//===-- ARMWinEHPrinter.cpp - Windows on ARM EH Data Printer ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Windows on ARM uses a series of serialised data structures (RuntimeFunction) // to create a table of information for unwinding. In order to conserve space, // there are two different ways that this data is represented. // // For functions with canonical forms for the prologue and epilogue, the data // can be stored in a "packed" form. In this case, the data is packed into the // RuntimeFunction's remaining 30-bits and can fully describe the entire frame. // // +---------------------------------------+ // | Function Entry Address | // +---------------------------------------+ // | Packed Form Data | // +---------------------------------------+ // // This layout is parsed by Decoder::dumpPackedEntry. No unwind bytecode is // associated with such a frame as they can be derived from the provided data. // The decoder does not synthesize this data as it is unnecessary for the // purposes of validation, with the synthesis being required only by a proper // unwinder. // // For functions that are large or do not match canonical forms, the data is // split up into two portions, with the actual data residing in the "exception // data" table (.xdata) with a reference to the entry from the "procedure data" // (.pdata) entry. // // The exception data contains information about the frame setup, all of the // epilogue scopes (for functions for which there are multiple exit points) and // the associated exception handler. Additionally, the entry contains byte-code // describing how to unwind the function (c.f. Decoder::decodeOpcodes). // // +---------------------------------------+ // | Function Entry Address | // +---------------------------------------+ // | Exception Data Entry Address | // +---------------------------------------+ // // This layout is parsed by Decoder::dumpUnpackedEntry. Such an entry must // first resolve the exception data entry address. This structure // (ExceptionDataRecord) has a variable sized header // (c.f. ARM::WinEH::HeaderWords) and encodes most of the same information as // the packed form. However, because this information is insufficient to // synthesize the unwinding, there are associated unwinding bytecode which make // up the bulk of the Decoder. // // The decoder itself is table-driven, using the first byte to determine the // opcode and dispatching to the associated printing routine. The bytecode // itself is a variable length instruction encoding that can fully describe the // state of the stack and the necessary operations for unwinding to the // beginning of the frame. // // The byte-code maintains a 1-1 instruction mapping, indicating both the width // of the instruction (Thumb2 instructions are variable length, 16 or 32 bits // wide) allowing the program to unwind from any point in the prologue, body, or // epilogue of the function. #include "ARMWinEHPrinter.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/ARMWinEH.h" #include "llvm/Support/Format.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support; namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const ARM::WinEH::ReturnType &RT) { switch (RT) { case ARM::WinEH::ReturnType::RT_POP: OS << "pop {pc}"; break; case ARM::WinEH::ReturnType::RT_B: OS << "bx "; break; case ARM::WinEH::ReturnType::RT_BW: OS << "b.w "; break; case ARM::WinEH::ReturnType::RT_NoEpilogue: OS << "(no epilogue)"; break; } return OS; } } static std::string formatSymbol(StringRef Name, uint64_t Address, uint64_t Offset = 0) { std::string Buffer; raw_string_ostream OS(Buffer); if (!Name.empty()) OS << Name << " "; if (Offset) OS << format("+0x%" PRIX64 " (0x%" PRIX64 ")", Offset, Address); else if (!Name.empty()) OS << format("(0x%" PRIX64 ")", Address); else OS << format("0x%" PRIX64, Address); return OS.str(); } namespace llvm { namespace ARM { namespace WinEH { const size_t Decoder::PDataEntrySize = sizeof(RuntimeFunction); // TODO name the uops more appropriately const Decoder::RingEntry Decoder::Ring[] = { { 0x80, 0x00, 1, &Decoder::opcode_0xxxxxxx }, // UOP_STACK_FREE (16-bit) { 0xc0, 0x80, 2, &Decoder::opcode_10Lxxxxx }, // UOP_POP (32-bit) { 0xf0, 0xc0, 1, &Decoder::opcode_1100xxxx }, // UOP_STACK_SAVE (16-bit) { 0xf8, 0xd0, 1, &Decoder::opcode_11010Lxx }, // UOP_POP (16-bit) { 0xf8, 0xd8, 1, &Decoder::opcode_11011Lxx }, // UOP_POP (32-bit) { 0xf8, 0xe0, 1, &Decoder::opcode_11100xxx }, // UOP_VPOP (32-bit) { 0xfc, 0xe8, 2, &Decoder::opcode_111010xx }, // UOP_STACK_FREE (32-bit) { 0xfe, 0xec, 2, &Decoder::opcode_1110110L }, // UOP_POP (16-bit) { 0xff, 0xee, 2, &Decoder::opcode_11101110 }, // UOP_MICROSOFT_SPECIFIC (16-bit) // UOP_PUSH_MACHINE_FRAME // UOP_PUSH_CONTEXT // UOP_PUSH_TRAP_FRAME // UOP_REDZONE_RESTORE_LR { 0xff, 0xef, 2, &Decoder::opcode_11101111 }, // UOP_LDRPC_POSTINC (32-bit) { 0xff, 0xf5, 2, &Decoder::opcode_11110101 }, // UOP_VPOP (32-bit) { 0xff, 0xf6, 2, &Decoder::opcode_11110110 }, // UOP_VPOP (32-bit) { 0xff, 0xf7, 3, &Decoder::opcode_11110111 }, // UOP_STACK_RESTORE (16-bit) { 0xff, 0xf8, 4, &Decoder::opcode_11111000 }, // UOP_STACK_RESTORE (16-bit) { 0xff, 0xf9, 3, &Decoder::opcode_11111001 }, // UOP_STACK_RESTORE (32-bit) { 0xff, 0xfa, 4, &Decoder::opcode_11111010 }, // UOP_STACK_RESTORE (32-bit) { 0xff, 0xfb, 1, &Decoder::opcode_11111011 }, // UOP_NOP (16-bit) { 0xff, 0xfc, 1, &Decoder::opcode_11111100 }, // UOP_NOP (32-bit) { 0xff, 0xfd, 1, &Decoder::opcode_11111101 }, // UOP_NOP (16-bit) / END { 0xff, 0xfe, 1, &Decoder::opcode_11111110 }, // UOP_NOP (32-bit) / END { 0xff, 0xff, 1, &Decoder::opcode_11111111 }, // UOP_END }; // Unwind opcodes for ARM64. // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling const Decoder::RingEntry Decoder::Ring64[] = { {0xe0, 0x00, 1, &Decoder::opcode_alloc_s}, {0xe0, 0x20, 1, &Decoder::opcode_save_r19r20_x}, {0xc0, 0x40, 1, &Decoder::opcode_save_fplr}, {0xc0, 0x80, 1, &Decoder::opcode_save_fplr_x}, {0xf8, 0xc0, 2, &Decoder::opcode_alloc_m}, {0xfc, 0xc8, 2, &Decoder::opcode_save_regp}, {0xfc, 0xcc, 2, &Decoder::opcode_save_regp_x}, {0xfc, 0xd0, 2, &Decoder::opcode_save_reg}, {0xfe, 0xd4, 2, &Decoder::opcode_save_reg_x}, {0xfe, 0xd6, 2, &Decoder::opcode_save_lrpair}, {0xfe, 0xd8, 2, &Decoder::opcode_save_fregp}, {0xfe, 0xda, 2, &Decoder::opcode_save_fregp_x}, {0xfe, 0xdc, 2, &Decoder::opcode_save_freg}, {0xff, 0xde, 2, &Decoder::opcode_save_freg_x}, {0xff, 0xe0, 4, &Decoder::opcode_alloc_l}, {0xff, 0xe1, 1, &Decoder::opcode_setfp}, {0xff, 0xe2, 2, &Decoder::opcode_addfp}, {0xff, 0xe3, 1, &Decoder::opcode_nop}, {0xff, 0xe4, 1, &Decoder::opcode_end}, {0xff, 0xe5, 1, &Decoder::opcode_end_c}, {0xff, 0xe6, 1, &Decoder::opcode_save_next}, {0xff, 0xe7, 3, &Decoder::opcode_save_any_reg}, {0xff, 0xe8, 1, &Decoder::opcode_trap_frame}, {0xff, 0xe9, 1, &Decoder::opcode_machine_frame}, {0xff, 0xea, 1, &Decoder::opcode_context}, {0xff, 0xeb, 1, &Decoder::opcode_ec_context}, {0xff, 0xec, 1, &Decoder::opcode_clear_unwound_to_call}, {0xff, 0xfc, 1, &Decoder::opcode_pac_sign_lr}, }; static void printRange(raw_ostream &OS, ListSeparator &LS, unsigned First, unsigned Last, char Letter) { if (First == Last) OS << LS << Letter << First; else OS << LS << Letter << First << "-" << Letter << Last; } static void printRange(raw_ostream &OS, uint32_t Mask, ListSeparator &LS, unsigned Start, unsigned End, char Letter) { int First = -1; for (unsigned RI = Start; RI <= End; ++RI) { if (Mask & (1 << RI)) { if (First < 0) First = RI; } else { if (First >= 0) { printRange(OS, LS, First, RI - 1, Letter); First = -1; } } } if (First >= 0) printRange(OS, LS, First, End, Letter); } void Decoder::printGPRMask(uint16_t GPRMask) { OS << '{'; ListSeparator LS; printRange(OS, GPRMask, LS, 0, 12, 'r'); if (GPRMask & (1 << 14)) OS << LS << "lr"; if (GPRMask & (1 << 15)) OS << LS << "pc"; OS << '}'; } void Decoder::printVFPMask(uint32_t VFPMask) { OS << '{'; ListSeparator LS; printRange(OS, VFPMask, LS, 0, 31, 'd'); OS << '}'; } ErrorOr Decoder::getSectionContaining(const COFFObjectFile &COFF, uint64_t VA) { for (const auto &Section : COFF.sections()) { uint64_t Address = Section.getAddress(); uint64_t Size = Section.getSize(); if (VA >= Address && (VA - Address) <= Size) return Section; } return inconvertibleErrorCode(); } ErrorOr Decoder::getSymbol(const COFFObjectFile &COFF, uint64_t VA, bool FunctionOnly) { for (const auto &Symbol : COFF.symbols()) { Expected Type = Symbol.getType(); if (!Type) return errorToErrorCode(Type.takeError()); if (FunctionOnly && *Type != SymbolRef::ST_Function) continue; Expected Address = Symbol.getAddress(); if (!Address) return errorToErrorCode(Address.takeError()); if (*Address == VA) return Symbol; } return inconvertibleErrorCode(); } ErrorOr Decoder::getRelocatedSymbol(const COFFObjectFile &, const SectionRef &Section, uint64_t Offset) { for (const auto &Relocation : Section.relocations()) { uint64_t RelocationOffset = Relocation.getOffset(); if (RelocationOffset == Offset) return *Relocation.getSymbol(); } return inconvertibleErrorCode(); } SymbolRef Decoder::getPreferredSymbol(const COFFObjectFile &COFF, SymbolRef Sym, uint64_t &SymbolOffset) { // The symbol resolved by getRelocatedSymbol can be any internal // nondescriptive symbol; try to resolve a more descriptive one. COFFSymbolRef CoffSym = COFF.getCOFFSymbol(Sym); if (CoffSym.getStorageClass() != COFF::IMAGE_SYM_CLASS_LABEL && CoffSym.getSectionDefinition() == nullptr) return Sym; for (const auto &S : COFF.symbols()) { COFFSymbolRef CS = COFF.getCOFFSymbol(S); if (CS.getSectionNumber() == CoffSym.getSectionNumber() && CS.getValue() <= CoffSym.getValue() + SymbolOffset && CS.getStorageClass() != COFF::IMAGE_SYM_CLASS_LABEL && CS.getSectionDefinition() == nullptr) { uint32_t Offset = CoffSym.getValue() + SymbolOffset - CS.getValue(); if (Offset <= SymbolOffset) { SymbolOffset = Offset; Sym = S; CoffSym = CS; if (CS.isExternal() && SymbolOffset == 0) return Sym; } } } return Sym; } ErrorOr