrumentCoverage( "instrument-coverage", cl::desc("Generates tables to help identify patterns matched"), cl::init(false), cl::cat(DAGISelCat)); namespace { class MatcherTableEmitter { const CodeGenDAGPatterns &CGP; SmallVector OpcodeCounts; std::vector NodePredicates; std::vector NodePredicatesWithOperands; // We de-duplicate the predicates by code string, and use this map to track // all the patterns with "identical" predicates. MapVector, StringMap> NodePredicatesByCodeToRun; std::vector PatternPredicates; std::vector ComplexPatterns; DenseMap NodeXFormMap; std::vector NodeXForms; std::vector VecIncludeStrings; MapVector > VecPatterns; unsigned getPatternIdxFromTable(std::string &&P, std::string &&include_loc) { const auto It = VecPatterns.find(P); if (It == VecPatterns.end()) { VecPatterns.insert(make_pair(std::move(P), VecPatterns.size())); VecIncludeStrings.push_back(std::move(include_loc)); return VecIncludeStrings.size() - 1; } return It->second; } public: MatcherTableEmitter(const Matcher *TheMatcher, const CodeGenDAGPatterns &cgp) : CGP(cgp), OpcodeCounts(Matcher::HighestKind + 1, 0) { // Record the usage of ComplexPattern. MapVector ComplexPatternUsage; // Record the usage of PatternPredicate. MapVector PatternPredicateUsage; // Record the usage of Predicate. MapVector PredicateUsage; // Iterate the whole MatcherTable once and do some statistics. std::function Statistic = [&](const Matcher *N) { while (N) { if (auto *SM = dyn_cast(N)) for (unsigned I = 0; I < SM->getNumChildren(); I++) Statistic(SM->getChild(I)); else if (auto *SOM = dyn_cast(N)) for (unsigned I = 0; I < SOM->getNumCases(); I++) Statistic(SOM->getCaseMatcher(I)); else if (auto *STM = dyn_cast(N)) for (unsigned I = 0; I < STM->getNumCases(); I++) Statistic(STM->getCaseMatcher(I)); else if (auto *CPM = dyn_cast(N)) ++ComplexPatternUsage[&CPM->getPattern()]; else if (auto *CPPM = dyn_cast(N)) ++PatternPredicateUsage[CPPM->getPredicate()]; else if (auto *PM = dyn_cast(N)) ++PredicateUsage[PM->getPredicate().getOrigPatFragRecord()]; N = N->getNext(); } }; Statistic(TheMatcher); // Sort ComplexPatterns by usage. std::vector> ComplexPatternList( ComplexPatternUsage.begin(), ComplexPatternUsage.end()); stable_sort(ComplexPatternList, [](const auto &A, const auto &B) { return A.second > B.second; }); for (const auto &ComplexPattern : ComplexPatternList) ComplexPatterns.push_back(ComplexPattern.first); // Sort PatternPredicates by usage. std::vector> PatternPredicateList( PatternPredicateUsage.begin(), PatternPredicateUsage.end()); stable_sort(PatternPredicateList, [](const auto &A, const auto &B) { return A.second > B.second; }); for (const auto &PatternPredicate : PatternPredicateList) PatternPredicates.push_back(PatternPredicate.first); // Sort Predicates by usage. // Merge predicates with same code. for (const auto &Usage : PredicateUsage) { TreePattern *TP = Usage.first; TreePredicateFn Pred(TP); NodePredicatesByCodeToRun[Pred.getCodeToRunOnSDNode()].push_back(TP); } std::vector> PredicateList; // Sum the usage. for (auto &Predicate : NodePredicatesByCodeToRun) { TinyPtrVector &TPs = Predicate.second; stable_sort(TPs, [](const auto *A, const auto *B) { return A->getRecord()->getName() < B->getRecord()->getName(); }); unsigned Uses = 0; for (TreePattern *TP : TPs) Uses += PredicateUsage[TP]; // We only add the first predicate here since they are with the same code. PredicateList.push_back({TPs[0], Uses}); } stable_sort(PredicateList, [](const auto &A, const auto &B) { return A.second > B.second; }); for (const auto &Predicate : PredicateList) { TreePattern *TP = Predicate.first; if (TreePredicateFn(TP).usesOperands()) NodePredicatesWithOperands.push_back(TP); else NodePredicates.push_back(TP); } } unsigned EmitMatcherList(const Matcher *N, const unsigned Indent, unsigned StartIdx, raw_ostream &OS); unsigned SizeMatcherList(Matcher *N, raw_ostream &OS); void EmitPredicateFunctions(raw_ostream &OS); void EmitHistogram(const Matcher *N, raw_ostream &OS); void EmitPatternMatchTable(raw_ostream &OS); private: void EmitNodePredicatesFunction(const std::vector &Preds, StringRef Decl, raw_ostream &OS); unsigned SizeMatcher(Matcher *N, raw_ostream &OS); unsigned EmitMatcher(const Matcher *N, const unsigned Indent, unsigned CurrentIdx, raw_ostream &OS); unsigned getNodePredicate(TreePredicateFn Pred) { // We use the first predicate. TreePattern *PredPat = NodePredicatesByCodeToRun[Pred.getCodeToRunOnSDNode()][0]; return Pred.usesOperands() ? llvm::find(NodePredicatesWithOperands, PredPat) - NodePredicatesWithOperands.begin() : llvm::find(NodePredicates, PredPat) - NodePredicates.begin(); } unsigned