//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This tablegen backend emits an assembly printer for the current target. // Note that this is currently fairly skeletal, but will grow over time. // //===----------------------------------------------------------------------===// #include "AsmWriterInst.h" #include "CodeGenInstruction.h" #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "Types.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "asm-writer-emitter" namespace { class AsmWriterEmitter { RecordKeeper &Records; CodeGenTarget Target; ArrayRef NumberedInstructions; std::vector Instructions; public: AsmWriterEmitter(RecordKeeper &R); void run(raw_ostream &o); private: void EmitGetMnemonic( raw_ostream &o, std::vector> &TableDrivenOperandPrinters, unsigned &BitsLeft, unsigned &AsmStrBits); void EmitPrintInstruction( raw_ostream &o, std::vector> &TableDrivenOperandPrinters, unsigned &BitsLeft, unsigned &AsmStrBits); void EmitGetRegisterName(raw_ostream &o); void EmitPrintAliasInstruction(raw_ostream &O); void FindUniqueOperandCommands(std::vector &UOC, std::vector> &InstIdxs, std::vector &InstOpsUsed, bool PassSubtarget) const; }; } // end anonymous namespace static void PrintCases(std::vector> &OpsToPrint, raw_ostream &O, bool PassSubtarget) { O << " case " << OpsToPrint.back().first << ":"; AsmWriterOperand TheOp = OpsToPrint.back().second; OpsToPrint.pop_back(); // Check to see if any other operands are identical in this list, and if so, // emit a case label for them. for (unsigned i = OpsToPrint.size(); i != 0; --i) if (OpsToPrint[i-1].second == TheOp) { O << "\n case " << OpsToPrint[i-1].first << ":"; OpsToPrint.erase(OpsToPrint.begin()+i-1); } // Finally, emit the code. O << "\n " << TheOp.getCode(PassSubtarget); O << "\n break;\n"; } /// EmitInstructions - Emit the last instruction in the vector and any other /// instructions that are suitably similar to it. static void EmitInstructions(std::vector &Insts, raw_ostream &O, bool PassSubtarget) { AsmWriterInst FirstInst = Insts.back(); Insts.pop_back(); std::vector SimilarInsts; unsigned DifferingOperand = ~0; for (unsigned i = Insts.size(); i != 0; --i) { unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst); if (DiffOp != ~1U) { if (DifferingOperand == ~0U) // First match! DifferingOperand = DiffOp; // If this differs in the same operand as the rest of the instructions in // this class, move it to the SimilarInsts list. if (DifferingOperand == DiffOp || DiffOp == ~0U) { SimilarInsts.push_back(Insts[i-1]); Insts.erase(Insts.begin()+i-1); } } } O << " case " << FirstInst.CGI->Namespace << "::" << FirstInst.CGI->TheDef->getName() << ":\n"; for (const AsmWriterInst &AWI : SimilarInsts) O << " case " << AWI.CGI->Namespace << "::" << AWI.CGI->TheDef->getName() << ":\n"; for (unsigned i = 0, e = FirstInst.Operands.size(); i != e; ++i) { if (i != DifferingOperand) { // If the operand is the same for all instructions, just print it. O << " " << FirstInst.Operands[i].getCode(PassSubtarget); } else { // If this is the operand that varies between all of the instructions, // emit a switch for just this operand now. O << " switch (MI->getOpcode()) {\n"; O << " default: llvm_unreachable(\"Unexpected opcode.\");\n"; std::vector> OpsToPrint; OpsToPrint.push_back(std::make_pair(FirstInst.CGI->Namespace.str() + "::" + FirstInst.CGI->TheDef->getName().str(), FirstInst.Operands[i])); for (const AsmWriterInst &AWI : SimilarInsts) { OpsToPrint.push_back(std::make_pair(AWI.CGI->Namespace.str()+"::" + AWI.CGI->TheDef->getName().str(), AWI.Operands[i])); } std::reverse(OpsToPrint.begin(), OpsToPrint.end()); while (!OpsToPrint.empty()) PrintCases(OpsToPrint, O, PassSubtarget); O << " }"; } O << "\n"; } O << " break;\n"; } void AsmWriterEmitter:: FindUniqueOperandCommands(std::vector &UniqueOperandCommands, std::vector> &InstIdxs, std::vector &InstOpsUsed, bool PassSubtarget) const { // This vector parallels UniqueOperandCommands, keeping track of which // instructions each case are used for. It is a comma separated string of // enums. std::vector InstrsForCase; InstrsForCase.resize(UniqueOperandCommands.size()); InstOpsUsed.assign(UniqueOperandCommands.size(), 0); for (size_t i = 0, e = Instructions.size(); i != e; ++i) { const AsmWriterInst &Inst = Instructions[i]; if (Inst.Operands.empty()) continue; // Instruction already done. std::string Command = " "+Inst.Operands[0].getCode(PassSubtarget)+"\n"; // Check to see if we already have 'Command' in UniqueOperandCommands. // If not, add it. auto I = llvm::find(UniqueOperandCommands, Command); if (I != UniqueOperandCommands.end()) { size_t idx = I - UniqueOperandCommands.begin(); InstrsForCase[idx] += ", "; InstrsForCase[idx] += Inst.CGI->TheDef->getName(); InstIdxs[idx].push_back(i); } else { UniqueOperandCommands.push_back(std::move(Command)); InstrsForCase.push_back(std::string(Inst.CGI->TheDef->getName())); InstIdxs.emplace_back(); InstIdxs.back().push_back(i); // This command