Decoder::getSymbolForLocation( const COFFObjectFile &COFF, const SectionRef &Section, uint64_t OffsetInSection, uint64_t ImmediateOffset, uint64_t &SymbolAddress, uint64_t &SymbolOffset, bool FunctionOnly) { // Try to locate a relocation that points at the offset in the section ErrorOr SymOrErr = getRelocatedSymbol(COFF, Section, OffsetInSection); if (SymOrErr) { // We found a relocation symbol; the immediate offset needs to be added // to the symbol address. SymbolOffset = ImmediateOffset; Expected AddressOrErr = SymOrErr->getAddress(); if (!AddressOrErr) { std::string Buf; llvm::raw_string_ostream OS(Buf); logAllUnhandledErrors(AddressOrErr.takeError(), OS); report_fatal_error(Twine(OS.str())); } // We apply SymbolOffset here directly. We return it separately to allow // the caller to print it as an offset on the symbol name. SymbolAddress = *AddressOrErr + SymbolOffset; if (FunctionOnly) // Resolve label/section symbols into function names. SymOrErr = getPreferredSymbol(COFF, *SymOrErr, SymbolOffset); } else { // No matching relocation found; operating on a linked image. Try to // find a descriptive symbol if possible. The immediate offset contains // the image relative address, and we shouldn't add any offset to the // symbol. SymbolAddress = COFF.getImageBase() + ImmediateOffset; SymbolOffset = 0; SymOrErr = getSymbol(COFF, SymbolAddress, FunctionOnly); } return SymOrErr; } bool Decoder::opcode_0xxxxxxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint8_t Imm = OC[Offset] & 0x7f; SW.startLine() << format("0x%02x ; %s sp, #(%u * 4)\n", OC[Offset], static_cast(Prologue ? "sub" : "add"), Imm); ++Offset; return false; } bool Decoder::opcode_10Lxxxxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Link = (OC[Offset] & 0x20) >> 5; uint16_t RegisterMask = (Link << (Prologue ? 14 : 15)) | ((OC[Offset + 0] & 0x1f) << 8) | ((OC[Offset + 1] & 0xff) << 0); assert((~RegisterMask & (1 << 13)) && "sp must not be set"); assert((~RegisterMask & (1 << (Prologue ? 15 : 14))) && "pc must not be set"); SW.startLine() << format("0x%02x 0x%02x ; %s.w ", OC[Offset + 0], OC[Offset + 1], Prologue ? "push" : "pop"); printGPRMask(RegisterMask); OS << '\n'; Offset += 2; return false; } bool Decoder::opcode_1100xxxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { if (Prologue) SW.startLine() << format("0x%02x ; mov r%u, sp\n", OC[Offset], OC[Offset] & 0xf); else SW.startLine() << format("0x%02x ; mov sp, r%u\n", OC[Offset], OC[Offset] & 0xf); ++Offset; return false; } bool Decoder::opcode_11010Lxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Link = (OC[Offset] & 0x4) >> 2; unsigned Count = (OC[Offset] & 0x3); uint16_t GPRMask = (Link << (Prologue ? 14 : 15)) | (((1 << (Count + 1)) - 1) << 4); SW.startLine() << format("0x%02x ; %s ", OC[Offset], Prologue ? "push" : "pop"); printGPRMask(GPRMask); OS << '\n'; ++Offset; return false; } bool Decoder::opcode_11011Lxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Link = (OC[Offset] & 0x4) >> 2; unsigned Count = (OC[Offset] & 0x3) + 4; uint16_t GPRMask = (Link << (Prologue ? 14 : 15)) | (((1 << (Count + 1)) - 1) << 4); SW.startLine() << format("0x%02x ; %s.w ", OC[Offset], Prologue ? "push" : "pop"); printGPRMask(GPRMask); OS << '\n'; ++Offset; return false; } bool Decoder::opcode_11100xxx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned High = (OC[Offset] & 0x7); uint32_t VFPMask = (((1 << (High + 1)) - 1) << 8); SW.startLine() << format("0x%02x ; %s ", OC[Offset], Prologue ? "vpush" : "vpop"); printVFPMask(VFPMask); OS << '\n'; ++Offset; return false; } bool Decoder::opcode_111010xx(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint16_t Imm = ((OC[Offset + 0] & 0x03) << 8) | ((OC[Offset + 1] & 0xff) << 0); SW.startLine() << format("0x%02x 0x%02x ; %s.w sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], static_cast(Prologue ? "sub" : "add"), Imm); Offset += 2; return false; } bool Decoder::opcode_1110110L(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint16_t GPRMask = ((OC[Offset + 0] & 0x01) << (Prologue ? 14 : 15)) | ((OC[Offset + 1] & 0xff) << 0); SW.startLine() << format("0x%02x 0x%02x ; %s ", OC[Offset + 0], OC[Offset + 1], Prologue ? "push" : "pop"); printGPRMask(GPRMask); OS << '\n'; Offset += 2; return false; } bool Decoder::opcode_11101110(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { assert(!Prologue && "may not be used in prologue"); if (OC[Offset + 1] & 0xf0) SW.startLine() << format("0x%02x 0x%02x ; reserved\n", OC[Offset + 0], OC[Offset + 1]); else SW.startLine() << format("0x%02x 0x%02x ; microsoft-specific (type: %u)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 1] & 0x0f); Offset += 2; return false; } bool Decoder::opcode_11101111(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { if (OC[Offset + 1] & 0xf0) SW.startLine() << format("0x%02x 0x%02x ; reserved\n", OC[Offset + 0], OC[Offset + 1]); else if (Prologue) SW.startLine() << format("0x%02x 0x%02x ; str.w lr, [sp, #-%u]!