//===- opt.cpp - The LLVM Modular Optimizer -------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Optimizations may be specified an arbitrary number of times on the command // line, They are run in the order specified. // //===----------------------------------------------------------------------===// #include "BreakpointPrinter.h" #include "NewPMDriver.h" #include "PassPrinters.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/CallGraphSCCPass.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/RegionPass.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/AsmParser/Parser.h" #include "llvm/CodeGen/CommandFlags.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LLVMRemarkStreamer.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/LegacyPassNameParser.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/IRReader/IRReader.h" #include "llvm/InitializePasses.h" #include "llvm/LinkAllIR.h" #include "llvm/LinkAllPasses.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Remarks/HotnessThresholdParser.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Host.h" #include "llvm/Support/InitLLVM.h" #include "llvm/Support/PluginLoader.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/SystemUtils.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Coroutines.h" #include "llvm/Transforms/IPO/AlwaysInliner.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/IPO/WholeProgramDevirt.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Debugify.h" #include <algorithm> #include <memory> using namespace llvm; using namespace opt_tool; static codegen::RegisterCodeGenFlags CFG; // The OptimizationList is automatically populated with registered Passes by the // PassNameParser. static cl::list<const PassInfo *, bool, PassNameParser> PassList(cl::desc( "Optimizations available (use '-passes=' for the new pass manager)")); static cl::opt<bool> EnableNewPassManager( "enable-new-pm", cl::desc("Enable the new pass manager, translating " "'opt -foo' to 'opt -passes=foo'. This is strictly for the new PM " "migration, use '-passes=' when possible."), cl::init(LLVM_ENABLE_NEW_PASS_MANAGER)); // This flag specifies a textual description of the optimization pass pipeline // to run over the module. This flag switches opt to use the new pass manager // infrastructure, completely disabling all of the flags specific to the old // pass management. static cl::opt<std::string> PassPipeline( "passes", cl::desc( "A textual description of the pass pipeline. To have analysis passes " "available before a certain pass, add 'require<foo-analysis>'.")); static cl::opt<bool> PrintPasses("print-passes", cl::desc("Print available passes that can be " "specified in -passes=foo and exit")); static cl::opt<std::string> InputFilename(cl::Positional, cl::desc("<input bitcode file>"), cl::init("-"), cl::value_desc("filename")); static cl::opt<std::string> OutputFilename("o", cl::desc("Override output filename"), cl::value_desc("filename")); static cl::opt<bool> Force("f", cl::desc("Enable binary output on terminals")); static cl::opt<bool> NoOutput("disable-output", cl::desc("Do not write result bitcode file"), cl::Hidden); static cl::opt<bool> OutputAssembly("S", cl::desc("Write output as LLVM assembly")); static cl::opt<bool> OutputThinLTOBC("thinlto-bc", cl::desc("Write output as ThinLTO-ready bitcode")); static cl::opt<bool> SplitLTOUnit("thinlto-split-lto-unit", cl::desc("Enable splitting of a ThinLTO LTOUnit")); static cl::opt<std::string> ThinLinkBitcodeFile( "thin-link-bitcode-file", cl::value_desc("filename"), cl::desc( "A file in which to write minimized bitcode for the thin link only")); static cl::opt<bool> NoVerify("disable-verify", cl::desc("Do not run the verifier"), cl::Hidden); static cl::opt<bool> NoUpgradeDebugInfo("disable-upgrade-debug-info", cl::desc("Generate invalid output"), cl::ReallyHidden); static cl::opt<bool> VerifyEach("verify-each", cl::desc("Verify after each transform")); static cl::opt<bool> DisableDITypeMap("disable-debug-info-type-map", cl::desc("Don't use a uniquing