matches one operand so far. InstOpsUsed.push_back(1); } } // For each entry of UniqueOperandCommands, there is a set of instructions // that uses it. If the next command of all instructions in the set are // identical, fold it into the command. for (size_t CommandIdx = 0, e = UniqueOperandCommands.size(); CommandIdx != e; ++CommandIdx) { const auto &Idxs = InstIdxs[CommandIdx]; for (unsigned Op = 1; ; ++Op) { // Find the first instruction in the set. const AsmWriterInst &FirstInst = Instructions[Idxs.front()]; // If this instruction has no more operands, we isn't anything to merge // into this command. if (FirstInst.Operands.size() == Op) break; // Otherwise, scan to see if all of the other instructions in this command // set share the operand. if (any_of(drop_begin(Idxs), [&](unsigned Idx) { const AsmWriterInst &OtherInst = Instructions[Idx]; return OtherInst.Operands.size() == Op || OtherInst.Operands[Op] != FirstInst.Operands[Op]; })) break; // Okay, everything in this command set has the same next operand. Add it // to UniqueOperandCommands and remember that it was consumed. std::string Command = " " + FirstInst.Operands[Op].getCode(PassSubtarget) + "\n"; UniqueOperandCommands[CommandIdx] += Command; InstOpsUsed[CommandIdx]++; } } // Prepend some of the instructions each case is used for onto the case val. for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) { std::string Instrs = InstrsForCase[i]; if (Instrs.size() > 70) { Instrs.erase(Instrs.begin()+70, Instrs.end()); Instrs += "..."; } if (!Instrs.empty()) UniqueOperandCommands[i] = " // " + Instrs + "\n" + UniqueOperandCommands[i]; } } static void UnescapeString(std::string &Str) { for (unsigned i = 0; i != Str.size(); ++i) { if (Str[i] == '\\' && i != Str.size()-1) { switch (Str[i+1]) { default: continue; // Don't execute the code after the switch. case 'a': Str[i] = '\a'; break; case 'b': Str[i] = '\b'; break; case 'e': Str[i] = 27; break; case 'f': Str[i] = '\f'; break; case 'n': Str[i] = '\n'; break; case 'r': Str[i] = '\r'; break; case 't': Str[i] = '\t'; break; case 'v': Str[i] = '\v'; break; case '"': Str[i] = '\"'; break; case '\'': Str[i] = '\''; break; case '\\': Str[i] = '\\'; break; } // Nuke the second character. Str.erase(Str.begin()+i+1); } } } /// UnescapeAliasString - Supports literal braces in InstAlias asm string which /// are escaped with '\\' to avoid being interpreted as variants. Braces must /// be unescaped before c++ code is generated as (e.g.): /// /// AsmString = "foo \{$\x01\}"; /// /// causes non-standard escape character warnings. static void UnescapeAliasString(std::string &Str) { for (unsigned i = 0; i != Str.size(); ++i) { if (Str[i] == '\\' && i != Str.size()-1) { switch (Str[i+1]) { default: continue; // Don't execute the code after the switch. case '{': Str[i] = '{'; break; case '}': Str[i] = '}'; break; } // Nuke the second character. Str.erase(Str.begin()+i+1); } } } void AsmWriterEmitter::EmitGetMnemonic( raw_ostream &O, std::vector> &TableDrivenOperandPrinters, unsigned &BitsLeft, unsigned &AsmStrBits) { Record *AsmWriter = Target.getAsmWriter(); StringRef ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); bool PassSubtarget = AsmWriter->getValueAsInt("PassSubtarget"); O << "/// getMnemonic - This method is automatically generated by " "tablegen\n" "/// from the instruction set description.\n" "std::pair " << Target.getName() << ClassName << "::getMnemonic(const MCInst *MI) {\n"; // Build an aggregate string, and build a table of offsets into it. SequenceToOffsetTable StringTable; /// OpcodeInfo - This encodes the index of the string to use for the first /// chunk of the output as well as indices used for operand printing. std::vector OpcodeInfo(NumberedInstructions.size()); const unsigned OpcodeInfoBits = 64; // Add all strings to the string table upfront so it can generate an optimized // representation. for (AsmWriterInst &AWI : Instructions) { if (AWI.Operands[0].OperandType == AsmWriterOperand::isLiteralTextOperand && !AWI.Operands[0].Str.empty()) { std::string Str = AWI.Operands[0].Str; UnescapeString(Str); StringTable.add(Str); } } StringTable.layout(); unsigned MaxStringIdx = 0; for (AsmWriterInst &AWI : Instructions) { unsigned Idx; if (AWI.Operands[0].OperandType != AsmWriterOperand::isLiteralTextOperand || AWI.Operands[0].Str.empty()) { // Something handled by the asmwriter printer, but with no leading string. Idx = StringTable.get(""); } else { std::string Str = AWI.Operands[0].Str; UnescapeString(Str); Idx = StringTable.get(Str); MaxStringIdx = std::max(MaxStringIdx, Idx); // Nuke the string from the operand list. It is now handled! AWI.Operands.erase(AWI.Operands.begin()); } // Bias offset by one since we want 0 as a sentinel. OpcodeInfo[AWI.CGIIndex] = Idx+1; } // Figure out how many bits we used for the string index. AsmStrBits = Log2_32_Ceil(MaxStringIdx + 2); // To reduce code size, we compactify common instructions into a few bits // in the opcode-indexed