getPatternPredicate(StringRef PredName) { return llvm::find(PatternPredicates, PredName) - PatternPredicates.begin(); } unsigned getComplexPat(const ComplexPattern &P) { return llvm::find(ComplexPatterns, &P) - ComplexPatterns.begin(); } unsigned getNodeXFormID(Record *Rec) { unsigned &Entry = NodeXFormMap[Rec]; if (Entry == 0) { NodeXForms.push_back(Rec); Entry = NodeXForms.size(); } return Entry-1; } }; } // end anonymous namespace. static std::string GetPatFromTreePatternNode(const TreePatternNode *N) { std::string str; raw_string_ostream Stream(str); Stream << *N; return str; } static unsigned GetVBRSize(unsigned Val) { if (Val <= 127) return 1; unsigned NumBytes = 0; while (Val >= 128) { Val >>= 7; ++NumBytes; } return NumBytes+1; } /// EmitVBRValue - Emit the specified value as a VBR, returning the number of /// bytes emitted. static unsigned EmitVBRValue(uint64_t Val, raw_ostream &OS) { if (Val <= 127) { OS << Val << ", "; return 1; } uint64_t InVal = Val; unsigned NumBytes = 0; while (Val >= 128) { OS << (Val&127) << "|128,"; Val >>= 7; ++NumBytes; } OS << Val; if (!OmitComments) OS << "/*" << InVal << "*/"; OS << ", "; return NumBytes+1; } /// Emit the specified signed value as a VBR. To improve compression we encode /// positive numbers shifted left by 1 and negative numbers negated and shifted /// left by 1 with bit 0 set. static unsigned EmitSignedVBRValue(uint64_t Val, raw_ostream &OS) { if ((int64_t)Val >= 0) Val = Val << 1; else Val = (-Val << 1) | 1; return EmitVBRValue(Val, OS); } // This is expensive and slow. static std::string getIncludePath(const Record *R) { std::string str; raw_string_ostream Stream(str); auto Locs = R->getLoc(); SMLoc L; if (Locs.size() > 1) { // Get where the pattern prototype was instantiated L = Locs[1]; } else if (Locs.size() == 1) { L = Locs[0]; } unsigned CurBuf = SrcMgr.FindBufferContainingLoc(L); assert(CurBuf && "Invalid or unspecified location!"); Stream << SrcMgr.getBufferInfo(CurBuf).Buffer->getBufferIdentifier() << ":" << SrcMgr.FindLineNumber(L, CurBuf); return str; } /// This function traverses the matcher tree and sizes all the nodes /// that are children of the three kinds of nodes that have them. unsigned MatcherTableEmitter:: SizeMatcherList(Matcher *N, raw_ostream &OS) { unsigned Size = 0; while (N) { Size += SizeMatcher(N, OS); N = N->getNext(); } return Size; } /// This function sizes the children of the three kinds of nodes that /// have them. It does so by using special cases for those three /// nodes, but sharing the code in EmitMatcher() for the other kinds. unsigned MatcherTableEmitter:: SizeMatcher(Matcher *N, raw_ostream &OS) { unsigned Idx = 0; ++OpcodeCounts[N->getKind()]; switch (N->getKind()) { // The Scope matcher has its kind, a series of child size + child, // and a trailing zero. case Matcher::Scope: { ScopeMatcher *SM = cast(N); assert(SM->getNext() == nullptr && "Scope matcher should not have next"); unsigned Size = 1; // Count the kind. for (unsigned i = 0, e = SM->getNumChildren(); i != e; ++i) { const unsigned ChildSize = SizeMatcherList(SM->getChild(i), OS); assert(ChildSize != 0 && "Matcher cannot have child of size 0"); SM->getChild(i)->setSize(ChildSize); Size += GetVBRSize(ChildSize) + ChildSize; // Count VBR and child size. } ++Size; // Count the zero sentinel. return Size; } // SwitchOpcode and SwitchType have their kind, a series of child size + // opcode/type + child, and a trailing zero. case Matcher::SwitchOpcode: case Matcher::SwitchType: { unsigned Size = 1; // Count the kind. unsigned NumCases; if (const SwitchOpcodeMatcher *SOM = dyn_cast(N)) NumCases = SOM->getNumCases(); else NumCases = cast(N)->getNumCases(); for (unsigned i = 0, e = NumCases; i != e; ++i) { Matcher *Child; if (SwitchOpcodeMatcher *SOM = dyn_cast(N)) { Child = SOM->getCaseMatcher(i); Size += 2; // Count the child's opcode. } else { Child = cast(N)->getCaseMatcher(i); ++Size; // Count the child's type. } const unsigned ChildSize = SizeMatcherList(Child, OS); assert(ChildSize != 0 && "Matcher cannot have child of size 0"); Child->setSize(ChildSize); Size += GetVBRSize(ChildSize) + ChildSize; // Count VBR and child size. } ++Size; // Count the zero sentinel. return Size; } default: // Employ the matcher emitter to size other matchers. return EmitMatcher(N, 0, Idx, OS); } llvm_unreachable("Unreachable"); } static void BeginEmitFunction(raw_ostream &OS, StringRef RetType, StringRef Decl, bool AddOverride) { OS << "#ifdef GET_DAGISEL_DECL\n"; OS << RetType << ' ' << Decl; if (AddOverride) OS << " override"; OS << ";\n" "#endif\n" "#if defined(GET_DAGISEL_BODY) || DAGISEL_INLINE\n"; OS << RetType << " DAGISEL_CLASS_COLONCOLON " << Decl << "\n"; if (AddOverride) { OS << "#if DAGISEL_INLINE\n" " override\n" "#endif\n"; } } static void EndEmitFunction(raw_ostream &OS) { OS << "#endif // GET_DAGISEL_BODY\n\n"; } void MatcherTableEmitter::EmitPatternMatchTable(raw_ostream &OS) { assert(isUInt<16>(VecPatterns.size()) && "Using only 16 bits to encode offset into Pattern Table"); assert(VecPatterns.size() == VecIncludeStrings.size() && "The sizes of Pattern and include vectors should be the same"); BeginEmitFunction(OS, "StringRef", "getPatternForIndex(unsigned Index)", true/*AddOverride*/); OS << "{\n"; OS << "static const char *PATTERN_MATCH_TABLE[] = {\n"; for (const auto &It : VecPatterns) { OS << "\"" << It.first << "\",\n"; } OS << "\n};"; OS << "\nreturn StringRef(PATTERN_MATCH_TABLE[Index]);"; OS << "\n}\n"; EndEmitFunction(OS); BeginEmitFunction(OS, "StringRef", "getIncludePathForIndex(unsigned Index)", true/*AddOverride*/); OS << "{\n"; OS << "static const char *INCLUDE_PATH_TABLE[] = {\n"; for (const auto &It : VecIncludeStrings) { OS << "\"" << It << "\",\n"; } OS << "\n};"; OS << "\nreturn StringRef(INCLUDE_PATH_TABLE[Index]);"; OS << "\n}\n"; EndEmitFunction(OS); } /// EmitMatcher - Emit bytes for the specified matcher and return /// the number of bytes emitted. unsigned MatcherTableEmitter:: EmitMatcher(const Matcher *N, const unsigned Indent, unsigned CurrentIdx, raw_ostream &OS) { OS.indent(Indent); switch (N->getKind()) { case Matcher::Scope: { const ScopeMatcher *SM = cast(N); unsigned StartIdx = CurrentIdx; // Emit all of the children. for (unsigned i = 0, e = SM->getNumChildren(); i != e; ++i) { if (i == 0) { OS << "OPC_Scope, "; ++CurrentIdx; } else { if (!OmitComments) { OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/"; OS.indent(Indent) << "/*Scope*/ "; } else OS.indent(Indent); } unsigned ChildSize = SM->getChild(i)->getSize(); unsigned VBRSize = EmitVBRValue(ChildSize, OS); if (!OmitComments) { OS << "/*->" << CurrentIdx + VBRSize + ChildSize << "*/"; if (i == 0) OS << " // " << SM->getNumChildren() << " children in Scope"; } OS << '\n'; ChildSize = EmitMatcherList(SM->getChild(i), Indent+1, CurrentIdx + VBRSize, OS); assert(ChildSize == SM->getChild(i)->getSize() && "Emitted child size does not match calculated size"); CurrentIdx += VBRSize + ChildSize; } // Emit a zero as a sentinel indicating end of 'Scope'. if (!OmitComments) OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/"; OS.indent(Indent) << "0, "; if (!OmitComments) OS << "/*End of Scope*/"; OS << '\n'; return CurrentIdx - StartIdx + 1; } case Matcher::RecordNode: OS << "OPC_RecordNode,"; if (!OmitComments) OS << " // #" << cast(N)->getResultNo() << " = " << cast(N)->getWhatFor(); OS << '\n'; return 1; case Matcher::RecordChild: OS << "OPC_RecordChild" << cast(N)->getChildNo() << ','; if (!OmitComments) OS << " // #" << cast(N)->getResultNo() << " = " << cast(N)->getWhatFor(); OS << '\n'; return 1; case Matcher::RecordMemRef: OS << "OPC_RecordMemRef,\n"; return 1; case Matcher::CaptureGlueInput: OS << "OPC_CaptureGlueInput,\n"; return 1; case Matcher::MoveChild: { const auto *MCM = cast(N); OS << "OPC_MoveChild"; // Handle the specialized forms. if (MCM->getChildNo() >= 8) OS << ", "; OS << MCM->getChildNo() << ",\n"; return (MCM->getChildNo() >= 8) ? 2 : 1; } case Matcher::MoveSibling: { const auto *MSM = cast(N); OS << "OPC_MoveSibling"; // Handle the specialized forms. if (MSM->getSiblingNo() >= 8) OS << ", "; OS << MSM->getSiblingNo() << ",\n"; return (MSM->getSiblingNo() >= 8) ? 2 : 1; } case Matcher::MoveParent: OS << "OPC_MoveParent,\n"; return 1; case Matcher::CheckSame: OS << "OPC_CheckSame, " << cast(N)->getMatchNumber() << ",\n"; return 2; case Matcher::CheckChildSame: OS << "OPC_CheckChild" << cast(N)->getChildNo() << "Same, " << cast(N)->getMatchNumber() << ",\n"; return 2; case Matcher::CheckPatternPredicate: { StringRef Pred = cast(N)->getPredicate(); unsigned PredNo = getPatternPredicate(Pred); if (PredNo > 255) OS << "OPC_CheckPatternPredicateTwoByte, TARGET_VAL(" << PredNo << "),"; else if (PredNo < 8) OS << "OPC_CheckPatternPredicate" << PredNo << ','; else OS << "OPC_CheckPatternPredicate, " << PredNo << ','; if (!OmitComments) OS << " // " << Pred; OS << '\n'; return 2 + (PredNo > 255) - (PredNo < 8); } case Matcher::CheckPredicate: { TreePredicateFn Pred = cast(N)->getPredicate(); unsigned OperandBytes = 0; unsigned PredNo = getNodePredicate(Pred); if (Pred.usesOperands()) { unsigned NumOps = cast(N)->getNumOperands(); OS << "OPC_CheckPredicateWithOperands, " << NumOps << "/*#Ops*/, "; for (unsigned i = 0; i < NumOps; ++i) OS << cast(N)->getOperandNo(i) << ", "; OperandBytes = 1 + NumOps; } else { if (PredNo < 8) { OperandBytes = -1; OS << "OPC_CheckPredicate" << PredNo << ", "; } else OS << "OPC_CheckPredicate, "; } if (PredNo >= 8 || Pred.usesOperands()) OS << PredNo << ','; if (!OmitComments) OS << " // " << Pred.getFnName(); OS << '\n'; return 2 + OperandBytes; } case Matcher::CheckOpcode: OS << "OPC_CheckOpcode, TARGET_VAL(" << cast(N)->getOpcode().getEnumName() << "),\n"; return 3; case Matcher::SwitchOpcode: case Matcher::SwitchType: { unsigned StartIdx = CurrentIdx; unsigned NumCases; if (const SwitchOpcodeMatcher *SOM = dyn_cast(N)) { OS << "OPC_SwitchOpcode "; NumCases = SOM->getNumCases(); } else { OS << "OPC_SwitchType "; NumCases = cast(N)->getNumCases(); } if (!OmitComments) OS << "/*" << NumCases << " cases */"; OS << ", "; ++CurrentIdx; // For each case we emit the size, then the opcode, then the matcher. for (unsigned i = 0, e = NumCases; i != e; ++i) { const Matcher *Child; unsigned IdxSize; if (const SwitchOpcodeMatcher *SOM = dyn_cast(N)) { Child = SOM->getCaseMatcher(i); IdxSize = 2; // size of opcode in table is 2 bytes. } else { Child = cast(N)->getCaseMatcher(i); IdxSize = 1; // size of type in table is 1 byte. } if (i != 0) { if (!OmitComments) OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/"; OS.indent(Indent); if (!OmitComments) OS << (isa(N) ? "/*SwitchOpcode*/ " : "/*SwitchType*/ "); } unsigned ChildSize = Child->getSize(); CurrentIdx += EmitVBRValue(ChildSize, OS) + IdxSize; if (const SwitchOpcodeMatcher *SOM = dyn_cast(N)) OS << "TARGET_VAL(" << SOM->getCaseOpcode(i).getEnumName() << "),"; else OS << getEnumName(cast(N)->getCaseType(i)) << ','; if (!OmitComments) OS << "// ->" << CurrentIdx + ChildSize; OS << '\n'; ChildSize = EmitMatcherList(Child, Indent+1, CurrentIdx, OS); assert(ChildSize == Child->getSize() && "Emitted child size does not match calculated size"); CurrentIdx += ChildSize; } // Emit the final zero to terminate the switch. if (!OmitComments) OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/"; OS.indent(Indent) << "0,"; if (!OmitComments) OS << (isa(N) ? " // EndSwitchOpcode" : " // EndSwitchType"); OS << '\n'; return CurrentIdx - StartIdx + 1; } case Matcher::CheckType: if (cast(N)->getResNo() == 0) { MVT::SimpleValueType VT = cast(N)->getType(); switch (VT) { case MVT::i32: case MVT::i64: OS << "OPC_CheckTypeI" << MVT(VT).getSizeInBits() << ",\n"; return 1; default: OS << "OPC_CheckType, " << getEnumName(VT) << ",\n"; return 2; } } OS << "OPC_CheckTypeRes, " << cast(N)->getResNo() << ", " << getEnumName(cast(N)->getType()) << ",\n"; return 3; case Matcher::CheckChildType: { MVT::SimpleValueType VT = cast(N)->getType(); switch (VT) { case MVT::i32: case MVT::i64: OS << "OPC_CheckChild" << cast(N)->getChildNo() << "TypeI" << MVT(VT).getSizeInBits() << ",\n"; return 1; default: OS << "OPC_CheckChild" << cast(N)->getChildNo() << "Type, " << getEnumName(VT) << ",\n"; return 2; } } case Matcher::CheckInteger: { OS << "OPC_CheckInteger, "; unsigned Bytes = 1 + EmitSignedVBRValue(cast(N)->getValue(), OS); OS << '\n'; return Bytes; } case Matcher::CheckChildInteger: { OS << "OPC_CheckChild" << cast(N)->getChildNo() << "Integer, "; unsigned Bytes = 1 + EmitSignedVBRValue( cast(N)->getValue(), OS); OS << '\n'; return Bytes; } case Matcher::CheckCondCode: OS << "OPC_CheckCondCode, ISD::" << cast(N)->getCondCodeName() << ",\n"; return 2; case Matcher::CheckChild2CondCode: OS << "OPC_CheckChild2CondCode, ISD::" << cast(N)->getCondCodeName() << ",\n"; return 2; case Matcher::CheckValueType: OS << "OPC_CheckValueType, MVT::" << cast(N)->getTypeName() << ",\n"; return 2; case Matcher::CheckComplexPat: { const CheckComplexPatMatcher *CCPM = cast(N); const ComplexPattern &Pattern = CCPM->getPattern(); unsigned PatternNo = getComplexPat(Pattern); if (PatternNo < 8) OS << "OPC_CheckComplexPat" << PatternNo << ", /*#*/" << CCPM->getMatchNumber() << ','; else OS << "OPC_CheckComplexPat, /*CP*/" << PatternNo << ", /*#*/" << CCPM->getMatchNumber() << ','; if (!OmitComments) { OS << " // " << Pattern.getSelectFunc(); OS << ":$" << CCPM->getName(); for (unsigned i = 0, e = Pattern.getNumOperands(); i != e; ++i) OS << " #" << CCPM->getFirstResult()+i; if (Pattern.hasProperty(SDNPHasChain)) OS << " + chain result"; } OS << '\n'; return PatternNo < 8 ? 