type map for debug info")); static cl::opt<bool> StripDebug("strip-debug", cl::desc("Strip debugger symbol info from translation unit")); static cl::opt<bool> StripNamedMetadata("strip-named-metadata", cl::desc("Strip module-level named metadata")); static cl::opt<bool> OptLevelO0("O0", cl::desc("Optimization level 0. Similar to clang -O0. " "Use -passes='default<O0>' for the new PM")); static cl::opt<bool> OptLevelO1("O1", cl::desc("Optimization level 1. Similar to clang -O1. " "Use -passes='default<O1>' for the new PM")); static cl::opt<bool> OptLevelO2("O2", cl::desc("Optimization level 2. Similar to clang -O2. " "Use -passes='default<O2>' for the new PM")); static cl::opt<bool> OptLevelOs("Os", cl::desc("Like -O2 but size-conscious. Similar to clang " "-Os. Use -passes='default<Os>' for the new PM")); static cl::opt<bool> OptLevelOz( "Oz", cl::desc("Like -O2 but optimize for code size above all else. Similar to " "clang -Oz. Use -passes='default<Oz>' for the new PM")); static cl::opt<bool> OptLevelO3("O3", cl::desc("Optimization level 3. Similar to clang -O3. " "Use -passes='default<O3>' for the new PM")); static cl::opt<unsigned> CodeGenOptLevel( "codegen-opt-level", cl::desc("Override optimization level for codegen hooks, legacy PM only")); static cl::opt<std::string> TargetTriple("mtriple", cl::desc("Override target triple for module")); cl::opt<bool> DisableLoopUnrolling( "disable-loop-unrolling", cl::desc("Disable loop unrolling in all relevant passes"), cl::init(false)); static cl::opt<bool> EmitSummaryIndex("module-summary", cl::desc("Emit module summary index"), cl::init(false)); static cl::opt<bool> EmitModuleHash("module-hash", cl::desc("Emit module hash"), cl::init(false)); static cl::opt<bool> DisableSimplifyLibCalls("disable-simplify-libcalls", cl::desc("Disable simplify-libcalls")); static cl::list<std::string> DisableBuiltins("disable-builtin", cl::desc("Disable specific target library builtin function"), cl::ZeroOrMore); static cl::opt<bool> AnalyzeOnly("analyze", cl::desc("Only perform analysis, no optimization. " "Legacy pass manager only.")); static cl::opt<bool> EnableDebugify( "enable-debugify", cl::desc( "Start the pipeline with debugify and end it with check-debugify")); static cl::opt<bool> VerifyDebugInfoPreserve( "verify-debuginfo-preserve", cl::desc("Start the pipeline with collecting and end it with checking of " "debug info preservation.")); static cl::opt<bool> VerifyEachDebugInfoPreserve( "verify-each-debuginfo-preserve", cl::desc("Start each pass with collecting and end it with checking of " "debug info preservation.")); static cl::opt<std::string> VerifyDIPreserveExport("verify-di-preserve-export", cl::desc("Export debug info preservation failures into " "specified (JSON) file (should be abs path as we use" " append mode to insert new JSON objects)"), cl::value_desc("filename"), cl::init("")); static cl::opt<bool> PrintBreakpoints("print-breakpoints-for-testing", cl::desc("Print select breakpoints location for testing")); static cl::opt<std::string> ClDataLayout("data-layout", cl::desc("data layout string to use"), cl::value_desc("layout-string"), cl::init("")); static cl::opt<bool> PreserveBitcodeUseListOrder( "preserve-bc-uselistorder", cl::desc("Preserve use-list order when writing LLVM bitcode."), cl::init(true), cl::Hidden); static cl::opt<bool> PreserveAssemblyUseListOrder( "preserve-ll-uselistorder", cl::desc("Preserve use-list order when writing LLVM assembly."), cl::init(false), cl::Hidden); static cl::opt<bool> RunTwice("run-twice", cl::desc("Run all passes twice, re-using the " "same pass manager (legacy PM only)."), cl::init(false), cl::Hidden); static cl::opt<bool> DiscardValueNames( "discard-value-names", cl::desc("Discard names from Value (other than GlobalValue)."), cl::init(false), cl::Hidden); static cl::opt<bool> Coroutines( "enable-coroutines", cl::desc("Enable coroutine passes."), cl::init(false), cl::Hidden); static cl::opt<bool> TimeTrace( "time-trace", cl::desc("Record time trace")); static