table. BitsLeft = OpcodeInfoBits - AsmStrBits; while (true) { std::vector UniqueOperandCommands; std::vector> InstIdxs; std::vector NumInstOpsHandled; FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs, NumInstOpsHandled, PassSubtarget); // If we ran out of operands to print, we're done. if (UniqueOperandCommands.empty()) break; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size()); // If we don't have enough bits for this operand, don't include it. if (NumBits > BitsLeft) { LLVM_DEBUG(errs() << "Not enough bits to densely encode " << NumBits << " more bits\n"); break; } // Otherwise, we can include this in the initial lookup table. Add it in. for (size_t i = 0, e = InstIdxs.size(); i != e; ++i) { unsigned NumOps = NumInstOpsHandled[i]; for (unsigned Idx : InstIdxs[i]) { OpcodeInfo[Instructions[Idx].CGIIndex] |= (uint64_t)i << (OpcodeInfoBits-BitsLeft); // Remove the info about this operand from the instruction. AsmWriterInst &Inst = Instructions[Idx]; if (!Inst.Operands.empty()) { assert(NumOps <= Inst.Operands.size() && "Can't remove this many ops!"); Inst.Operands.erase(Inst.Operands.begin(), Inst.Operands.begin()+NumOps); } } } BitsLeft -= NumBits; // Remember the handlers for this set of operands. TableDrivenOperandPrinters.push_back(std::move(UniqueOperandCommands)); } // Emit the string table itself. StringTable.emitStringLiteralDef(O, " static const char AsmStrs[]"); // Emit the lookup tables in pieces to minimize wasted bytes. unsigned BytesNeeded = ((OpcodeInfoBits - BitsLeft) + 7) / 8; unsigned Table = 0, Shift = 0; SmallString<128> BitsString; raw_svector_ostream BitsOS(BitsString); // If the total bits is more than 32-bits we need to use a 64-bit type. BitsOS << " uint" << ((BitsLeft < (OpcodeInfoBits - 32)) ? 64 : 32) << "_t Bits = 0;\n"; while (BytesNeeded != 0) { // Figure out how big this table section needs to be, but no bigger than 4. unsigned TableSize = std::min(1 << Log2_32(BytesNeeded), 4); BytesNeeded -= TableSize; TableSize *= 8; // Convert to bits; uint64_t Mask = (1ULL << TableSize) - 1; O << " static const uint" << TableSize << "_t OpInfo" << Table << "[] = {\n"; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { O << " " << ((OpcodeInfo[i] >> Shift) & Mask) << "U,\t// " << NumberedInstructions[i]->TheDef->getName() << "\n"; } O << " };\n\n"; // Emit string to combine the individual table lookups. BitsOS << " Bits |= "; // If the total bits is more than 32-bits we need to use a 64-bit type. if (BitsLeft < (OpcodeInfoBits - 32)) BitsOS << "(uint64_t)"; BitsOS << "OpInfo" << Table << "[MI->getOpcode()] << " << Shift << ";\n"; // Prepare the shift for the next iteration and increment the table count. Shift += TableSize; ++Table; } O << " // Emit the opcode for the instruction.\n"; O << BitsString; // Return mnemonic string and bits. O << " return {AsmStrs+(Bits & " << (1 << AsmStrBits) - 1 << ")-1, Bits};\n\n"; O << "}\n"; } /// EmitPrintInstruction - Generate the code for the "printInstruction" method /// implementation. Destroys all instances of AsmWriterInst information, by /// clearing the Instructions vector. void AsmWriterEmitter::EmitPrintInstruction( raw_ostream &O, std::vector> &TableDrivenOperandPrinters, unsigned &BitsLeft, unsigned &AsmStrBits) { const unsigned OpcodeInfoBits = 64; Record *AsmWriter = Target.getAsmWriter(); StringRef ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); bool PassSubtarget = AsmWriter->getValueAsInt("PassSubtarget"); // This function has some huge switch statements that causing excessive // compile time in LLVM profile instrumenation build. This print function // usually is not frequently called in compilation. Here we disable the // profile instrumenation for this function. O << "/// printInstruction - This method is automatically generated by " "tablegen\n" "/// from the instruction set description.\n" "LLVM_NO_PROFILE_INSTRUMENT_FUNCTION\n" "void " << Target.getName() << ClassName << "::printInstruction(const MCInst *MI, uint64_t Address, " << (PassSubtarget ? "const MCSubtargetInfo &STI, " : "") << "raw_ostream &O) {\n"; // Emit the initial tab character. O << " O << \"\\t\";\n\n"; // Emit the starting string. O << " auto MnemonicInfo = getMnemonic(MI);\n\n"; O << " O << MnemonicInfo.first;\n\n"; O << " uint" << ((BitsLeft < (OpcodeInfoBits - 32)) ? 64 : 32) << "_t Bits = MnemonicInfo.second;\n" << " assert(Bits != 0 && \"Cannot print this instruction.\");\n"; // Output the table driven operand information. BitsLeft = OpcodeInfoBits-AsmStrBits; for (unsigned i = 0, e = TableDrivenOperandPrinters.size(); i != e; ++i) { std::vector &Commands = TableDrivenOperandPrinters[i]; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(Commands.size()); assert(NumBits <= BitsLeft && "consistency error"); // Emit code to extract this field from Bits. O << "\n // Fragment " << i << " encoded into " << NumBits << " bits for " << Commands.size() << " unique commands.