2 : 3; } case Matcher::CheckAndImm: { OS << "OPC_CheckAndImm, "; unsigned Bytes=1+EmitVBRValue(cast(N)->getValue(), OS); OS << '\n'; return Bytes; } case Matcher::CheckOrImm: { OS << "OPC_CheckOrImm, "; unsigned Bytes = 1+EmitVBRValue(cast(N)->getValue(), OS); OS << '\n'; return Bytes; } case Matcher::CheckFoldableChainNode: OS << "OPC_CheckFoldableChainNode,\n"; return 1; case Matcher::CheckImmAllOnesV: OS << "OPC_CheckImmAllOnesV,\n"; return 1; case Matcher::CheckImmAllZerosV: OS << "OPC_CheckImmAllZerosV,\n"; return 1; case Matcher::EmitInteger: { int64_t Val = cast(N)->getValue(); MVT::SimpleValueType VT = cast(N)->getVT(); unsigned OpBytes; switch (VT) { case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: OpBytes = 1; OS << "OPC_EmitInteger" << MVT(VT).getSizeInBits() << ", "; break; default: OpBytes = 2; OS << "OPC_EmitInteger, " << getEnumName(VT) << ", "; break; } unsigned Bytes = OpBytes + EmitSignedVBRValue(Val, OS); OS << '\n'; return Bytes; } case Matcher::EmitStringInteger: { const std::string &Val = cast(N)->getValue(); MVT::SimpleValueType VT = cast(N)->getVT(); // These should always fit into 7 bits. unsigned OpBytes; switch (VT) { case MVT::i32: OpBytes = 1; OS << "OPC_EmitStringInteger" << MVT(VT).getSizeInBits() << ", "; break; default: OpBytes = 2; OS << "OPC_EmitStringInteger, " << getEnumName(VT) << ", "; break; } OS << Val << ",\n"; return OpBytes + 1; } case Matcher::EmitRegister: { const EmitRegisterMatcher *Matcher = cast(N); const CodeGenRegister *Reg = Matcher->getReg(); MVT::SimpleValueType VT = Matcher->getVT(); // If the enum value of the register is larger than one byte can handle, // use EmitRegister2. if (Reg && Reg->EnumValue > 255) { OS << "OPC_EmitRegister2, " << getEnumName(VT) << ", "; OS << "TARGET_VAL(" << getQualifiedName(Reg->TheDef) << "),\n"; return 4; } unsigned OpBytes; switch (VT) { case MVT::i32: case MVT::i64: OpBytes = 1; OS << "OPC_EmitRegisterI" << MVT(VT).getSizeInBits() << ", "; break; default: OpBytes = 2; OS << "OPC_EmitRegister, " << getEnumName(VT) << ", "; break; } if (Reg) { OS << getQualifiedName(Reg->TheDef) << ",\n"; } else { OS << "0 "; if (!OmitComments) OS << "/*zero_reg*/"; OS << ",\n"; } return OpBytes + 1; } case Matcher::EmitConvertToTarget: { unsigned Slot = cast(N)->getSlot(); if (Slot < 8) { OS << "OPC_EmitConvertToTarget" << Slot << ",\n"; return 1; } OS << "OPC_EmitConvertToTarget, " << Slot << ",\n"; return 2; } case Matcher::EmitMergeInputChains: { const EmitMergeInputChainsMatcher *MN = cast(N); // Handle the specialized forms OPC_EmitMergeInputChains1_0, 1_1, and 1_2. if (MN->getNumNodes() == 1 && MN->getNode(0) < 3) { OS << "OPC_EmitMergeInputChains1_" << MN->getNode(0) << ",\n"; return 1; } OS << "OPC_EmitMergeInputChains, " << MN->getNumNodes() << ", "; for (unsigned i = 0, e = MN->getNumNodes(); i != e; ++i) OS << MN->getNode(i) << ", "; OS << '\n'; return 2+MN->getNumNodes(); } case Matcher::EmitCopyToReg: { const auto *C2RMatcher = cast(N); int Bytes = 3; const CodeGenRegister *Reg = C2RMatcher->getDestPhysReg(); unsigned Slot = C2RMatcher->getSrcSlot(); if (Reg->EnumValue > 255) { assert(isUInt<16>(Reg->EnumValue) && "not handled"); OS << "OPC_EmitCopyToRegTwoByte, " << Slot << ", " << "TARGET_VAL(" << getQualifiedName(Reg->TheDef) << "),\n"; ++Bytes; } else { if (Slot < 8) { OS << "OPC_EmitCopyToReg" << Slot << ", " << getQualifiedName(Reg->TheDef) << ",\n"; --Bytes; } else OS << "OPC_EmitCopyToReg, " << Slot << ", " << getQualifiedName(Reg->TheDef) << ",\n"; } return Bytes; } case Matcher::EmitNodeXForm: { const EmitNodeXFormMatcher *XF = cast(N); OS << "OPC_EmitNodeXForm, " << getNodeXFormID(XF->getNodeXForm()) << ", " << XF->getSlot() << ','; if (!OmitComments) OS << " // "<getNodeXForm()->getName(); OS <<'\n'; return 3; } case Matcher::EmitNode: case Matcher::MorphNodeTo: { auto NumCoveredBytes = 0; if (InstrumentCoverage) { if (const MorphNodeToMatcher *SNT = dyn_cast(N)) { NumCoveredBytes = 3; OS << "OPC_Coverage, "; std::string src = GetPatFromTreePatternNode(SNT->getPattern().getSrcPattern()); std::string dst = GetPatFromTreePatternNode(SNT->getPattern().getDstPattern()); Record *PatRecord = SNT->getPattern().getSrcRecord(); std::string include_src = getIncludePath(PatRecord); unsigned Offset = getPatternIdxFromTable(src + " -> " + dst, std::move(include_src)); OS << "TARGET_VAL(" << Offset << "),\n"; OS.indent(FullIndexWidth + Indent); } } const EmitNodeMatcherCommon *EN = cast(N); bool IsEmitNode = isa(EN); OS << (IsEmitNode ? "OPC_EmitNode" : "OPC_MorphNodeTo"); bool CompressVTs = EN->getNumVTs() < 3; bool CompressNodeInfo = false; if (CompressVTs) { OS << EN->getNumVTs(); if (!EN->hasChain() && !EN->hasInGlue() && !EN->hasOutGlue() && !EN->hasMemRefs() && EN->getNumFixedArityOperands() == -1) { CompressNodeInfo = true; OS << "None"; } else if (EN->hasChain() && !EN->hasInGlue() && !EN->hasOutGlue() && !EN->hasMemRefs() && EN->getNumFixedArityOperands() == -1) { CompressNodeInfo = true; OS << "Chain"; } else if (!IsEmitNode && !EN->hasChain() && EN->hasInGlue() && !EN->hasOutGlue() && !EN->hasMemRefs() && EN->getNumFixedArityOperands() == -1) { CompressNodeInfo = true; OS << "GlueInput"; } else if (!IsEmitNode && !EN->hasChain() && !EN->hasInGlue() && EN->hasOutGlue() && !EN->hasMemRefs() && EN->getNumFixedArityOperands() == -1) { CompressNodeInfo = true; OS << "GlueOutput"; } } const CodeGenInstruction &CGI = EN->getInstruction(); OS << ", TARGET_VAL(" << CGI.Namespace << "::" << CGI.TheDef->getName() << ")"; if (!CompressNodeInfo) { OS << ", 0"; if (EN->hasChain()) OS << "|OPFL_Chain"; if (EN->hasInGlue()) OS << "|OPFL_GlueInput"; if (EN->hasOutGlue()) OS << "|OPFL_GlueOutput"; if (EN->hasMemRefs()) OS << "|OPFL_MemRefs"; if (EN->getNumFixedArityOperands() != -1) OS << "|OPFL_Variadic" << EN->getNumFixedArityOperands(); } OS << ",\n"; OS.indent(FullIndexWidth + Indent+4); if (!CompressVTs) { OS << EN->getNumVTs(); if (!OmitComments) OS << "/*#VTs*/"; OS << ", "; } for (unsigned i = 0, e = EN->getNumVTs(); i != e; ++i) OS << getEnumName(EN->getVT(i)) << ", "; OS << EN->getNumOperands(); if (!OmitComments) OS << "/*#Ops*/"; OS << ", "; unsigned NumOperandBytes = 0; for (unsigned i = 0, e = EN->getNumOperands(); i != e; ++i) NumOperandBytes += EmitVBRValue(EN->getOperand(i), OS); if (!OmitComments) { // Print the result #'s for EmitNode. if (const EmitNodeMatcher *E = dyn_cast(EN)) { if (unsigned NumResults = EN->getNumVTs()) { OS << " // Results ="; unsigned First = E->getFirstResultSlot(); for (unsigned i = 0; i != NumResults; ++i) OS << " #" << First+i; } } OS << '\n'; if (const MorphNodeToMatcher *SNT = dyn_cast(N)) { OS.indent(FullIndexWidth + Indent) << "// Src: " << *SNT->getPattern().getSrcPattern() << " - Complexity = " << SNT->getPattern().getPatternComplexity(CGP) << '\n'; OS.indent(FullIndexWidth + Indent) << "// Dst: " << *SNT->getPattern().getDstPattern() << '\n'; } } else OS << '\n'; return 4 + !CompressVTs + !CompressNodeInfo + EN->getNumVTs() + NumOperandBytes + NumCoveredBytes; } case Matcher::CompleteMatch: { const CompleteMatchMatcher *CM = cast(N); auto NumCoveredBytes = 0; if (InstrumentCoverage) { NumCoveredBytes = 3; OS << "OPC_Coverage, "; std::string src = GetPatFromTreePatternNode(CM->getPattern().getSrcPattern()); std::string dst = GetPatFromTreePatternNode(CM->getPattern().getDstPattern()); Record *PatRecord = CM->getPattern().getSrcRecord(); std::string include_src = getIncludePath(PatRecord); unsigned Offset = getPatternIdxFromTable(src + " -> " + dst, std::move(include_src)); OS << "TARGET_VAL(" << Offset << "),\n"; OS.indent(FullIndexWidth + Indent); } OS << "OPC_CompleteMatch, " << CM->getNumResults() << ", "; unsigned NumResultBytes = 0; for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) NumResultBytes += EmitVBRValue(CM->getResult(i), OS); OS << '\n'; if (!OmitComments) { OS.indent(FullIndexWidth + Indent) << " // Src: " << *CM->getPattern().getSrcPattern() << " - Complexity = " << CM->getPattern().getPatternComplexity(CGP) << '\n'; OS.indent(FullIndexWidth + Indent) << " // Dst: " << *CM->getPattern().getDstPattern(); } OS << '\n'; return 2 + NumResultBytes + NumCoveredBytes; } } llvm_unreachable("Unreachable"); } /// This function traverses the matcher tree and emits all the nodes. /// The nodes have already been sized. unsigned MatcherTableEmitter:: EmitMatcherList(const Matcher *N, const unsigned Indent, unsigned CurrentIdx, raw_ostream &OS) { unsigned Size = 0; while (N) { if (!OmitComments) OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/"; unsigned MatcherSize = EmitMatcher(N, Indent, CurrentIdx, OS); Size += MatcherSize; CurrentIdx += MatcherSize; // If there are other nodes in this list, iterate to them, otherwise we're // done. N = N->getNext(); } return Size; } void MatcherTableEmitter::EmitNodePredicatesFunction( const std::vector &Preds, StringRef Decl, raw_ostream &OS) { if (Preds.empty()) return; BeginEmitFunction(OS, "bool", Decl, true/*AddOverride*/); OS << "{\n"; OS << " switch (PredNo) {\n"; OS << " default: llvm_unreachable(\"Invalid predicate in table?