//===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This program is a utility that generates random .ll files to stress-test // different components in LLVM. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/InitLLVM.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include namespace llvm { static cl::OptionCategory StressCategory("Stress Options"); static cl::opt SeedCL("seed", cl::desc("Seed used for randomness"), cl::init(0), cl::cat(StressCategory)); static cl::opt SizeCL( "size", cl::desc("The estimated size of the generated function (# of instrs)"), cl::init(100), cl::cat(StressCategory)); static cl::opt OutputFilename("o", cl::desc("Override output filename"), cl::value_desc("filename"), cl::cat(StressCategory)); static cl::list AdditionalScalarTypes( "types", cl::CommaSeparated, cl::desc("Additional IR scalar types " "(always includes i1, i8, i16, i32, i64, float and double)")); static cl::opt EnableScalableVectors( "enable-scalable-vectors", cl::desc("Generate IR involving scalable vector types"), cl::init(false), cl::cat(StressCategory)); namespace { /// A utility class to provide a pseudo-random number generator which is /// the same across all platforms. This is somewhat close to the libc /// implementation. Note: This is not a cryptographically secure pseudorandom /// number generator. class Random { public: /// C'tor Random(unsigned _seed):Seed(_seed) {} /// Return a random integer, up to a /// maximum of 2**19 - 1. uint32_t Rand() { uint32_t Val = Seed + 0x000b07a1; Seed = (Val * 0x3c7c0ac1); // Only lowest 19 bits are random-ish. return Seed & 0x7ffff; } /// Return a random 64 bit integer. uint64_t Rand64() { uint64_t Val = Rand() & 0xffff; Val |= uint64_t(Rand() & 0xffff) << 16; Val |= uint64_t(Rand() & 0xffff) << 32; Val |= uint64_t(Rand() & 0xffff) << 48; return Val; } /// Rand operator for STL algorithms. ptrdiff_t operator()(ptrdiff_t y) { return Rand64() % y; } /// Make this like a C++11 random device using result_type = uint32_t ; static constexpr result_type min() { return 0; } static constexpr result_type max() { return 0x7ffff; } uint32_t operator()() { uint32_t Val = Rand(); assert(Val <= max() && "Random value out of range"); return Val; } private: unsigned Seed; }; /// Generate an empty function with a default argument list. Function *GenEmptyFunction(Module *M) { // Define a few arguments LLVMContext &Context = M->getContext(); Type* ArgsTy[] = { PointerType::get(Context, 0), PointerType::get(Context, 0), PointerType::get(Context, 0), Type::getInt32Ty(Context), Type::getInt64Ty(Context), Type::getInt8Ty(Context) }; auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false); // Pick a unique name to describe the input parameters Twine Name = "autogen_SD" + Twine{SeedCL}; auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M); Func->setCallingConv(CallingConv::C); return Func; } /// A base class, implementing utilities needed for /// modifying and adding new random instructions. struct Modifier { /// Used to store the randomly generated values. using PieceTable = std::vector; public: /// C'tor Modifier(BasicBlock *Block, PieceTable *PT, Random *R) : BB(Block), PT(PT), Ran(R), Context(BB->getContext()) { ScalarTypes.assign({Type::getInt1Ty(Context), Type::getInt8Ty(Context), Type::getInt16Ty(Context), Type::getInt32Ty(Context), Type::getInt64Ty(Context), Type::getFloatTy(Context), Type::getDoubleTy(Context)}); for (auto &Arg : AdditionalScalarTypes) { Type *Ty = nullptr; if (Arg == "half") Ty = Type::getHalfTy(Context); else if (Arg == "fp128") Ty = Type::getFP128Ty(Context); else if (Arg == "x86_fp80") Ty = Type::getX86_FP80Ty(Context); else if (Arg == "ppc_fp128") Ty = Type::getPPC_FP128Ty(Context); else if (Arg == "x86_mmx") Ty = Type::getX86_MMXTy(Context); else if (Arg.starts_with("i")) { unsigned N = 0; Arg.drop_front().getAsInteger(10, N); if (N > 0) Ty = Type::getIntNTy(Context, N); } if (!Ty) { errs() << "Invalid IR scalar type: '" << Arg << "'!