\n"; if (Commands.size() == 2) { // Emit two possibilitys with if/else. O << " if ((Bits >> " << (OpcodeInfoBits-BitsLeft) << ") & " << ((1 << NumBits)-1) << ") {\n" << Commands[1] << " } else {\n" << Commands[0] << " }\n\n"; } else if (Commands.size() == 1) { // Emit a single possibility. O << Commands[0] << "\n\n"; } else { O << " switch ((Bits >> " << (OpcodeInfoBits-BitsLeft) << ") & " << ((1 << NumBits)-1) << ") {\n" << " default: llvm_unreachable(\"Invalid command number.\");\n"; // Print out all the cases. for (unsigned j = 0, e = Commands.size(); j != e; ++j) { O << " case " << j << ":\n"; O << Commands[j]; O << " break;\n"; } O << " }\n\n"; } BitsLeft -= NumBits; } // Okay, delete instructions with no operand info left. llvm::erase_if(Instructions, [](AsmWriterInst &Inst) { return Inst.Operands.empty(); }); // Because this is a vector, we want to emit from the end. Reverse all of the // elements in the vector. std::reverse(Instructions.begin(), Instructions.end()); // Now that we've emitted all of the operand info that fit into 64 bits, emit // information for those instructions that are left. This is a less dense // encoding, but we expect the main 64-bit table to handle the majority of // instructions. if (!Instructions.empty()) { // Find the opcode # of inline asm. O << " switch (MI->getOpcode()) {\n"; O << " default: llvm_unreachable(\"Unexpected opcode.\");\n"; while (!Instructions.empty()) EmitInstructions(Instructions, O, PassSubtarget); O << " }\n"; } O << "}\n"; } static void emitRegisterNameString(raw_ostream &O, StringRef AltName, const std::deque &Registers) { SequenceToOffsetTable StringTable; SmallVector AsmNames(Registers.size()); unsigned i = 0; for (const auto &Reg : Registers) { std::string &AsmName = AsmNames[i++]; // "NoRegAltName" is special. We don't need to do a lookup for that, // as it's just a reference to the default register name. if (AltName == "" || AltName == "NoRegAltName") { AsmName = std::string(Reg.TheDef->getValueAsString("AsmName")); if (AsmName.empty()) AsmName = std::string(Reg.getName()); } else { // Make sure the register has an alternate name for this index. std::vector AltNameList = Reg.TheDef->getValueAsListOfDefs("RegAltNameIndices"); unsigned Idx = 0, e; for (e = AltNameList.size(); Idx < e && (AltNameList[Idx]->getName() != AltName); ++Idx) ; // If the register has an alternate name for this index, use it. // Otherwise, leave it empty as an error flag. if (Idx < e) { std::vector AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); if (AltNames.size() <= Idx) PrintFatalError(Reg.TheDef->getLoc(), "Register definition missing alt name for '" + AltName + "'."); AsmName = std::string(AltNames[Idx]); } } StringTable.add(AsmName); } StringTable.layout(); StringTable.emitStringLiteralDef(O, Twine(" static const char AsmStrs") + AltName + "[]"); O << " static const " << getMinimalTypeForRange(StringTable.size() - 1, 32) << " RegAsmOffset" << AltName << "[] = {"; for (unsigned i = 0, e = Registers.size(); i != e; ++i) { if ((i % 14) == 0) O << "\n "; O << StringTable.get(AsmNames[i]) << ", "; } O << "\n };\n" << "\n"; } void AsmWriterEmitter::EmitGetRegisterName(raw_ostream &O) { Record *AsmWriter = Target.getAsmWriter(); StringRef ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); const auto &Registers = Target.getRegBank().getRegisters(); const std::vector &AltNameIndices = Target.getRegAltNameIndices(); bool hasAltNames = AltNameIndices.size() > 1; StringRef Namespace = Registers.front().TheDef->getValueAsString("Namespace"); O << "\n\n/// getRegisterName - This method is automatically generated by tblgen\n" "/// from the register set description. This returns the assembler name\n" "/// for the specified register.\n" "const char *" << Target.getName() << ClassName << "::"; if (hasAltNames) O << "\ngetRegisterName(unsigned RegNo, unsigned AltIdx) {\n"; else O << "getRegisterName(unsigned RegNo) {\n"; O << " assert(RegNo && RegNo < " << (Registers.size()+1) << " && \"Invalid register number!\");\n" << "\n"; if (hasAltNames) { for (const Record *R : AltNameIndices) emitRegisterNameString(O, R->getName(), Registers); } else emitRegisterNameString(O, "", Registers); if (hasAltNames) { O << " switch(AltIdx) {\n" << " default: llvm_unreachable(\"Invalid register alt name index!\");\n"; for (const Record *R : AltNameIndices) { StringRef AltName = R->getName(); O << " case "; if (!Namespace.empty()) O << Namespace << "::"; O << AltName << ":\n"; if (R->isValueUnset("FallbackRegAltNameIndex")) O << " assert(*(AsmStrs" << AltName << "+RegAsmOffset" << AltName << "[RegNo-1]) &&\n" << " \"Invalid alt name index for register!\");\n"; else { O << " if (!*(AsmStrs" << AltName << "+RegAsmOffset" << AltName << "[RegNo-1]))\n" << " return getRegisterName(RegNo, "; if (!Namespace.empty()) O << Namespace << "::"; O << R->getValueAsDef("FallbackRegAltNameIndex")->getName() << ");\n"; } O << " return AsmStrs" << AltName << "+RegAsmOffset" << AltName << "[RegNo-1];\n"; } O << " }\n"; } else { O << " assert (*(AsmStrs+RegAsmOffset[RegNo-1]) &&\n" << " \"Invalid alt name index for register!