\");\n"; for (unsigned i = 0, e = Preds.size(); i != e; ++i) { // Emit the predicate code corresponding to this pattern. TreePredicateFn PredFn(Preds[i]); assert(!PredFn.isAlwaysTrue() && "No code in this predicate"); std::string PredFnCodeStr = PredFn.getCodeToRunOnSDNode(); OS << " case " << i << ": {\n"; for (auto *SimilarPred : NodePredicatesByCodeToRun[PredFnCodeStr]) OS << " // " << TreePredicateFn(SimilarPred).getFnName() << '\n'; OS << PredFnCodeStr << "\n }\n"; } OS << " }\n"; OS << "}\n"; EndEmitFunction(OS); } void MatcherTableEmitter::EmitPredicateFunctions(raw_ostream &OS) { // Emit pattern predicates. if (!PatternPredicates.empty()) { BeginEmitFunction(OS, "bool", "CheckPatternPredicate(unsigned PredNo) const", true/*AddOverride*/); OS << "{\n"; OS << " switch (PredNo) {\n"; OS << " default: llvm_unreachable(\"Invalid predicate in table?\");\n"; for (unsigned i = 0, e = PatternPredicates.size(); i != e; ++i) OS << " case " << i << ": return " << PatternPredicates[i] << ";\n"; OS << " }\n"; OS << "}\n"; EndEmitFunction(OS); } // Emit Node predicates. EmitNodePredicatesFunction( NodePredicates, "CheckNodePredicate(SDNode *Node, unsigned PredNo) const", OS); EmitNodePredicatesFunction( NodePredicatesWithOperands, "CheckNodePredicateWithOperands(SDNode *Node, unsigned PredNo, " "const SmallVectorImpl &Operands) const", OS); // Emit CompletePattern matchers. // FIXME: This should be const. if (!ComplexPatterns.empty()) { BeginEmitFunction(OS, "bool", "CheckComplexPattern(SDNode *Root, SDNode *Parent,\n" " SDValue N, unsigned PatternNo,\n" " SmallVectorImpl> &Result)", true/*AddOverride*/); OS << "{\n"; OS << " unsigned NextRes = Result.size();\n"; OS << " switch (PatternNo) {\n"; OS << " default: llvm_unreachable(\"Invalid pattern # in table?\");\n"; for (unsigned i = 0, e = ComplexPatterns.size(); i != e; ++i) { const ComplexPattern &P = *ComplexPatterns[i]; unsigned NumOps = P.getNumOperands(); if (P.hasProperty(SDNPHasChain)) ++NumOps; // Get the chained node too. OS << " case " << i << ":\n"; if (InstrumentCoverage) OS << " {\n"; OS << " Result.resize(NextRes+" << NumOps << ");\n"; if (InstrumentCoverage) OS << " bool Succeeded = " << P.getSelectFunc(); else OS << " return " << P.getSelectFunc(); OS << "("; // If the complex pattern wants the root of the match, pass it in as the // first argument. if (P.hasProperty(SDNPWantRoot)) OS << "Root, "; // If the complex pattern wants the parent of the operand being matched, // pass it in as the next argument. if (P.hasProperty(SDNPWantParent)) OS << "Parent, "; OS << "N"; for (unsigned i = 0; i != NumOps; ++i) OS << ", Result[NextRes+" << i << "].first"; OS << ");\n"; if (InstrumentCoverage) { OS << " if (Succeeded)\n"; OS << " dbgs() << \"\\nCOMPLEX_PATTERN: " << P.getSelectFunc() << "\\n\" ;\n"; OS << " return Succeeded;\n"; OS << " }\n"; } } OS << " }\n"; OS << "}\n"; EndEmitFunction(OS); } // Emit SDNodeXForm handlers. // FIXME: This should be const. if (!NodeXForms.empty()) { BeginEmitFunction(OS, "SDValue", "RunSDNodeXForm(SDValue V, unsigned XFormNo)", true/*AddOverride*/); OS << "{\n"; OS << " switch (XFormNo) {\n"; OS << " default: llvm_unreachable(\"Invalid xform # in table?\");\n"; // FIXME: The node xform could take SDValue's instead of SDNode*'s. for (unsigned i = 0, e = NodeXForms.size(); i != e; ++i) { const CodeGenDAGPatterns::NodeXForm &Entry = CGP.getSDNodeTransform(NodeXForms[i]); Record *SDNode = Entry.first; const std::string &Code = Entry.second; OS << " case " << i << ": { "; if (!OmitComments) OS << "// " << NodeXForms[i]->getName(); OS << '\n'; std::string ClassName = std::string(CGP.getSDNodeInfo(SDNode).getSDClassName()); if (ClassName == "SDNode") OS << " SDNode *N = V.getNode();\n"; else OS << " " << ClassName << " *N = cast<" << ClassName << ">(V.getNode());\n"; OS << Code << "\n }\n"; } OS << " }\n"; OS << "}\n"; EndEmitFunction(OS); } } static StringRef getOpcodeString(Matcher::KindTy Kind) { switch (Kind) { case Matcher::Scope: return "OPC_Scope"; case Matcher::RecordNode: return "OPC_RecordNode"; case Matcher::RecordChild: return "OPC_RecordChild"; case Matcher::RecordMemRef: return "OPC_RecordMemRef"; case Matcher::CaptureGlueInput: return "OPC_CaptureGlueInput"; case Matcher::MoveChild: return "OPC_MoveChild"; case Matcher::MoveSibling: return "OPC_MoveSibling"; case Matcher::MoveParent: return "OPC_MoveParent"; case Matcher::CheckSame: return "OPC_CheckSame"; case Matcher::CheckChildSame: return "OPC_CheckChildSame"; case Matcher::CheckPatternPredicate: return "OPC_CheckPatternPredicate"; case Matcher::CheckPredicate: return "OPC_CheckPredicate"; case Matcher::CheckOpcode: return "OPC_CheckOpcode"; case Matcher::SwitchOpcode: return "OPC_SwitchOpcode"; case Matcher::CheckType: return "OPC_CheckType"; case Matcher::SwitchType: return "OPC_SwitchType"; case