\n"; exit(1); } ScalarTypes.push_back(Ty); } } /// virtual D'tor to silence warnings. virtual ~Modifier() = default; /// Add a new instruction. virtual void Act() = 0; /// Add N new instructions, virtual void ActN(unsigned n) { for (unsigned i=0; iRand(); } /// Return a random value from the list of known values. Value *getRandomVal() { assert(PT->size()); return PT->at(getRandom() % PT->size()); } Constant *getRandomConstant(Type *Tp) { if (Tp->isIntegerTy()) { if (getRandom() & 1) return ConstantInt::getAllOnesValue(Tp); return ConstantInt::getNullValue(Tp); } else if (Tp->isFloatingPointTy()) { if (getRandom() & 1) return ConstantFP::getAllOnesValue(Tp); return ConstantFP::getZero(Tp); } return UndefValue::get(Tp); } /// Return a random value with a known type. Value *getRandomValue(Type *Tp) { unsigned index = getRandom(); for (unsigned i=0; isize(); ++i) { Value *V = PT->at((index + i) % PT->size()); if (V->getType() == Tp) return V; } // If the requested type was not found, generate a constant value. if (Tp->isIntegerTy()) { if (getRandom() & 1) return ConstantInt::getAllOnesValue(Tp); return ConstantInt::getNullValue(Tp); } else if (Tp->isFloatingPointTy()) { if (getRandom() & 1) return ConstantFP::getAllOnesValue(Tp); return ConstantFP::getZero(Tp); } else if (auto *VTp = dyn_cast(Tp)) { std::vector TempValues; TempValues.reserve(VTp->getNumElements()); for (unsigned i = 0; i < VTp->getNumElements(); ++i) TempValues.push_back(getRandomConstant(VTp->getScalarType())); ArrayRef VectorValue(TempValues); return ConstantVector::get(VectorValue); } return UndefValue::get(Tp); } /// Return a random value of any pointer type. Value *getRandomPointerValue() { unsigned index = getRandom(); for (unsigned i=0; isize(); ++i) { Value *V = PT->at((index + i) % PT->size()); if (V->getType()->isPointerTy()) return V; } return UndefValue::get(pickPointerType()); } /// Return a random value of any vector type. Value *getRandomVectorValue() { unsigned index = getRandom(); for (unsigned i=0; isize(); ++i) { Value *V = PT->at((index + i) % PT->size()); if (V->getType()->isVectorTy()) return V; } return UndefValue::get(pickVectorType()); } /// Pick a random type. Type *pickType() { return (getRandom() & 1) ? pickVectorType() : pickScalarType(); } /// Pick a random pointer type. Type *pickPointerType() { Type *Ty = pickType(); return PointerType::get(Ty, 0); } /// Pick a random vector type. Type *pickVectorType(VectorType *VTy = nullptr) { // Vectors of x86mmx are illegal; keep trying till we get something else. Type *Ty; do { Ty = pickScalarType(); } while (Ty->isX86_MMXTy()); if (VTy) return VectorType::get(Ty, VTy->getElementCount()); // Select either fixed length or scalable vectors with 50% probability // (only if scalable vectors are enabled) bool Scalable = EnableScalableVectors && getRandom() & 1; // Pick a random vector width in the range 2**0 to 2**4. // by adding two randoms we are generating a normal-like distribution // around 2**3. unsigned width = 1<<((getRandom() % 3) + (getRandom() % 3)); return VectorType::get(Ty, width, Scalable); } /// Pick a random scalar type. Type *pickScalarType() { return ScalarTypes[getRandom() % ScalarTypes.size()]; } /// Basic block to populate BasicBlock *BB; /// Value table PieceTable *PT; /// Random number generator Random *Ran; /// Context LLVMContext &Context; std::vector ScalarTypes; }; struct LoadModifier: public Modifier { LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { // Try to use predefined pointers. If non-exist, use undef pointer value; Value *Ptr = getRandomPointerValue(); Type *Ty = pickType(); Value *V = new LoadInst(Ty, Ptr, "L", BB->getTerminator()); PT->push_back(V); } }; struct StoreModifier: public Modifier { StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { // Try to use predefined pointers. If non-exist, use undef pointer value; Value *Ptr = getRandomPointerValue(); Type *ValTy = pickType(); // Do not store vectors of i1s because they are unsupported // by the codegen. if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1) return; Value *Val = getRandomValue(ValTy); new StoreInst(Val, Ptr, BB->getTerminator()); } }; struct BinModifier: public Modifier { BinModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { Value *Val0 = getRandomVal(); Value *Val1 = getRandomValue(Val0->getType()); // Don't handle pointer types. if (Val0->getType()->isPointerTy() || Val1->getType()->isPointerTy()) return; // Don't handle i1 types. if (Val0->getType()->getScalarSizeInBits() == 1) return; bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy(); Instruction* Term = BB->getTerminator(); unsigned R = getRandom() % (isFloat ? 