\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 1] << 2); else SW.startLine() << format("0x%02x 0x%02x ; ldr.w lr, [sp], #%u\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 1] << 2); Offset += 2; return false; } bool Decoder::opcode_11110101(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Start = (OC[Offset + 1] & 0xf0) >> 4; unsigned End = (OC[Offset + 1] & 0x0f) >> 0; uint32_t VFPMask = ((1 << (End + 1 - Start)) - 1) << Start; SW.startLine() << format("0x%02x 0x%02x ; %s ", OC[Offset + 0], OC[Offset + 1], Prologue ? "vpush" : "vpop"); printVFPMask(VFPMask); OS << '\n'; Offset += 2; return false; } bool Decoder::opcode_11110110(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Start = (OC[Offset + 1] & 0xf0) >> 4; unsigned End = (OC[Offset + 1] & 0x0f) >> 0; uint32_t VFPMask = ((1 << (End + 1 - Start)) - 1) << (16 + Start); SW.startLine() << format("0x%02x 0x%02x ; %s ", OC[Offset + 0], OC[Offset + 1], Prologue ? "vpush" : "vpop"); printVFPMask(VFPMask); OS << '\n'; Offset += 2; return false; } bool Decoder::opcode_11110111(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Imm = (OC[Offset + 1] << 8) | (OC[Offset + 2] << 0); SW.startLine() << format("0x%02x 0x%02x 0x%02x ; %s sp, sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], static_cast(Prologue ? "sub" : "add"), Imm); Offset += 3; return false; } bool Decoder::opcode_11111000(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Imm = (OC[Offset + 1] << 16) | (OC[Offset + 2] << 8) | (OC[Offset + 3] << 0); SW.startLine() << format("0x%02x 0x%02x 0x%02x 0x%02x ; %s sp, sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], OC[Offset + 3], static_cast(Prologue ? "sub" : "add"), Imm); Offset += 4; return false; } bool Decoder::opcode_11111001(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Imm = (OC[Offset + 1] << 8) | (OC[Offset + 2] << 0); SW.startLine() << format("0x%02x 0x%02x 0x%02x ; %s.w sp, sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], static_cast(Prologue ? "sub" : "add"), Imm); Offset += 3; return false; } bool Decoder::opcode_11111010(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Imm = (OC[Offset + 1] << 16) | (OC[Offset + 2] << 8) | (OC[Offset + 3] << 0); SW.startLine() << format("0x%02x 0x%02x 0x%02x 0x%02x ; %s.w sp, sp, #(%u * 4)\n", OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], OC[Offset + 3], static_cast(Prologue ? "sub" : "add"), Imm); Offset += 4; return false; } bool Decoder::opcode_11111011(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; nop\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_11111100(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; nop.w\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_11111101(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; bx \n", OC[Offset]); ++Offset; return true; } bool Decoder::opcode_11111110(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; b.w \n", OC[Offset]); ++Offset; return true; } bool Decoder::opcode_11111111(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { ++Offset; return true; } // ARM64 unwind codes start here. bool Decoder::opcode_alloc_s(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t NumBytes = (OC[Offset] & 0x1F) << 4; SW.startLine() << format("0x%02x ; %s sp, #%u\n", OC[Offset], static_cast(Prologue ? "sub" : "add"), NumBytes); ++Offset; return false; } bool Decoder::opcode_save_r19r20_x(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Off = (OC[Offset] & 0x1F) << 3; if (Prologue) SW.startLine() << format( "0x%02x ; stp x19, x20, [sp, #-%u]!\n", OC[Offset], Off); else SW.startLine() << format( "0x%02x ; ldp x19, x20, [sp], #%u\n", OC[Offset], Off); ++Offset; return false; } bool Decoder::opcode_save_fplr(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Off = (OC[Offset] & 0x3F) << 3; SW.startLine() << format( "0x%02x ; %s x29, x30, [sp, #%u]\n", OC[Offset], static_cast(Prologue ? "stp" : "ldp"), Off); ++Offset; return false; } bool Decoder::opcode_save_fplr_x(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Off = ((OC[Offset] & 0x3F) + 1) << 3; if (Prologue) SW.startLine() << format( "0x%02x ; stp x29, x30, [sp, #-%u]!\n", OC[Offset], Off); else SW.startLine() << format( "0x%02x ; ldp x29, x30, [sp], #%u\n", OC[Offset], Off); ++Offset; return false; } bool Decoder::opcode_alloc_m(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t NumBytes = ((OC[Offset] & 0x07) << 8); NumBytes |= (OC[Offset + 1] & 0xFF); NumBytes <<= 4; SW.startLine() << format("0x%02x%02x ; %s sp, #%u\n", OC[Offset], OC[Offset + 1], static_cast(Prologue ? "sub" : "add"), NumBytes); Offset += 2; return false; } bool Decoder::opcode_save_regp(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Reg = ((OC[Offset] & 0x03) << 8); Reg |= (OC[Offset + 1] & 0xC0); Reg >>= 6; Reg += 19; uint32_t Off = (OC[Offset + 1] & 0x3F) << 3; SW.startLine() << format( "0x%02x%02x ; %s x%u, x%u, [sp, #%u]\n", OC[Offset], OC[Offset + 1], static_cast(Prologue ? "stp" : "ldp"), Reg, Reg + 1, Off); Offset += 2; return false; } bool Decoder::opcode_save_regp_x(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Reg = ((OC[Offset] & 0x03) << 8); Reg |= (OC[Offset + 1] & 0xC0); Reg >>= 6; Reg += 19; uint32_t Off = ((OC[Offset + 1] & 0x3F) + 1) << 3; if (Prologue) SW.startLine() << format( "0x%02x%02x ; stp x%u, x%u, [sp, #-%u]!