Matcher::CheckChildType: return "OPC_CheckChildType"; case Matcher::CheckInteger: return "OPC_CheckInteger"; case Matcher::CheckChildInteger: return "OPC_CheckChildInteger"; case Matcher::CheckCondCode: return "OPC_CheckCondCode"; case Matcher::CheckChild2CondCode: return "OPC_CheckChild2CondCode"; case Matcher::CheckValueType: return "OPC_CheckValueType"; case Matcher::CheckComplexPat: return "OPC_CheckComplexPat"; case Matcher::CheckAndImm: return "OPC_CheckAndImm"; case Matcher::CheckOrImm: return "OPC_CheckOrImm"; case Matcher::CheckFoldableChainNode: return "OPC_CheckFoldableChainNode"; case Matcher::CheckImmAllOnesV: return "OPC_CheckImmAllOnesV"; case Matcher::CheckImmAllZerosV: return "OPC_CheckImmAllZerosV"; case Matcher::EmitInteger: return "OPC_EmitInteger"; case Matcher::EmitStringInteger: return "OPC_EmitStringInteger"; case Matcher::EmitRegister: return "OPC_EmitRegister"; case Matcher::EmitConvertToTarget: return "OPC_EmitConvertToTarget"; case Matcher::EmitMergeInputChains: return "OPC_EmitMergeInputChains"; case Matcher::EmitCopyToReg: return "OPC_EmitCopyToReg"; case Matcher::EmitNode: return "OPC_EmitNode"; case Matcher::MorphNodeTo: return "OPC_MorphNodeTo"; case Matcher::EmitNodeXForm: return "OPC_EmitNodeXForm"; case Matcher::CompleteMatch: return "OPC_CompleteMatch"; } llvm_unreachable("Unhandled opcode?"); } void MatcherTableEmitter::EmitHistogram(const Matcher *M, raw_ostream &OS) { if (OmitComments) return; OS << " // Opcode Histogram:\n"; for (unsigned i = 0, e = OpcodeCounts.size(); i != e; ++i) { OS << " // #" << left_justify(getOpcodeString((Matcher::KindTy)i), HistOpcWidth) << " = " << OpcodeCounts[i] << '\n'; } OS << '\n'; } void llvm::EmitMatcherTable(Matcher *TheMatcher, const CodeGenDAGPatterns &CGP, raw_ostream &OS) { OS << "#if defined(GET_DAGISEL_DECL) && defined(GET_DAGISEL_BODY)\n"; OS << "#error GET_DAGISEL_DECL and GET_DAGISEL_BODY cannot be both defined, "; OS << "undef both for inline definitions\n"; OS << "#endif\n\n"; // Emit a check for omitted class name. OS << "#ifdef GET_DAGISEL_BODY\n"; OS << "#define LOCAL_DAGISEL_STRINGIZE(X) LOCAL_DAGISEL_STRINGIZE_(X)\n"; OS << "#define LOCAL_DAGISEL_STRINGIZE_(X) #X\n"; OS << "static_assert(sizeof(LOCAL_DAGISEL_STRINGIZE(GET_DAGISEL_BODY)) > 1," "\n"; OS << " \"GET_DAGISEL_BODY is empty: it should be defined with the class " "name\");\n"; OS << "#undef LOCAL_DAGISEL_STRINGIZE_\n"; OS << "#undef LOCAL_DAGISEL_STRINGIZE\n"; OS << "#endif\n\n"; OS << "#if !defined(GET_DAGISEL_DECL) && !defined(GET_DAGISEL_BODY)\n"; OS << "#define DAGISEL_INLINE 1\n"; OS << "#else\n"; OS << "#define DAGISEL_INLINE 0\n"; OS << "#endif\n\n"; OS << "#if !DAGISEL_INLINE\n"; OS << "#define DAGISEL_CLASS_COLONCOLON GET_DAGISEL_BODY ::\n"; OS << "#else\n"; OS << "#define DAGISEL_CLASS_COLONCOLON\n"; OS << "#endif\n\n"; BeginEmitFunction(OS, "void", "SelectCode(SDNode *N)", false/*AddOverride*/); MatcherTableEmitter MatcherEmitter(TheMatcher, CGP); // First we size all the children of the three kinds of matchers that have // them. This is done by sharing the code in EmitMatcher(). but we don't // want to emit anything, so we turn off comments and use a null stream. bool SaveOmitComments = OmitComments; OmitComments = true; raw_null_ostream NullOS; unsigned TotalSize = MatcherEmitter.SizeMatcherList(TheMatcher, NullOS); OmitComments = SaveOmitComments; // Now that the matchers are sized, we can emit the code for them to the // final stream. OS << "{\n"; OS << " // Some target values are emitted as 2 bytes, TARGET_VAL handles\n"; OS << " // this.\n"; OS << " #define TARGET_VAL(X) X & 255, unsigned(X) >> 8\n"; OS << " static const unsigned char MatcherTable[] = {\n"; TotalSize = MatcherEmitter.EmitMatcherList(TheMatcher, 1, 0, OS); OS << " 0\n }; // Total Array size is " << (TotalSize+1) << " bytes\n\n"; MatcherEmitter.EmitHistogram(TheMatcher, OS); OS << " #undef TARGET_VAL\n"; OS << " SelectCodeCommon(N, MatcherTable,sizeof(MatcherTable));\n"; OS << "}\n"; EndEmitFunction(OS); // Next up, emit the function for node and pattern predicates: MatcherEmitter.EmitPredicateFunctions(OS); if (InstrumentCoverage) MatcherEmitter.EmitPatternMatchTable(OS); // Clean up the preprocessor macros. OS << "\n"; OS << "#ifdef DAGISEL_INLINE\n"; OS << "#undef DAGISEL_INLINE\n"; OS << "#endif\n"; OS << "#ifdef DAGISEL_CLASS_COLONCOLON\n"; OS << "#undef DAGISEL_CLASS_COLONCOLON\n"; OS << "#endif\n"; OS << "#ifdef GET_DAGISEL_DECL\n"; OS << "#undef GET_DAGISEL_DECL\n"; OS << "#endif\n"; OS << "#ifdef GET_DAGISEL_BODY\n"; OS << "#undef GET_DAGISEL_BODY\n"; OS << "#endif\n"; }