cl::opt<unsigned> TimeTraceGranularity( "time-trace-granularity", cl::desc("Minimum time granularity (in microseconds) traced by time profiler"), cl::init(500), cl::Hidden); static cl::opt<std::string> TimeTraceFile("time-trace-file", cl::desc("Specify time trace file destination"), cl::value_desc("filename")); static cl::opt<bool> RemarksWithHotness( "pass-remarks-with-hotness", cl::desc("With PGO, include profile count in optimization remarks"), cl::Hidden); static cl::opt<Optional<uint64_t>, false, remarks::HotnessThresholdParser> RemarksHotnessThreshold( "pass-remarks-hotness-threshold", cl::desc("Minimum profile count required for " "an optimization remark to be output. " "Use 'auto' to apply the threshold from profile summary."), cl::value_desc("N or 'auto'"), cl::init(0), cl::Hidden); static cl::opt<std::string> RemarksFilename("pass-remarks-output", cl::desc("Output filename for pass remarks"), cl::value_desc("filename")); static cl::opt<std::string> RemarksPasses("pass-remarks-filter", cl::desc("Only record optimization remarks from passes whose " "names match the given regular expression"), cl::value_desc("regex")); static cl::opt<std::string> RemarksFormat( "pass-remarks-format", cl::desc("The format used for serializing remarks (default: YAML)"), cl::value_desc("format"), cl::init("yaml")); namespace llvm { cl::opt<PGOKind> PGOKindFlag("pgo-kind", cl::init(NoPGO), cl::Hidden, cl::desc("The kind of profile guided optimization"), cl::values(clEnumValN(NoPGO, "nopgo", "Do not use PGO."), clEnumValN(InstrGen, "pgo-instr-gen-pipeline", "Instrument the IR to generate profile."), clEnumValN(InstrUse, "pgo-instr-use-pipeline", "Use instrumented profile to guide PGO."), clEnumValN(SampleUse, "pgo-sample-use-pipeline", "Use sampled profile to guide PGO."))); cl::opt<std::string> ProfileFile("profile-file", cl::desc("Path to the profile."), cl::Hidden); cl::opt<CSPGOKind> CSPGOKindFlag( "cspgo-kind", cl::init(NoCSPGO), cl::Hidden, cl::desc("The kind of context sensitive profile guided optimization"), cl::values( clEnumValN(NoCSPGO, "nocspgo", "Do not use CSPGO."), clEnumValN( CSInstrGen, "cspgo-instr-gen-pipeline", "Instrument (context sensitive) the IR to generate profile."), clEnumValN( CSInstrUse, "cspgo-instr-use-pipeline", "Use instrumented (context sensitive) profile to guide PGO."))); cl::opt<std::string> CSProfileGenFile( "cs-profilegen-file", cl::desc("Path to the instrumented context sensitive profile."), cl::Hidden); } // namespace llvm static inline void addPass(legacy::PassManagerBase &PM, Pass *P) { // Add the pass to the pass manager... PM.add(P); // If we are verifying all of the intermediate steps, add the verifier... if (VerifyEach) PM.add(createVerifierPass()); } /// This routine adds optimization passes based on selected optimization level, /// OptLevel. /// /// OptLevel - Optimization Level static void AddOptimizationPasses(legacy::PassManagerBase &MPM, legacy::FunctionPassManager &FPM, TargetMachine *TM, unsigned OptLevel, unsigned SizeLevel) { if (!NoVerify || VerifyEach) FPM.add(createVerifierPass()); // Verify that input is correct PassManagerBuilder Builder; Builder.OptLevel = OptLevel; Builder.SizeLevel = SizeLevel; if (OptLevel > 1) { Builder.Inliner = createFunctionInliningPass(OptLevel, SizeLevel, false); } else { Builder.Inliner = createAlwaysInlinerLegacyPass(); } Builder.DisableUnrollLoops = (DisableLoopUnrolling.getNumOccurrences() > 0) ? DisableLoopUnrolling : OptLevel == 0; Builder.LoopVectorize = OptLevel > 1 && SizeLevel < 2; Builder.SLPVectorize = OptLevel > 1 && SizeLevel < 2; if (TM) TM->adjustPassManager(Builder); if (Coroutines) addCoroutinePassesToExtensionPoints(Builder); switch (PGOKindFlag) { case InstrGen: Builder.EnablePGOInstrGen = true; Builder.PGOInstrGen = ProfileFile; break; case InstrUse: Builder.PGOInstrUse = ProfileFile; break; case SampleUse: Builder.PGOSampleUse = ProfileFile; break; default: break; } switch (CSPGOKindFlag) { case CSInstrGen: Builder.EnablePGOCSInstrGen = true; break; case CSInstrUse: Builder.EnablePGOCSInstrUse = true; break; default: break; } Builder.populateFunctionPassManager(FPM); Builder.populateModulePassManager(MPM); } //===----------------------------------------------------------------------===// // CodeGen-related helper functions. // static CodeGenOpt::Level GetCodeGenOptLevel() { if (CodeGenOptLevel.getNumOccurrences()) return static_cast<CodeGenOpt::Level>(unsigned(CodeGenOptLevel)); if (OptLevelO1) return CodeGenOpt::Less; if (OptLevelO2) return CodeGenOpt::Default; if (OptLevelO3) return CodeGenOpt::Aggressive; return CodeGenOpt::None; } // Returns the TargetMachine instance or zero if no triple is provided. static TargetMachine* GetTargetMachine(Triple TheTriple, StringRef CPUStr, StringRef FeaturesStr, const TargetOptions &Options) { std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(codegen::getMArch(), TheTriple, Error); // Some modules don't specify a triple, and this is okay. if (!TheTarget) { return nullptr; } return TheTarget->createTargetMachine( TheTriple.getTriple(), codegen::getCPUStr(), codegen::getFeaturesStr(), Options, codegen::getExplicitRelocModel(), codegen::getExplicitCodeModel(), GetCodeGenOptLevel()); } #ifdef BUILD_EXAMPLES void initializeExampleIRTransforms(llvm::PassRegistry &Registry); #endif struct TimeTracerRAII { TimeTracerRAII(StringRef ProgramName) { if (TimeTrace) timeTraceProfilerInitialize(TimeTraceGranularity, ProgramName); } ~TimeTracerRAII() { if (TimeTrace) { if (auto E = timeTraceProfilerWrite(TimeTraceFile, OutputFilename)) { handleAllErrors(std::move(E), [&](const StringError &SE) { errs() << SE.getMessage() << "\n"; }); return; } timeTraceProfilerCleanup(); } } }; // For use in NPM transition. Currently this contains most codegen-specific // passes. Remove passes from here when porting to the NPM. // TODO: use a codegen version of PassRegistry.def/PassBuilder::is*Pass() once // it exists. static bool shouldPinPassToLegacyPM(StringRef Pass) { std::vector<StringRef> PassNameExactToIgnore = { "nvvm-reflect", "nvvm-intr-range", "amdgpu-simplifylib", "amdgpu-usenative", "amdgpu-promote-alloca", "amdgpu-promote-alloca-to-vector", "amdgpu-lower-kernel-attributes", "amdgpu-propagate-attributes-early", "amdgpu-propagate-attributes-late", "amdgpu-unify-metadata", "amdgpu-printf-runtime-binding", "amdgpu-always-inline"}; if (llvm::is_contained(PassNameExactToIgnore, Pass)) return false; std::vector<StringRef> PassNamePrefix = { "x86-", "xcore-", "wasm-", "systemz-", "ppc-", "nvvm-", "nvptx-", "mips-", "lanai-", "hexagon-", "bpf-", "avr-", "thumb2-", "arm-", "si-", "gcn-", "amdgpu-", "aarch64-", "amdgcn-", "polly-", "riscv-"}; std::vector<StringRef> PassNameContain = {"ehprepare"}; std::vector<StringRef> PassNameExact = { "safe-stack", "cost-model", "codegenprepare", "interleaved-load-combine", "unreachableblockelim", "verify-safepoint-ir", "atomic-expand", "expandvp", "hardware-loops", "type-promotion", "mve-tail-predication", "interleaved-access", "global-merge", "pre-isel-intrinsic-lowering", "expand-reductions", "indirectbr-expand", "generic-to-nvvm", "expandmemcmp", "loop-reduce", "lower-amx-type", "pre-amx-config", "lower-amx-intrinsics", "polyhedral-info", "replace-with-veclib"}; for (const auto &P : PassNamePrefix) if (Pass.startswith(P)) return true; for (const auto &P : PassNameContain) if (Pass.contains(P)) return true; return llvm::is_contained(PassNameExact, Pass); } // For use in NPM transition. static bool shouldForceLegacyPM() { for (const auto &P : PassList) { StringRef Arg = P->getPassArgument(); if (shouldPinPassToLegacyPM(Arg)) return true; } return false; } //===----------------------------------------------------------------------===// // main for opt // int main(int argc, char **argv) { InitLLVM X(argc, argv); // Enable debug stream buffering. EnableDebugBuffering = true; InitializeAllTargets(); InitializeAllTargetMCs(); InitializeAllAsmPrinters(); InitializeAllAsmParsers(); // Initialize passes PassRegistry &Registry = *PassRegistry::getPassRegistry(); initializeCore(Registry); initializeCoroutines(Registry); initializeScalarOpts(Registry); initializeObjCARCOpts(Registry); initializeVectorization(Registry); initializeIPO(Registry); initializeAnalysis(Registry); initializeTransformUtils(Registry); initializeInstCombine(Registry); initializeAggressiveInstCombine(Registry); initializeInstrumentation(Registry); initializeTarget(Registry); // For codegen passes, only passes that do IR to IR transformation are // supported. initializeExpandMemCmpPassPass(Registry); initializeScalarizeMaskedMemIntrinLegacyPassPass(Registry); initializeCodeGenPreparePass(Registry); initializeAtomicExpandPass(Registry); initializeRewriteSymbolsLegacyPassPass(Registry); initializeWinEHPreparePass(Registry); initializeDwarfEHPrepareLegacyPassPass(Registry); initializeSafeStackLegacyPassPass(Registry); initializeSjLjEHPreparePass(Registry); initializePreISelIntrinsicLoweringLegacyPassPass(Registry); initializeGlobalMergePass(Registry); initializeIndirectBrExpandPassPass(Registry); initializeInterleavedLoadCombinePass(Registry); initializeInterleavedAccessPass(Registry); initializeEntryExitInstrumenterPass(Registry); initializePostInlineEntryExitInstrumenterPass(Registry); initializeUnreachableBlockElimLegacyPassPass(Registry); initializeExpandReductionsPass(Registry); initializeExpandVectorPredicationPass(Registry); initializeWasmEHPreparePass(Registry); initializeWriteBitcodePassPass(Registry); initializeHardwareLoopsPass(Registry); initializeTypePromotionPass(Registry); initializeReplaceWithVeclibLegacyPass(Registry); #ifdef BUILD_EXAMPLES initializeExampleIRTransforms(Registry); #endif cl::ParseCommandLineOptions(argc, argv, "llvm .bc -> .bc modular optimizer and analysis printer\n"); LLVMContext Context; if (AnalyzeOnly && NoOutput) { errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n"; return 1; } // FIXME: once the legacy PM code is deleted, move runPassPipeline() here and // construct the PassBuilder before parsing IR so we can reuse the same // PassBuilder for print passes. if (PrintPasses) { printPasses(outs()); return 0; } TimeTracerRAII TimeTracer(argv[0]); SMDiagnostic Err; Context.setDiscardValueNames(DiscardValueNames); if (!DisableDITypeMap) Context.enableDebugTypeODRUniquing(); Expected<std::unique_ptr<ToolOutputFile>> RemarksFileOrErr = setupLLVMOptimizationRemarks(Context, RemarksFilename, RemarksPasses, RemarksFormat, RemarksWithHotness, RemarksHotnessThreshold); if (Error E = RemarksFileOrErr.takeError()) { errs() << toString(std::move(E)) << '\n'; return 1; } std::unique_ptr<ToolOutputFile> RemarksFile = std::move(*RemarksFileOrErr); // Load the input module... auto SetDataLayout = [](StringRef) -> Optional<std::string> { if (ClDataLayout.empty()) return None; return ClDataLayout; }; std::unique_ptr<Module> M; if (NoUpgradeDebugInfo) M = parseAssemblyFileWithIndexNoUpgradeDebugInfo( InputFilename, Err, Context, nullptr, SetDataLayout) .Mod; else M = parseIRFile(InputFilename, Err, Context, SetDataLayout); if (!M) { Err.print(argv[0], errs()); return 1; } // Strip debug info before running the verifier. if (StripDebug) StripDebugInfo(*M); // Erase module-level named metadata, if requested. if (StripNamedMetadata) { while (!M->named_metadata_empty()) { NamedMDNode *NMD = &*M->named_metadata_begin(); M->eraseNamedMetadata(NMD); } } // If we are supposed to override the target triple or data layout, do so now. if (!TargetTriple.empty()) M->setTargetTriple(Triple::normalize(TargetTriple)); // Immediately run the verifier to catch any problems before starting up the // pass pipelines. Otherwise we can crash on broken code during // doInitialization(). if (!NoVerify && verifyModule(*M, &errs())) { errs() << argv[0] << ": " << InputFilename << ": error: input module is broken!