\");\n" << " return AsmStrs+RegAsmOffset[RegNo-1];\n"; } O << "}\n"; } namespace { // IAPrinter - Holds information about an InstAlias. Two InstAliases match if // they both have the same conditionals. In which case, we cannot print out the // alias for that pattern. class IAPrinter { std::map> OpMap; std::vector Conds; std::string Result; std::string AsmString; unsigned NumMIOps; public: IAPrinter(std::string R, std::string AS, unsigned NumMIOps) : Result(std::move(R)), AsmString(std::move(AS)), NumMIOps(NumMIOps) {} void addCond(std::string C) { Conds.push_back(std::move(C)); } ArrayRef getConds() const { return Conds; } size_t getCondCount() const { return Conds.size(); } void addOperand(StringRef Op, int OpIdx, int PrintMethodIdx = -1) { assert(OpIdx >= 0 && OpIdx < 0xFE && "Idx out of range"); assert(PrintMethodIdx >= -1 && PrintMethodIdx < 0xFF && "Idx out of range"); OpMap[Op] = std::make_pair(OpIdx, PrintMethodIdx); } unsigned getNumMIOps() { return NumMIOps; } StringRef getResult() { return Result; } bool isOpMapped(StringRef Op) { return OpMap.find(Op) != OpMap.end(); } int getOpIndex(StringRef Op) { return OpMap[Op].first; } std::pair &getOpData(StringRef Op) { return OpMap[Op]; } std::pair parseName(StringRef::iterator Start, StringRef::iterator End) { StringRef::iterator I = Start; StringRef::iterator Next; if (*I == '{') { // ${some_name} Start = ++I; while (I != End && *I != '}') ++I; Next = I; // eat the final '}' if (Next != End) ++Next; } else { // $name, just eat the usual suspects. while (I != End && (isAlnum(*I) || *I == '_')) ++I; Next = I; } return std::make_pair(StringRef(Start, I - Start), Next); } std::string formatAliasString(uint32_t &UnescapedSize) { // Directly mangle mapped operands into the string. Each operand is // identified by a '$' sign followed by a byte identifying the number of the // operand. We add one to the index to avoid zero bytes. StringRef ASM(AsmString); std::string OutString; raw_string_ostream OS(OutString); for (StringRef::iterator I = ASM.begin(), E = ASM.end(); I != E;) { OS << *I; ++UnescapedSize; if (*I == '$') { StringRef Name; std::tie(Name, I) = parseName(++I, E); assert(isOpMapped(Name) && "Unmapped operand!"); int OpIndex, PrintIndex; std::tie(OpIndex, PrintIndex) = getOpData(Name); if (PrintIndex == -1) { // Can use the default printOperand route. OS << format("\\x%02X", (unsigned char)OpIndex + 1); ++UnescapedSize; } else { // 3 bytes if a PrintMethod is needed: 0xFF, the MCInst operand // number, and which of our pre-detected Methods to call. OS << format("\\xFF\\x%02X\\x%02X", OpIndex + 1, PrintIndex + 1); UnescapedSize += 3; } } else { ++I; } } return OutString; } bool operator==(const IAPrinter &RHS) const { if (NumMIOps != RHS.NumMIOps) return false; if (Conds.size() != RHS.Conds.size()) return false; unsigned Idx = 0; for (const auto &str : Conds) if (str != RHS.Conds[Idx++]) return false; return true; } }; } // end anonymous namespace static unsigned CountNumOperands(StringRef AsmString, unsigned Variant) { return AsmString.count(' ') + AsmString.count('\t'); } namespace { struct AliasPriorityComparator { typedef std::pair ValueType; bool operator()(const ValueType &LHS, const ValueType &RHS) const { if (LHS.second == RHS.second) { // We don't actually care about the order, but for consistency it // shouldn't depend on pointer comparisons. return LessRecordByID()(LHS.first.TheDef, RHS.first.TheDef); } // Aliases with larger priorities should be considered first. return LHS.second > RHS.second; } }; } // end anonymous namespace void AsmWriterEmitter::EmitPrintAliasInstruction(raw_ostream &O) { Record *AsmWriter = Target.getAsmWriter(); O << "\n#ifdef PRINT_ALIAS_INSTR\n"; O << "#undef PRINT_ALIAS_INSTR\n\n"; ////////////////////////////// // Gather information about aliases we need to print ////////////////////////////// // Emit the method that prints the alias instruction. StringRef ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); unsigned Variant = AsmWriter->getValueAsInt("Variant"); bool PassSubtarget = AsmWriter->getValueAsInt("PassSubtarget"); std::vector AllInstAliases = Records.getAllDerivedDefinitions("InstAlias"); // Create a map from the qualified name to a list of potential matches. typedef std::set, AliasPriorityComparator> AliasWithPriority; std::map AliasMap; for (Record *R : AllInstAliases) { int Priority = R->getValueAsInt("EmitPriority"); if (Priority < 1) continue; // Aliases with priority 0 are never emitted. const DagInit *DI = R->getValueAsDag("ResultInst"); AliasMap[getQualifiedName(DI->getOperatorAsDef(R->getLoc()))].insert( std::make_pair(CodeGenInstAlias(R, Target), Priority)); } // A map of which conditions need to be met for each instruction operand // before it can be matched to the mnemonic. std::map> IAPrinterMap; std::vector> PrintMethods; // A list of MCOperandPredicates