\n", OC[Offset], OC[Offset + 1], Reg, Reg + 1, Off); else SW.startLine() << format( "0x%02x%02x ; ldp x%u, x%u, [sp], #%u\n", OC[Offset], OC[Offset + 1], Reg, Reg + 1, Off); Offset += 2; return false; } bool Decoder::opcode_save_reg(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Reg = (OC[Offset] & 0x03) << 8; Reg |= (OC[Offset + 1] & 0xC0); Reg >>= 6; Reg += 19; uint32_t Off = (OC[Offset + 1] & 0x3F) << 3; SW.startLine() << format("0x%02x%02x ; %s x%u, [sp, #%u]\n", OC[Offset], OC[Offset + 1], static_cast(Prologue ? "str" : "ldr"), Reg, Off); Offset += 2; return false; } bool Decoder::opcode_save_reg_x(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Reg = (OC[Offset] & 0x01) << 8; Reg |= (OC[Offset + 1] & 0xE0); Reg >>= 5; Reg += 19; uint32_t Off = ((OC[Offset + 1] & 0x1F) + 1) << 3; if (Prologue) SW.startLine() << format("0x%02x%02x ; str x%u, [sp, #-%u]!\n", OC[Offset], OC[Offset + 1], Reg, Off); else SW.startLine() << format("0x%02x%02x ; ldr x%u, [sp], #%u\n", OC[Offset], OC[Offset + 1], Reg, Off); Offset += 2; return false; } bool Decoder::opcode_save_lrpair(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Reg = (OC[Offset] & 0x01) << 8; Reg |= (OC[Offset + 1] & 0xC0); Reg >>= 6; Reg *= 2; Reg += 19; uint32_t Off = (OC[Offset + 1] & 0x3F) << 3; SW.startLine() << format("0x%02x%02x ; %s x%u, lr, [sp, #%u]\n", OC[Offset], OC[Offset + 1], static_cast(Prologue ? "stp" : "ldp"), Reg, Off); Offset += 2; return false; } bool Decoder::opcode_save_fregp(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Reg = (OC[Offset] & 0x01) << 8; Reg |= (OC[Offset + 1] & 0xC0); Reg >>= 6; Reg += 8; uint32_t Off = (OC[Offset + 1] & 0x3F) << 3; SW.startLine() << format("0x%02x%02x ; %s d%u, d%u, [sp, #%u]\n", OC[Offset], OC[Offset + 1], static_cast(Prologue ? "stp" : "ldp"), Reg, Reg + 1, Off); Offset += 2; return false; } bool Decoder::opcode_save_fregp_x(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Reg = (OC[Offset] & 0x01) << 8; Reg |= (OC[Offset + 1] & 0xC0); Reg >>= 6; Reg += 8; uint32_t Off = ((OC[Offset + 1] & 0x3F) + 1) << 3; if (Prologue) SW.startLine() << format( "0x%02x%02x ; stp d%u, d%u, [sp, #-%u]!\n", OC[Offset], OC[Offset + 1], Reg, Reg + 1, Off); else SW.startLine() << format( "0x%02x%02x ; ldp d%u, d%u, [sp], #%u\n", OC[Offset], OC[Offset + 1], Reg, Reg + 1, Off); Offset += 2; return false; } bool Decoder::opcode_save_freg(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Reg = (OC[Offset] & 0x01) << 8; Reg |= (OC[Offset + 1] & 0xC0); Reg >>= 6; Reg += 8; uint32_t Off = (OC[Offset + 1] & 0x3F) << 3; SW.startLine() << format("0x%02x%02x ; %s d%u, [sp, #%u]\n", OC[Offset], OC[Offset + 1], static_cast(Prologue ? "str" : "ldr"), Reg, Off); Offset += 2; return false; } bool Decoder::opcode_save_freg_x(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { uint32_t Reg = ((OC[Offset + 1] & 0xE0) >> 5) + 8; uint32_t Off = ((OC[Offset + 1] & 0x1F) + 1) << 3; if (Prologue) SW.startLine() << format( "0x%02x%02x ; str d%u, [sp, #-%u]!\n", OC[Offset], OC[Offset + 1], Reg, Off); else SW.startLine() << format( "0x%02x%02x ; ldr d%u, [sp], #%u\n", OC[Offset], OC[Offset + 1], Reg, Off); Offset += 2; return false; } bool Decoder::opcode_alloc_l(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned Off = (OC[Offset + 1] << 16) | (OC[Offset + 2] << 8) | (OC[Offset + 3] << 0); Off <<= 4; SW.startLine() << format( "0x%02x%02x%02x%02x ; %s sp, #%u\n", OC[Offset], OC[Offset + 1], OC[Offset + 2], OC[Offset + 3], static_cast(Prologue ? "sub" : "add"), Off); Offset += 4; return false; } bool Decoder::opcode_setfp(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; mov %s, %s\n", OC[Offset], static_cast(Prologue ? "fp" : "sp"), static_cast(Prologue ? "sp" : "fp")); ++Offset; return false; } bool Decoder::opcode_addfp(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { unsigned NumBytes = OC[Offset + 1] << 3; SW.startLine() << format( "0x%02x%02x ; %s %s, %s, #%u\n", OC[Offset], OC[Offset + 1], static_cast(Prologue ? "add" : "sub"), static_cast(Prologue ? "fp" : "sp"), static_cast(Prologue ? "sp" : "fp"), NumBytes); Offset += 2; return false; } bool Decoder::opcode_nop(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; nop\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_end(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; end\n", OC[Offset]); ++Offset; return true; } bool Decoder::opcode_end_c(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; end_c\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_save_next(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { if (Prologue) SW.startLine() << format("0x%02x ; save next\n", OC[Offset]); else SW.startLine() << format("0x%02x ; restore next\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_save_any_reg(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { // Whether the instruction has writeback bool Writeback = (OC[Offset + 1] & 0x20) == 0x20; // Whether the instruction is paired. (Paired instructions are required // to save/restore adjacent registers.) bool Paired = (OC[Offset + 1] & 0x40) == 0x40; // The kind of register saved: // - 0 is an x register // - 1 is the low half of a q register // - 2 is a whole q register int RegKind = (OC[Offset + 2] & 0xC0) >> 6; // Encoded register name (0 -> x0/q0, 1 -> x1/q1, etc.) int Reg = OC[Offset + 1] & 0x1F; // Encoded stack offset of load/store instruction; decoding varies by mode. int StackOffset = OC[Offset + 2] & 0x3F; if (Writeback) StackOffset++; if (!Writeback && !Paired && RegKind != 2) StackOffset *= 8; else StackOffset *= 16; SW.startLine() << format("0x%02x%02x%02x ; ", OC[Offset], OC[Offset + 1], OC[Offset + 2]); // Verify the encoding is in a form we understand. The high bit of the first // byte, and mode 3 for the register kind are apparently reserved. The // encoded register must refer to a valid register. int MaxReg = 0x1F; if (Paired) --MaxReg; if (RegKind == 0) --MaxReg; if ((OC[Offset + 1] & 0x80) == 0x80 || RegKind == 3 || Reg > MaxReg) { SW.getOStream() << "invalid save_any_reg encoding\n"; Offset += 3; return false; } if (Paired) { if (Prologue) SW.getOStream() << "stp "; else SW.getOStream() << "ldp "; } else { if (Prologue) SW.getOStream() << "str "; else SW.getOStream() << "ldr "; } char RegChar = 'x'; if (RegKind == 1) { RegChar = 'd'; } else if (RegKind == 2) { RegChar = 'q'; } if (Paired) SW.getOStream() << format("%c%d, %c%d, ", RegChar, Reg, RegChar, Reg + 1); else SW.getOStream() << format("%c%d, ", RegChar, Reg); if (Writeback) { if (Prologue) SW.getOStream() << format("[sp, #-%d]!\n", StackOffset); else SW.getOStream() << format("[sp], #%d\n", StackOffset); } else { SW.getOStream() << format("[sp, #%d]\n", StackOffset); } Offset += 3; return false; } bool Decoder::opcode_trap_frame(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; trap frame\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_machine_frame(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; machine frame\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_context(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; context\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_ec_context(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; EC context\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_clear_unwound_to_call(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { SW.startLine() << format("0x%02x ; clear unwound to call\n", OC[Offset]); ++Offset; return false; } bool Decoder::opcode_pac_sign_lr(const uint8_t *OC, unsigned &Offset, unsigned Length, bool Prologue) { if (Prologue) SW.startLine() << format("0x%02x ; pacibsp\n", OC[Offset]); else SW.startLine() << format("0x%02x ; autibsp\n", OC[Offset]); ++Offset; return false; } void Decoder::decodeOpcodes(ArrayRef Opcodes, unsigned Offset, bool Prologue) { assert((!Prologue || Offset == 0) && "prologue should always use offset 0"); const RingEntry* DecodeRing = isAArch64 ? Ring64 : Ring; bool Terminated = false; for (unsigned OI = Offset, OE = Opcodes.size(); !Terminated && OI < OE; ) { for (unsigned DI = 0;; ++DI) { if ((isAArch64 && (DI >= std::size(Ring64))) || (!isAArch64 && (DI >= std::size(Ring)))) { SW.startLine() << format("0x%02x ; Bad opcode!\n", Opcodes.data()[OI]); ++OI; break; } if ((Opcodes[OI] & DecodeRing[DI].Mask) == DecodeRing[DI].Value) { if (OI + DecodeRing[DI].Length > OE) { SW.startLine() << format("Opcode 0x%02x goes past the unwind data\n", Opcodes[OI]); OI += DecodeRing[DI].Length; break; } Terminated = (this->*DecodeRing[DI].Routine)(Opcodes.data(), OI, 0, Prologue); break; } } } } bool Decoder::dumpXDataRecord(const COFFObjectFile &COFF, const SectionRef &Section, uint64_t FunctionAddress, uint64_t VA) { ArrayRef Contents; if (COFF.getSectionContents(COFF.getCOFFSection(Section), Contents)) return false; uint64_t SectionVA = Section.getAddress(); uint64_t Offset = VA - SectionVA; const ulittle32_t *Data = reinterpret_cast(Contents.data() + Offset); // Sanity check to ensure that the .xdata header is present. // A header is one or two words, followed by at least one word to describe // the unwind codes. Applicable to both ARM and AArch64. if (Contents.size() - Offset < 8) report_fatal_error(".xdata must be at least 8 bytes in size"); const ExceptionDataRecord XData(Data, isAArch64); DictScope XRS(SW, "ExceptionData"); SW.printNumber("FunctionLength", isAArch64 ? XData.FunctionLengthInBytesAArch64() : XData.FunctionLengthInBytesARM()); SW.printNumber("Version", XData.Vers()); SW.printBoolean("ExceptionData", XData.X()); SW.printBoolean("EpiloguePacked", XData.E()); if (!isAArch64) SW.printBoolean("Fragment", XData.F()); SW.printNumber(XData.E() ? "EpilogueOffset" : "EpilogueScopes", XData.EpilogueCount()); uint64_t ByteCodeLength = XData.CodeWords() * sizeof(uint32_t); SW.printNumber("ByteCodeLength", ByteCodeLength); if ((int64_t)(Contents.size() - Offset - 4 * HeaderWords(XData) - (XData.E() ? 