\n"; return 1; } // Enable testing of whole program devirtualization on this module by invoking // the facility for updating public visibility to linkage unit visibility when // specified by an internal option. This is normally done during LTO which is // not performed via opt. updateVCallVisibilityInModule(*M, /* WholeProgramVisibilityEnabledInLTO */ false, /* DynamicExportSymbols */ {}); // Figure out what stream we are supposed to write to... std::unique_ptr<ToolOutputFile> Out; std::unique_ptr<ToolOutputFile> ThinLinkOut; if (NoOutput) { if (!OutputFilename.empty()) errs() << "WARNING: The -o (output filename) option is ignored when\n" "the --disable-output option is used.\n"; } else { // Default to standard output. if (OutputFilename.empty()) OutputFilename = "-"; std::error_code EC; sys::fs::OpenFlags Flags = OutputAssembly ? sys::fs::OF_TextWithCRLF : sys::fs::OF_None; Out.reset(new ToolOutputFile(OutputFilename, EC, Flags)); if (EC) { errs() << EC.message() << '\n'; return 1; } if (!ThinLinkBitcodeFile.empty()) { ThinLinkOut.reset( new ToolOutputFile(ThinLinkBitcodeFile, EC, sys::fs::OF_None)); if (EC) { errs() << EC.message() << '\n'; return 1; } } } Triple ModuleTriple(M->getTargetTriple()); std::string CPUStr, FeaturesStr; TargetMachine *Machine = nullptr; const TargetOptions Options = codegen::InitTargetOptionsFromCodeGenFlags(ModuleTriple); if (ModuleTriple.getArch()) { CPUStr = codegen::getCPUStr(); FeaturesStr = codegen::getFeaturesStr(); Machine = GetTargetMachine(ModuleTriple, CPUStr, FeaturesStr, Options); } else if (ModuleTriple.getArchName() != "unknown" && ModuleTriple.getArchName() != "") { errs() << argv[0] << ": unrecognized architecture '" << ModuleTriple.getArchName() << "' provided.\n"; return 1; } std::unique_ptr<TargetMachine> TM(Machine); // Override function attributes based on CPUStr, FeaturesStr, and command line // flags. codegen::setFunctionAttributes(CPUStr, FeaturesStr, *M); // If the output is set to be emitted to standard out, and standard out is a // console, print out a warning message and refuse to do it. We don't // impress anyone by spewing tons of binary goo to a terminal. if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly) if (CheckBitcodeOutputToConsole(Out->os())) NoOutput = true; if (OutputThinLTOBC) M->addModuleFlag(Module::Error, "EnableSplitLTOUnit", SplitLTOUnit); // Add an appropriate TargetLibraryInfo pass for the module's triple. TargetLibraryInfoImpl TLII(ModuleTriple); // The -disable-simplify-libcalls flag actually disables all builtin optzns. if (DisableSimplifyLibCalls) TLII.disableAllFunctions(); else { // Disable individual builtin functions in TargetLibraryInfo. LibFunc F; for (auto &FuncName : DisableBuiltins) if (TLII.getLibFunc(FuncName, F)) TLII.setUnavailable(F); else { errs() << argv[0] << ": cannot disable nonexistent builtin function " << FuncName << '\n'; return 1; } } // If `-passes=` is specified, use NPM. // If `-enable-new-pm` is specified and there are no codegen passes, use NPM. // e.g. `-enable-new-pm -sroa` will use NPM. // but `-enable-new-pm -codegenprepare` will still revert to legacy PM. if ((EnableNewPassManager && !shouldForceLegacyPM()) || PassPipeline.getNumOccurrences() > 0) { if (AnalyzeOnly) { errs() << "Cannot specify -analyze under new pass manager, either " "specify '-enable-new-pm=0', or use the corresponding new pass " "manager pass, e.g. '-passes=print<scalar-evolution>'. For a " "full list of passes, see the '--print-passes' flag.\n"; return 1; } if (legacy::debugPassSpecified()) { errs() << "-debug-pass does not work with the new PM, either use " "-debug-pass-manager, or use the legacy PM (-enable-new-pm=0)\n"; return 1; } if (PassPipeline.getNumOccurrences() > 0 && PassList.size() > 0) { errs() << "Cannot specify passes via both -foo-pass and --passes=foo-pass\n"; return 1; } auto NumOLevel = OptLevelO0 + OptLevelO1 + OptLevelO2 + OptLevelO3 + OptLevelOs + OptLevelOz; if (NumOLevel > 1) { errs() << "Cannot specify multiple -O#\n"; return 1; } if (NumOLevel > 0 && PassPipeline.getNumOccurrences() > 0) { errs() << "Cannot specify -O# and --passes=, use " "-passes='default<O#>,other-pass'\n"; return 1; } std::string Pipeline = PassPipeline; SmallVector<StringRef, 4> Passes; if (OptLevelO0) Pipeline = "default<O0>"; if (OptLevelO1) Pipeline = "default<O1>"; if (OptLevelO2) Pipeline = "default<O2>"; if (OptLevelO3) Pipeline = "default<O3>"; if (OptLevelOs) Pipeline = "default<Os>"; if (OptLevelOz) Pipeline = "default<Oz>"; for (const auto &P : PassList) Passes.push_back(P->getPassArgument()); OutputKind OK = OK_NoOutput; if (!NoOutput) OK = OutputAssembly ? OK_OutputAssembly : (OutputThinLTOBC ? OK_OutputThinLTOBitcode : OK_OutputBitcode); VerifierKind VK = VK_VerifyInAndOut; if (NoVerify) VK = VK_NoVerifier; else if (VerifyEach) VK = VK_VerifyEachPass; // The user has asked to use the new pass manager and provided a pipeline // string. Hand off the rest of the functionality to the new code for that // layer. return runPassPipeline(argv[0], *M, TM.get(), &TLII, Out.get(), ThinLinkOut.get(), RemarksFile.get(), Pipeline, Passes, OK, VK, PreserveAssemblyUseListOrder, PreserveBitcodeUseListOrder, EmitSummaryIndex, EmitModuleHash, EnableDebugify) ? 0 : 1; } // Create a PassManager to hold and optimize the collection of passes we are // about to build. If the -debugify-each option is set, wrap each pass with // the (-check)-debugify passes. DebugifyCustomPassManager Passes; DebugifyStatsMap DIStatsMap; DebugInfoPerPassMap DIPreservationMap; if (DebugifyEach) { Passes.setDebugifyMode(DebugifyMode::SyntheticDebugInfo); Passes.setDIStatsMap(DIStatsMap); } else if (VerifyEachDebugInfoPreserve) { Passes.setDebugifyMode(DebugifyMode::OriginalDebugInfo); Passes.setDIPreservationMap(DIPreservationMap); if (!VerifyDIPreserveExport.empty()) Passes.setOrigDIVerifyBugsReportFilePath(VerifyDIPreserveExport); } bool AddOneTimeDebugifyPasses = (EnableDebugify && !DebugifyEach) || (VerifyDebugInfoPreserve && !VerifyEachDebugInfoPreserve); Passes.add(new TargetLibraryInfoWrapperPass(TLII)); // Add internal analysis passes from the target machine. Passes.add(createTargetTransformInfoWrapperPass(TM ? TM->getTargetIRAnalysis() : TargetIRAnalysis())); if (AddOneTimeDebugifyPasses) { if (EnableDebugify) { Passes.setDIStatsMap(DIStatsMap); Passes.add(createDebugifyModulePass()); } else if (VerifyDebugInfoPreserve) { Passes.setDIPreservationMap(DIPreservationMap); Passes.add(createDebugifyModulePass( DebugifyMode::OriginalDebugInfo, "", &(Passes.getDebugInfoPerPassMap()))); } } std::unique_ptr<legacy::FunctionPassManager> FPasses; if (OptLevelO0 || OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) { FPasses.reset(new legacy::FunctionPassManager(M.get())); FPasses->add(createTargetTransformInfoWrapperPass( TM ? TM->getTargetIRAnalysis() : TargetIRAnalysis())); } if (PrintBreakpoints) { // Default to standard output. if (!Out) { if (OutputFilename.empty()) OutputFilename = "-"; std::error_code EC; Out = std::make_unique<ToolOutputFile>(OutputFilename, EC, sys::fs::OF_None); if (EC) { errs() << EC.message() << '\n'; return 1; } } Passes.add(createBreakpointPrinter(Out->os())); NoOutput = true; } if (TM) { // FIXME: We should dyn_cast this when supported. auto <M = static_cast<LLVMTargetMachine &>(*TM); Pass *TPC = LTM.createPassConfig(Passes); Passes.add(TPC); } // Create a new optimization pass for each one specified on the command line for (unsigned i = 0; i < PassList.size(); ++i) { if (OptLevelO0 && OptLevelO0.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, TM.get(), 0, 0); OptLevelO0 = false; } if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, TM.get(), 1, 0); OptLevelO1 = false; } if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 0); OptLevelO2 = false; } if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 1); OptLevelOs = false; } if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 2); OptLevelOz = false; } if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) { AddOptimizationPasses(Passes, *FPasses, TM.get(), 3, 0); OptLevelO3 = false; } const PassInfo *PassInf = PassList[i]; Pass *P = nullptr; if (PassInf->getNormalCtor()) P = PassInf->getNormalCtor()(); else errs() << argv[0] << ": cannot create pass: " << PassInf->getPassName() << "\n"; if (P) { PassKind Kind = P->getPassKind(); addPass(Passes, P); if (AnalyzeOnly) { switch (Kind) { case PT_Region: Passes.add(createRegionPassPrinter(PassInf, Out->os())); break; case PT_Loop: Passes.add(createLoopPassPrinter(PassInf, Out->os())); break; case PT_Function: Passes.add(createFunctionPassPrinter(PassInf, Out->os())); break; case PT_CallGraphSCC: Passes.add(createCallGraphPassPrinter(PassInf, Out->os())); break; default: Passes.add(createModulePassPrinter(PassInf, Out->os())); break; } } } } if (OptLevelO0) AddOptimizationPasses(Passes, *FPasses, TM.get(), 0, 0); if (OptLevelO1) AddOptimizationPasses(Passes, *FPasses, TM.get(), 1, 0); if (OptLevelO2) AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 0); if (OptLevelOs) AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 1); if (OptLevelOz) AddOptimizationPasses(Passes, *FPasses, TM.get(), 2, 2); if (OptLevelO3) AddOptimizationPasses(Passes, *FPasses, TM.get(), 3, 0); if (FPasses) { FPasses->doInitialization(); for (Function &F : *M) FPasses->run(F); FPasses->doFinalization(); } // Check that the module is well formed on completion of optimization if (!NoVerify && !VerifyEach) Passes.add(createVerifierPass()); if (AddOneTimeDebugifyPasses) { if (EnableDebugify) Passes.add(createCheckDebugifyModulePass(false)); else if (VerifyDebugInfoPreserve) { if (!VerifyDIPreserveExport.empty()) Passes.setOrigDIVerifyBugsReportFilePath(VerifyDIPreserveExport); Passes.add(createCheckDebugifyModulePass( false, "", nullptr, DebugifyMode::OriginalDebugInfo, &(Passes.getDebugInfoPerPassMap()), VerifyDIPreserveExport)); } } // In run twice mode, we want to make sure the output is bit-by-bit // equivalent if we run the pass manager again, so setup two buffers and // a stream to write to them. Note that llc does something similar and it // may be worth to abstract this out in the future. SmallVector<char, 0> Buffer; SmallVector<char, 0> FirstRunBuffer; std::unique_ptr<raw_svector_ostream> BOS; raw_ostream *OS = nullptr; const bool ShouldEmitOutput = !NoOutput && !AnalyzeOnly; // Write bitcode or assembly to the output as the last step... if (ShouldEmitOutput || RunTwice) { assert(Out); OS = &Out->os(); if (RunTwice) { BOS = std::make_unique<raw_svector_ostream>(Buffer); OS = BOS.get(); } if (OutputAssembly) { if (EmitSummaryIndex) report_fatal_error("Text output is incompatible with -module-summary"); if (EmitModuleHash) report_fatal_error("Text output is incompatible with -module-hash"); Passes.add(createPrintModulePass(*OS, "", PreserveAssemblyUseListOrder)); } else if (OutputThinLTOBC) Passes.add(createWriteThinLTOBitcodePass( *OS, ThinLinkOut ? &ThinLinkOut->os() : nullptr)); else Passes.add(createBitcodeWriterPass(*OS, PreserveBitcodeUseListOrder, EmitSummaryIndex, EmitModuleHash)); } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); if (!RunTwice) { // Now that we have all of the passes ready, run them. Passes.run(*M); } else { // If requested, run all passes twice with the same pass manager to catch // bugs caused by persistent state in the passes. std::unique_ptr<Module> M2(CloneModule(*M)); // Run all passes on the original module first, so the second run processes // the clone to catch CloneModule bugs. Passes.run(*M); FirstRunBuffer = Buffer; Buffer.clear(); Passes.run(*M2); // Compare the two outputs and make sure they're the same assert(Out); if (Buffer.size() != FirstRunBuffer.size() || (memcmp(Buffer.data(), FirstRunBuffer.data(), Buffer.size()) != 0)) { errs() << "Running the pass manager twice changed the output.\n" "Writing the result of the second run to the specified output.\n" "To generate the one-run comparison binary, just run without\n" "the compile-twice option\n"; if (ShouldEmitOutput) { Out->os() << BOS->str(); Out->keep(); } if (RemarksFile) RemarksFile->keep(); return 1; } if (ShouldEmitOutput) Out->os() << BOS->str(); } if (DebugifyEach && !DebugifyExport.empty()) exportDebugifyStats(DebugifyExport, Passes.getDebugifyStatsMap()); // Declare success. if (!NoOutput || PrintBreakpoints) Out->keep(); if (RemarksFile) RemarksFile->keep(); if (ThinLinkOut) ThinLinkOut->keep(); return 0; }