for all operands in use, and the reverse map std::vector MCOpPredicates; DenseMap MCOpPredicateMap; for (auto &Aliases : AliasMap) { // Collection of instruction alias rules. May contain ambiguous rules. std::vector IAPs; for (auto &Alias : Aliases.second) { const CodeGenInstAlias &CGA = Alias.first; unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); std::string FlatInstAsmString = CodeGenInstruction::FlattenAsmStringVariants(CGA.ResultInst->AsmString, Variant); unsigned NumResultOps = CountNumOperands(FlatInstAsmString, Variant); std::string FlatAliasAsmString = CodeGenInstruction::FlattenAsmStringVariants(CGA.AsmString, Variant); UnescapeAliasString(FlatAliasAsmString); // Don't emit the alias if it has more operands than what it's aliasing. if (NumResultOps < CountNumOperands(FlatAliasAsmString, Variant)) continue; StringRef Namespace = Target.getName(); unsigned NumMIOps = 0; for (auto &ResultInstOpnd : CGA.ResultInst->Operands) NumMIOps += ResultInstOpnd.MINumOperands; IAPrinter IAP(CGA.Result->getAsString(), FlatAliasAsmString, NumMIOps); unsigned MIOpNum = 0; for (unsigned i = 0, e = LastOpNo; i != e; ++i) { // Skip over tied operands as they're not part of an alias declaration. auto &Operands = CGA.ResultInst->Operands; while (true) { unsigned OpNum = Operands.getSubOperandNumber(MIOpNum).first; if (Operands[OpNum].MINumOperands == 1 && Operands[OpNum].getTiedRegister() != -1) { // Tied operands of different RegisterClass should be explicit within // an instruction's syntax and so cannot be skipped. int TiedOpNum = Operands[OpNum].getTiedRegister(); if (Operands[OpNum].Rec->getName() == Operands[TiedOpNum].Rec->getName()) { ++MIOpNum; continue; } } break; } // Ignore unchecked result operands. while (IAP.getCondCount() < MIOpNum) IAP.addCond("AliasPatternCond::K_Ignore, 0"); const CodeGenInstAlias::ResultOperand &RO = CGA.ResultOperands[i]; switch (RO.Kind) { case CodeGenInstAlias::ResultOperand::K_Record: { const Record *Rec = RO.getRecord(); StringRef ROName = RO.getName(); int PrintMethodIdx = -1; // These two may have a PrintMethod, which we want to record (if it's // the first time we've seen it) and provide an index for the aliasing // code to use. if (Rec->isSubClassOf("RegisterOperand") || Rec->isSubClassOf("Operand")) { StringRef PrintMethod = Rec->getValueAsString("PrintMethod"); bool IsPCRel = Rec->getValueAsString("OperandType") == "OPERAND_PCREL"; if (PrintMethod != "" && PrintMethod != "printOperand") { PrintMethodIdx = llvm::find_if(PrintMethods, [&](auto &X) { return X.first == PrintMethod; }) - PrintMethods.begin(); if (static_cast(PrintMethodIdx) == PrintMethods.size()) PrintMethods.emplace_back(std::string(PrintMethod), IsPCRel); } } if (Rec->isSubClassOf("RegisterOperand")) Rec = Rec->getValueAsDef("RegClass"); if (Rec->isSubClassOf("RegisterClass")) { if (!IAP.isOpMapped(ROName)) { IAP.addOperand(ROName, MIOpNum, PrintMethodIdx); Record *R = CGA.ResultOperands[i].getRecord(); if (R->isSubClassOf("RegisterOperand")) R = R->getValueAsDef("RegClass"); IAP.addCond(std::string( formatv("AliasPatternCond::K_RegClass, {0}::{1}RegClassID", Namespace, R->getName()))); } else { IAP.addCond(std::string(formatv( "AliasPatternCond::K_TiedReg, {0}", IAP.getOpIndex(ROName)))); } } else { // Assume all printable operands are desired for now. This can be // overridden in the InstAlias instantiation if necessary. IAP.addOperand(ROName, MIOpNum, PrintMethodIdx); // There might be an additional predicate on the MCOperand unsigned Entry = MCOpPredicateMap[Rec]; if (!Entry) { if (!Rec->isValueUnset("MCOperandPredicate")) { MCOpPredicates.push_back(Rec); Entry = MCOpPredicates.size(); MCOpPredicateMap[Rec] = Entry; } else break; // No conditions on this operand at all } IAP.addCond( std::string(formatv("AliasPatternCond::K_Custom, {0}", Entry))); } break; } case CodeGenInstAlias::ResultOperand::K_Imm: { // Just because the alias has an immediate result, doesn't mean the // MCInst will. An MCExpr could be present, for example. auto Imm = CGA.ResultOperands[i].getImm(); int32_t Imm32 = int32_t(Imm); if (Imm != Imm32) PrintFatalError("Matching an alias with an immediate out of the " "range of int32_t is not supported"); IAP.addCond(std::string( formatv("AliasPatternCond::K_Imm, uint32_t({0})", Imm32))); break; } case CodeGenInstAlias::ResultOperand::K_Reg: if (!CGA.ResultOperands[i].getRegister()) { IAP.addCond(std::string(formatv( "AliasPatternCond::K_Reg, {0}::NoRegister", Namespace))); break; } StringRef Reg = CGA.ResultOperands[i].getRegister()->getName(); IAP.addCond(std::string( formatv("AliasPatternCond::K_Reg, {0}::{1}", Namespace, Reg))); break; } MIOpNum += RO.getMINumOperands(); } std::vector ReqFeatures; if (PassSubtarget) { // We only consider ReqFeatures predicates if PassSubtarget std::vector RF = CGA.TheDef->getValueAsListOfDefs("Predicates"); copy_if(RF, std::back_inserter(ReqFeatures), [](Record *R) { return R->getValueAsBit("AssemblerMatcherPredicate"); }); } for (Record *const R : ReqFeatures) { const DagInit *D = R->getValueAsDag("AssemblerCondDag"); std::string CombineType = D->getOperator()->getAsString(); if (CombineType != "any_of" && CombineType != "all_of") PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!"); if (D->getNumArgs() == 0) PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!"); bool IsOr = CombineType == "any_of"; // Change (any_of FeatureAll, (any_of ...)) to (any_of FeatureAll, ...). if (IsOr && D->getNumArgs() == 2 && isa(D->getArg(1))) { DagInit *RHS = dyn_cast(D->getArg(1)); SmallVector Args{D->getArg(0)}; SmallVector ArgNames{D->getArgName(0)}; for (unsigned i = 0, e = RHS->getNumArgs(); i != e; ++i) { Args.push_back(RHS->getArg(i)); ArgNames.push_back(RHS->getArgName(i)); } D = DagInit::get(D->getOperator(), nullptr, Args, ArgNames); } for (auto *Arg : D->getArgs()) { bool IsNeg = false; if (auto *NotArg = dyn_cast(Arg)) { if (NotArg->getOperator()->getAsString() != "not" || NotArg->getNumArgs() != 1) PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!"); Arg = NotArg->getArg(0); IsNeg = true; } if (!isa(Arg) || !cast(Arg)->getDef()->isSubClassOf("SubtargetFeature")) PrintFatalError(R->getLoc(), "Invalid AssemblerCondDag!"); IAP.addCond(std::string(formatv( "AliasPatternCond::K_{0}{1}Feature, {2}::{3}", IsOr ? "Or" : "", IsNeg ? "Neg" : "", Namespace, Arg->getAsString()))); } // If an AssemblerPredicate with ors is used, note end of list should // these be combined. if (IsOr) IAP.addCond("AliasPatternCond::K_EndOrFeatures, 0"); } IAPrinterMap[Aliases.first].push_back(std::move(IAP)); } } ////////////////////////////// // Write out the printAliasInstr function ////////////////////////////// std::string Header; raw_string_ostream HeaderO(Header); HeaderO << "bool " << Target.getName() << ClassName << "::printAliasInstr(const MCInst" << " *MI, uint64_t Address, " << (PassSubtarget ? "const MCSubtargetInfo &STI, " : "") << "raw_ostream &OS) {\n"; std::string PatternsForOpcode; raw_string_ostream OpcodeO(PatternsForOpcode); unsigned PatternCount = 0; std::string Patterns; raw_string_ostream PatternO(Patterns); unsigned CondCount = 0; std::string Conds; raw_string_ostream CondO(Conds); // All flattened alias strings. std::map AsmStringOffsets; std::vector> AsmStrings; size_t AsmStringsSize = 0; // Iterate over the opcodes in enum order so they are sorted by opcode for // binary search. for (const CodeGenInstruction *Inst : NumberedInstructions) { auto It = IAPrinterMap.find(getQualifiedName(Inst->TheDef)); if (It == IAPrinterMap.end()) continue; std::vector &IAPs = It->second; std::vector UniqueIAPs; // Remove any ambiguous alias rules. for (auto &LHS : IAPs) { bool IsDup = false; for (const auto &RHS : IAPs) { if (&LHS != &RHS && LHS == RHS) { IsDup = true; break; } } if (!IsDup) UniqueIAPs.push_back(&LHS); } if (UniqueIAPs.empty()) continue; unsigned PatternStart = PatternCount; // Insert the pattern start and opcode in the pattern list for debugging. PatternO << formatv(" // {0} - {1}\n", It->first, PatternStart); for (IAPrinter *IAP : UniqueIAPs) { // Start each condition list with a comment of the resulting pattern that // we're trying to match. unsigned CondStart = CondCount; CondO << formatv(" // {0} - {1}\n", IAP->getResult(), CondStart); for (const auto &Cond : IAP->getConds()) CondO << " {" << Cond << "},\n"; CondCount += IAP->getCondCount(); // After operands have been examined, re-encode the alias string with // escapes indicating how operands should be printed. uint32_t UnescapedSize = 0; std::string EncodedAsmString = IAP->formatAliasString(UnescapedSize); auto Insertion = AsmStringOffsets.insert({EncodedAsmString, AsmStringsSize}); if (Insertion.second) { // If the string is new, add it to the vector. AsmStrings.push_back({AsmStringsSize, EncodedAsmString}); AsmStringsSize += UnescapedSize + 1; } unsigned AsmStrOffset = Insertion.first->second; PatternO << formatv(" {{{0}, {1}, {2}, {3} },\n", AsmStrOffset, CondStart, IAP->getNumMIOps(), IAP->getCondCount()); ++PatternCount; } OpcodeO << formatv(" {{{0}, {1}, {2} },\n", It->first, PatternStart, PatternCount - PatternStart); } if (OpcodeO.str().empty()) { O << HeaderO.str(); O << " return false;\n"; O << "}\n\n"; O << "#endif // PRINT_ALIAS_INSTR\n"; return; } // Forward declare the validation method if needed. if (!MCOpPredicates.empty()) O << "static bool " << Target.getName() << ClassName << "ValidateMCOperand(const MCOperand &MCOp,\n" << " const MCSubtargetInfo &STI,\n" << " unsigned PredicateIndex);\n"; O << HeaderO.str(); O.indent(2) << "static const PatternsForOpcode OpToPatterns[] = {\n"; O << OpcodeO.str(); O.indent(2) << "};\n\n"; O.indent(2) << "static const AliasPattern Patterns[] = {\n"; O << PatternO.str(); O.indent(2) << "};\n\n"; O.indent(2) << "static const AliasPatternCond Conds[] = {\n"; O << CondO.str(); O.indent(2) << "};\n\n"; O.indent(2) << "static const char AsmStrings[] =\n"; for (const auto &P : AsmStrings) { O.indent(4) << "/* " << P.first << " */ \"" << P.second << "\\0\"\n"; } O.indent(2) << ";\n\n"; // Assert that the opcode table is sorted. Use a static local constructor to // ensure that the check only happens once on first run. O << "#ifndef NDEBUG\n"; O.indent(2) << "static struct SortCheck {\n"; O.indent(2) << " SortCheck(ArrayRef OpToPatterns) {\n"; O.indent(2) << " assert(std::is_sorted(\n"; O.indent(2) << " OpToPatterns.begin(), OpToPatterns.end(),\n"; O.indent(2) << " [](const PatternsForOpcode &L, const " "PatternsForOpcode &R) {\n"; O.indent(2) << " return L.Opcode < R.Opcode;\n"; O.indent(2) << " }) &&\n"; O.indent(2) << " \"tablegen failed to sort opcode patterns\");\n"; O.indent(2) << " }\n"; O.indent(2) << "} sortCheckVar(OpToPatterns);\n"; O << "#endif\n\n"; O.indent(2) << "AliasMatchingData M {\n"; O.indent(2) << " makeArrayRef(OpToPatterns),\n"; O.indent(2) << " makeArrayRef(Patterns),\n"; O.indent(2) << " makeArrayRef(Conds),\n"; O.indent(2) << " StringRef(AsmStrings, array_lengthof(AsmStrings)),\n"; if (MCOpPredicates.empty()) O.indent(2) << " nullptr,\n"; else O.indent(2) << " &" << Target.getName() << ClassName << "ValidateMCOperand,\n"; O.indent(2) << "};\n"; O.indent(2) << "const char *AsmString = matchAliasPatterns(MI, " << (PassSubtarget ? "&STI" : "nullptr") << ", M);\n"; O.indent(2) << "if (!AsmString) return false;\n\n"; // Code that prints the alias, replacing the operands with the ones from the // MCInst. O << " unsigned I = 0;\n"; O << " while (AsmString[I] != ' ' && AsmString[I] != '\\t' &&\n"; O << " AsmString[I] != '$' && AsmString[I] != '\\0')\n"; O << " ++I;\n"; O << " OS << '\\t' << StringRef(AsmString, I);\n"; O << " if (AsmString[I] != '\\0') {\n"; O << " if (AsmString[I] == ' ' || AsmString[I] == '\\t') {\n"; O << " OS << '\\t';\n"; O << " ++I;\n"; O << " }\n"; O << " do {\n"; O << " if (AsmString[I] == '$') {\n"; O << " ++I;\n"; O << " if (AsmString[I] == (char)0xff) {\n"; O << " ++I;\n"; O << " int OpIdx = AsmString[I++] - 1;\n"; O << " int PrintMethodIdx = AsmString[I++] - 1;\n"; O << " printCustomAliasOperand(MI, Address, OpIdx, PrintMethodIdx, "; O << (PassSubtarget ? "STI, " : ""); O << "OS);\n"; O << " } else\n"; O << " printOperand(MI, unsigned(AsmString[I++]) - 1, "; O << (PassSubtarget ? "STI, " : ""); O << "OS);\n"; O << " } else {\n"; O << " OS << AsmString[I++];\n"; O << " }\n"; O << " } while (AsmString[I] != '\\0');\n"; O << " }\n\n"; O << " return true;\n"; O << "}\n\n"; ////////////////////////////// // Write out the printCustomAliasOperand function ////////////////////////////// O << "void " << Target.getName() << ClassName << "::" << "printCustomAliasOperand(\n" << " const MCInst *MI, uint64_t Address, unsigned OpIdx,\n" << " unsigned PrintMethodIdx,\n" << (PassSubtarget ? " const MCSubtargetInfo &STI,\n" : "") << " raw_ostream &OS) {\n"; if (PrintMethods.empty()) O << " llvm_unreachable(\"Unknown PrintMethod kind\");\n"; else { O << " switch (PrintMethodIdx) {\n" << " default:\n" << " llvm_unreachable(\"Unknown PrintMethod kind\");\n" << " break;\n"; for (unsigned i = 0; i < PrintMethods.size(); ++i) { O << " case " << i << ":\n" << " " << PrintMethods[i].first << "(MI, " << (PrintMethods[i].second ? "Address, " : "") << "OpIdx, " << (PassSubtarget ? "STI, " : "") << "OS);\n" << " break;\n"; } O << " }\n"; } O << "}\n\n"; if (!MCOpPredicates.empty()) { O << "static bool " << Target.getName() << ClassName << "ValidateMCOperand(const MCOperand &MCOp,\n" << " const MCSubtargetInfo &STI,\n" << " unsigned PredicateIndex) {\n" << " switch (PredicateIndex) {\n" << " default:\n" << " llvm_unreachable(\"Unknown MCOperandPredicate kind\");\n" << " break;\n"; for (unsigned i = 0; i < MCOpPredicates.size(); ++i) { StringRef MCOpPred = MCOpPredicates[i]->getValueAsString("MCOperandPredicate"); O << " case " << i + 1 << ": {\n" << MCOpPred.data() << "\n" << " }\n"; } O << " }\n" << "}\n\n"; } O << "#endif // PRINT_ALIAS_INSTR\n"; } AsmWriterEmitter::AsmWriterEmitter(RecordKeeper &R) : Records(R), Target(R) { Record *AsmWriter = Target.getAsmWriter(); unsigned Variant = AsmWriter->getValueAsInt("Variant"); // Get the instruction numbering. NumberedInstructions = Target.getInstructionsByEnumValue(); for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { const CodeGenInstruction *I = NumberedInstructions[i]; if (!I->AsmString.empty() && I->TheDef->getName() != "PHI") Instructions.emplace_back(*I, i, Variant); } } void AsmWriterEmitter::run(raw_ostream &O) { std::vector> TableDrivenOperandPrinters; unsigned BitsLeft = 0; unsigned AsmStrBits = 0; EmitGetMnemonic(O, TableDrivenOperandPrinters, BitsLeft, AsmStrBits); EmitPrintInstruction(O, TableDrivenOperandPrinters, BitsLeft, AsmStrBits); EmitGetRegisterName(O); EmitPrintAliasInstruction(O); } namespace llvm { void EmitAsmWriter(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Assembly Writer Source Fragment", OS); AsmWriterEmitter(RK).run(OS); } } // end namespace llvm