7 : 13); Instruction::BinaryOps Op; switch (R) { default: llvm_unreachable("Invalid BinOp"); case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; } case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; } case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; } case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; } case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; } case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; } case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; } case 7: {Op = Instruction::Shl; break; } case 8: {Op = Instruction::LShr; break; } case 9: {Op = Instruction::AShr; break; } case 10:{Op = Instruction::And; break; } case 11:{Op = Instruction::Or; break; } case 12:{Op = Instruction::Xor; break; } } PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term)); } }; /// Generate constant values. struct ConstModifier: public Modifier { ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { Type *Ty = pickType(); if (Ty->isVectorTy()) { switch (getRandom() % 2) { case 0: if (Ty->isIntOrIntVectorTy()) return PT->push_back(ConstantVector::getAllOnesValue(Ty)); break; case 1: if (Ty->isIntOrIntVectorTy()) return PT->push_back(ConstantVector::getNullValue(Ty)); } } if (Ty->isFloatingPointTy()) { // Generate 128 random bits, the size of the (currently) // largest floating-point types. uint64_t RandomBits[2]; for (unsigned i = 0; i < 2; ++i) RandomBits[i] = Ran->Rand64(); APInt RandomInt(Ty->getPrimitiveSizeInBits(), ArrayRef(RandomBits)); APFloat RandomFloat(Ty->getFltSemantics(), RandomInt); if (getRandom() & 1) return PT->push_back(ConstantFP::getZero(Ty)); return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat)); } if (Ty->isIntegerTy()) { switch (getRandom() % 7) { case 0: return PT->push_back(ConstantInt::get( Ty, APInt::getAllOnes(Ty->getPrimitiveSizeInBits()))); case 1: return PT->push_back( ConstantInt::get(Ty, APInt::getZero(Ty->getPrimitiveSizeInBits()))); case 2: case 3: case 4: case 5: case 6: PT->push_back(ConstantInt::get(Ty, getRandom())); } } } }; struct AllocaModifier: public Modifier { AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { Type *Tp = pickType(); const DataLayout &DL = BB->getModule()->getDataLayout(); PT->push_back(new AllocaInst(Tp, DL.getAllocaAddrSpace(), "A", BB->getFirstNonPHI())); } }; struct ExtractElementModifier: public Modifier { ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { Value *Val0 = getRandomVectorValue(); Value *V = ExtractElementInst::Create( Val0, getRandomValue(Type::getInt32Ty(BB->getContext())), "E", BB->getTerminator()); return PT->push_back(V); } }; struct ShuffModifier: public Modifier { ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { Value *Val0 = getRandomVectorValue(); Value *Val1 = getRandomValue(Val0->getType()); // Can't express arbitrary shufflevectors for scalable vectors if (isa(Val0->getType())) return; unsigned Width = cast(Val0->getType())->getNumElements(); std::vector Idxs; Type *I32 = Type::getInt32Ty(BB->getContext()); for (unsigned i=0; igetTerminator()); PT->push_back(V); } }; struct InsertElementModifier: public Modifier { InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { Value *Val0 = getRandomVectorValue(); Value *Val1 = getRandomValue(Val0->getType()->getScalarType()); Value *V = InsertElementInst::Create( Val0, Val1, getRandomValue(Type::getInt32Ty(BB->getContext())), "I", BB->getTerminator()); return PT->push_back(V); } }; struct CastModifier: public Modifier { CastModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { Value *V = getRandomVal(); Type *VTy = V->getType(); Type *DestTy = pickScalarType(); // Handle vector casts vectors. if (VTy->isVectorTy()) DestTy = pickVectorType(cast(VTy)); // no need to cast. if (VTy == DestTy) return; // Pointers: if (VTy->isPointerTy()) { if (!DestTy->isPointerTy()) DestTy = PointerType::get(DestTy, 0); return PT->push_back( new BitCastInst(V, DestTy, "PC", BB->getTerminator())); } unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits(); unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits(); // Generate lots of bitcasts. if ((getRandom() & 1) && VSize == DestSize) { return PT->push_back( new BitCastInst(V, DestTy, "BC", BB->getTerminator())); } // Both types are integers: if (VTy->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy()) { if (VSize > DestSize) { return PT->push_back( new TruncInst(V, DestTy, "Tr", BB->getTerminator())); } else { assert(VSize < DestSize && "Different int types with the same size?"); if (getRandom() & 1) return PT->push_back( new ZExtInst(V, DestTy, "ZE", BB->getTerminator())); return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator())); } } // Fp to int. if (VTy->isFPOrFPVectorTy() && DestTy->isIntOrIntVectorTy()) { if (getRandom() & 1) return PT->push_back( new FPToSIInst(V, DestTy, "FC", BB->getTerminator())); return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator())); } // Int to fp. if (VTy->isIntOrIntVectorTy() && DestTy->isFPOrFPVectorTy()) { if (getRandom() & 1) return PT->push_back( new SIToFPInst(V, DestTy, "FC", BB->getTerminator())); return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator())); } // Both floats. if (VTy->isFPOrFPVectorTy() && DestTy->isFPOrFPVectorTy()) { if (VSize > DestSize) { return PT->push_back( new FPTruncInst(V, DestTy, "Tr", BB->getTerminator())); } else if (VSize < DestSize) { return PT->push_back( new FPExtInst(V, DestTy, "ZE", BB->getTerminator())); } // If VSize == DestSize, then the two types must be fp128 and ppc_fp128, // for which there is no defined conversion. So do nothing. } } }; struct SelectModifier: public Modifier { SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { // Try a bunch of different select configuration until a valid one is found. Value *Val0 = getRandomVal(); Value *Val1 = getRandomValue(Val0->getType()); Type *CondTy = Type::getInt1Ty(Context); // If the value type is a vector, and we allow vector select, then in 50% // of the cases generate a vector select. if (auto *VTy = dyn_cast(Val0->getType())) if (getRandom() & 1) CondTy = VectorType::get(CondTy, VTy->getElementCount()); Value *Cond = getRandomValue(CondTy); Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator()); return PT->push_back(V); } }; struct CmpModifier: public Modifier { CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R) : Modifier(BB, PT, R) {} void Act() override { Value *Val0 = getRandomVal(); Value *Val1 = getRandomValue(Val0->getType()); if (Val0->getType()->isPointerTy()) return; bool fp = Val0->getType()->getScalarType()->isFloatingPointTy(); int op; if (fp) { op = getRandom() % (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) + CmpInst::FIRST_FCMP_PREDICATE; } else { op = getRandom() % (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) + CmpInst::FIRST_ICMP_PREDICATE; } Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp, (CmpInst::Predicate)op, Val0, Val1, "Cmp", BB->getTerminator()); return PT->push_back(V); } }; } // end anonymous namespace static void FillFunction(Function *F, Random &R) { // Create a legal entry block. BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F); ReturnInst::Create(F->getContext(), BB); // Create the value table. Modifier::PieceTable PT; // Consider arguments as legal values. for (auto &arg : F->args()) PT.push_back(&arg); // List of modifiers which add new random instructions. std::vector> Modifiers; Modifiers.emplace_back(new LoadModifier(BB, &PT, &R)); Modifiers.emplace_back(new StoreModifier(BB, &PT, &R)); auto SM = Modifiers.back().get(); Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R)); Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R)); Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R)); Modifiers.emplace_back(new BinModifier(BB, &PT, &R)); Modifiers.emplace_back(new CastModifier(BB, &PT, &R)); Modifiers.emplace_back(new SelectModifier(BB, &PT, &R)); Modifiers.emplace_back(new CmpModifier(BB, &PT, &R)); // Generate the random instructions AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i) for (auto &Mod : Modifiers) Mod->Act(); SM->ActN(5); // Throw in a few stores. } static void IntroduceControlFlow(Function *F, Random &R) { std::vector BoolInst; for (auto &Instr : F->front()) { if (Instr.getType() == IntegerType::getInt1Ty(F->getContext())) BoolInst.push_back(&Instr); } llvm::shuffle(BoolInst.begin(), BoolInst.end(), R); for (auto *Instr : BoolInst) { BasicBlock *Curr = Instr->getParent(); BasicBlock::iterator Loc = Instr->getIterator(); BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF"); Instr->moveBefore(Curr->getTerminator()); if (Curr != &F->getEntryBlock()) { BranchInst::Create(Curr, Next, Instr, Curr->getTerminator()); Curr->getTerminator()->eraseFromParent(); } } } } // end namespace llvm int main(int argc, char **argv) { using namespace llvm; InitLLVM X(argc, argv); cl::HideUnrelatedOptions({&StressCategory, &getColorCategory()}); cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n"); LLVMContext Context; auto M = std::make_unique("/tmp/autogen.bc", Context); Function *F = GenEmptyFunction(M.get()); // Pick an initial seed value Random R(SeedCL); // Generate lots of random instructions inside a single basic block. FillFunction(F, R); // Break the basic block into many loops. IntroduceControlFlow(F, R); // Figure out what stream we are supposed to write to... std::unique_ptr Out; // Default to standard output. if (OutputFilename.empty()) OutputFilename = "-"; std::error_code EC; Out.reset(new ToolOutputFile(OutputFilename, EC, sys::fs::OF_None)); if (EC) { errs() << EC.message() << '\n'; return 1; } // Check that the generated module is accepted by the verifier. if (verifyModule(*M.get(), &Out->os())) report_fatal_error("Broken module found, compilation aborted!"); // Output textual IR. M->print(Out->os(), nullptr); Out->keep(); return 0; }