0 : XData.EpilogueCount() * 4) - (XData.X() ? 8 : 0)) < (int64_t)ByteCodeLength) { SW.flush(); report_fatal_error("Malformed unwind data"); } if (XData.E()) { ArrayRef UC = XData.UnwindByteCode(); { ListScope PS(SW, "Prologue"); decodeOpcodes(UC, 0, /*Prologue=*/true); } if (XData.EpilogueCount()) { ListScope ES(SW, "Epilogue"); decodeOpcodes(UC, XData.EpilogueCount(), /*Prologue=*/false); } } else { { ListScope PS(SW, "Prologue"); decodeOpcodes(XData.UnwindByteCode(), 0, /*Prologue=*/true); } ArrayRef EpilogueScopes = XData.EpilogueScopes(); ListScope ESS(SW, "EpilogueScopes"); for (const EpilogueScope ES : EpilogueScopes) { DictScope ESES(SW, "EpilogueScope"); SW.printNumber("StartOffset", ES.EpilogueStartOffset()); if (!isAArch64) SW.printNumber("Condition", ES.Condition()); SW.printNumber("EpilogueStartIndex", isAArch64 ? ES.EpilogueStartIndexAArch64() : ES.EpilogueStartIndexARM()); unsigned ReservedMask = isAArch64 ? 0xF : 0x3; if ((ES.ES >> 18) & ReservedMask) SW.printNumber("ReservedBits", (ES.ES >> 18) & ReservedMask); ListScope Opcodes(SW, "Opcodes"); decodeOpcodes(XData.UnwindByteCode(), isAArch64 ? ES.EpilogueStartIndexAArch64() : ES.EpilogueStartIndexARM(), /*Prologue=*/false); } } if (XData.X()) { const uint32_t Parameter = XData.ExceptionHandlerParameter(); const size_t HandlerOffset = HeaderWords(XData) + (XData.E() ? 0 : XData.EpilogueCount()) + XData.CodeWords(); uint64_t Address, SymbolOffset; ErrorOr Symbol = getSymbolForLocation( COFF, Section, Offset + HandlerOffset * sizeof(uint32_t), XData.ExceptionHandlerRVA(), Address, SymbolOffset, /*FunctionOnly=*/true); if (!Symbol) { ListScope EHS(SW, "ExceptionHandler"); SW.printHex("Routine", Address); SW.printHex("Parameter", Parameter); return true; } Expected Name = Symbol->getName(); if (!Name) { std::string Buf; llvm::raw_string_ostream OS(Buf); logAllUnhandledErrors(Name.takeError(), OS); report_fatal_error(Twine(OS.str())); } ListScope EHS(SW, "ExceptionHandler"); SW.printString("Routine", formatSymbol(*Name, Address, SymbolOffset)); SW.printHex("Parameter", Parameter); } return true; } bool Decoder::dumpUnpackedEntry(const COFFObjectFile &COFF, const SectionRef Section, uint64_t Offset, unsigned Index, const RuntimeFunction &RF) { assert(RF.Flag() == RuntimeFunctionFlag::RFF_Unpacked && "packed entry cannot be treated as an unpacked entry"); uint64_t FunctionAddress, FunctionOffset; ErrorOr Function = getSymbolForLocation( COFF, Section, Offset, RF.BeginAddress, FunctionAddress, FunctionOffset, /*FunctionOnly=*/true); uint64_t XDataAddress, XDataOffset; ErrorOr XDataRecord = getSymbolForLocation( COFF, Section, Offset + 4, RF.ExceptionInformationRVA(), XDataAddress, XDataOffset); if (!RF.BeginAddress && !Function) return false; if (!RF.UnwindData && !XDataRecord) return false; StringRef FunctionName; if (Function) { Expected FunctionNameOrErr = Function->getName(); if (!FunctionNameOrErr) { std::string Buf; llvm::raw_string_ostream OS(Buf); logAllUnhandledErrors(FunctionNameOrErr.takeError(), OS); report_fatal_error(Twine(OS.str())); } FunctionName = *FunctionNameOrErr; } SW.printString("Function", formatSymbol(FunctionName, FunctionAddress, FunctionOffset)); if (XDataRecord) { Expected Name = XDataRecord->getName(); if (!Name) { std::string Buf; llvm::raw_string_ostream OS(Buf); logAllUnhandledErrors(Name.takeError(), OS); report_fatal_error(Twine(OS.str())); } SW.printString("ExceptionRecord", formatSymbol(*Name, XDataAddress, XDataOffset)); Expected SIOrErr = XDataRecord->getSection(); if (!SIOrErr) { // TODO: Actually report errors helpfully. consumeError(SIOrErr.takeError()); return false; } section_iterator SI = *SIOrErr; return dumpXDataRecord(COFF, *SI, FunctionAddress, XDataAddress); } else { SW.printString("ExceptionRecord", formatSymbol("", XDataAddress)); ErrorOr Section = getSectionContaining(COFF, XDataAddress); if (!Section) return false; return dumpXDataRecord(COFF, *Section, FunctionAddress, XDataAddress); } } bool Decoder::dumpPackedEntry(const object::COFFObjectFile &COFF, const SectionRef Section, uint64_t Offset, unsigned Index, const RuntimeFunction &RF) { assert((RF.Flag() == RuntimeFunctionFlag::RFF_Packed || RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment) && "unpacked entry cannot be treated as a packed entry"); uint64_t FunctionAddress, FunctionOffset; ErrorOr Function = getSymbolForLocation( COFF, Section, Offset, RF.BeginAddress, FunctionAddress, FunctionOffset, /*FunctionOnly=*/true); StringRef FunctionName; if (Function) { Expected FunctionNameOrErr = Function->getName(); if (!FunctionNameOrErr) { std::string Buf; llvm::raw_string_ostream OS(Buf); logAllUnhandledErrors(FunctionNameOrErr.takeError(), OS); report_fatal_error(Twine(OS.str())); } FunctionName = *FunctionNameOrErr; } SW.printString("Function", formatSymbol(FunctionName, FunctionAddress, FunctionOffset)); SW.printBoolean("Fragment", RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment); SW.printNumber("FunctionLength", RF.FunctionLength()); SW.startLine() << "ReturnType: " << RF.Ret() << '\n'; SW.printBoolean("HomedParameters", RF.H()); SW.printNumber("Reg", RF.Reg()); SW.printNumber("R", RF.R()); SW.printBoolean("LinkRegister", RF.L()); SW.printBoolean("Chaining", RF.C()); SW.printNumber("StackAdjustment", StackAdjustment(RF) << 2); { ListScope PS(SW, "Prologue"); uint16_t GPRMask, VFPMask; std::tie(GPRMask, VFPMask) = SavedRegisterMask(RF, /*Prologue=*/true); if (StackAdjustment(RF) && !PrologueFolding(RF)) SW.startLine() << "sub sp, sp, #" << StackAdjustment(RF) * 4 << "\n"; if (VFPMask) { SW.startLine() << "vpush "; printVFPMask(VFPMask); OS << "\n"; } if (RF.C()) { // Count the number of registers pushed below R11 int FpOffset = 4 * llvm::popcount(GPRMask & ((1U << 11) - 1)); if (FpOffset) SW.startLine() << "add.w r11, sp, #" << FpOffset << "\n"; else SW.startLine() << "mov r11, sp\n"; } if (GPRMask) { SW.startLine() << "push "; printGPRMask(GPRMask); OS << "\n"; } if (RF.H()) SW.startLine() << "push {r0-r3}\n"; } if (RF.Ret() != ReturnType::RT_NoEpilogue) { ListScope PS(SW, "Epilogue"); uint16_t GPRMask, VFPMask; std::tie(GPRMask, VFPMask) = SavedRegisterMask(RF, /*Prologue=*/false); if (StackAdjustment(RF) && !EpilogueFolding(RF)) SW.startLine() << "add sp, sp, #" << StackAdjustment(RF) * 4 << "\n"; if (VFPMask) { SW.startLine() << "vpop "; printVFPMask(VFPMask); OS << "\n"; } if (GPRMask) { SW.startLine() << "pop "; printGPRMask(GPRMask); OS << "\n"; } if (RF.H()) { if (RF.L() == 0 || RF.Ret() != ReturnType::RT_POP) SW.startLine() << "add sp, sp, #16\n"; else SW.startLine() << "ldr pc, [sp], #20\n"; } if (RF.Ret() != ReturnType::RT_POP) SW.startLine() << RF.Ret() << '\n'; } return true; } bool Decoder::dumpPackedARM64Entry(const object::COFFObjectFile &COFF, const SectionRef Section, uint64_t Offset, unsigned Index, const RuntimeFunctionARM64 &RF) { assert((RF.Flag() == RuntimeFunctionFlag::RFF_Packed || RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment) && "unpacked entry cannot be treated as a packed entry"); uint64_t FunctionAddress, FunctionOffset; ErrorOr Function = getSymbolForLocation( COFF, Section, Offset, RF.BeginAddress, FunctionAddress, FunctionOffset, /*FunctionOnly=*/true); StringRef FunctionName; if (Function) { Expected FunctionNameOrErr = Function->getName(); if (!FunctionNameOrErr) { std::string Buf; llvm::raw_string_ostream OS(Buf); logAllUnhandledErrors(FunctionNameOrErr.takeError(), OS); report_fatal_error(Twine(OS.str())); } FunctionName = *FunctionNameOrErr; } SW.printString("Function", formatSymbol(FunctionName, FunctionAddress, FunctionOffset)); SW.printBoolean("Fragment", RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment); SW.printNumber("FunctionLength", RF.FunctionLength()); SW.printNumber("RegF", RF.RegF()); SW.printNumber("RegI", RF.RegI()); SW.printBoolean("HomedParameters", RF.H()); SW.printNumber("CR", RF.CR()); SW.printNumber("FrameSize", RF.FrameSize() << 4); ListScope PS(SW, "Prologue"); // Synthesize the equivalent prologue according to the documentation // at https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling, // printed in reverse order compared to the docs, to match how prologues // are printed for the non-packed case. int IntSZ = 8 * RF.RegI(); if (RF.CR() == 1) IntSZ += 8; int FpSZ = 8 * RF.RegF(); if (RF.RegF()) FpSZ += 8; int SavSZ = (IntSZ + FpSZ + 8 * 8 * RF.H() + 0xf) & ~0xf; int LocSZ = (RF.FrameSize() << 4) - SavSZ; if (RF.CR() == 2 || RF.CR() == 3) { SW.startLine() << "mov x29, sp\n"; if (LocSZ <= 512) { SW.startLine() << format("stp x29, lr, [sp, #-%d]!\n", LocSZ); } else { SW.startLine() << "stp x29, lr, [sp, #0]\n"; } } if (LocSZ > 4080) { SW.startLine() << format("sub sp, sp, #%d\n", LocSZ - 4080); SW.startLine() << "sub sp, sp, #4080\n"; } else if ((RF.CR() != 3 && RF.CR() != 2 && LocSZ > 0) || LocSZ > 512) { SW.startLine() << format("sub sp, sp, #%d\n", LocSZ); } if (RF.H()) { SW.startLine() << format("stp x6, x7, [sp, #%d]\n", SavSZ - 16); SW.startLine() << format("stp x4, x5, [sp, #%d]\n", SavSZ - 32); SW.startLine() << format("stp x2, x3, [sp, #%d]\n", SavSZ - 48); if (RF.RegI() > 0 || RF.RegF() > 0 || RF.CR() == 1) { SW.startLine() << format("stp x0, x1, [sp, #%d]\n", SavSZ - 64); } else { // This case isn't documented; if neither RegI nor RegF nor CR=1 // have decremented the stack pointer by SavSZ, we need to do it here // (as the final stack adjustment of LocSZ excludes SavSZ). SW.startLine() << format("stp x0, x1, [sp, #-%d]!\n", SavSZ); } } int FloatRegs = RF.RegF() > 0 ? RF.RegF() + 1 : 0; for (int I = (FloatRegs + 1) / 2 - 1; I >= 0; I--) { if (I == (FloatRegs + 1) / 2 - 1 && FloatRegs % 2 == 1) { // The last register, an odd register without a pair SW.startLine() << format("str d%d, [sp, #%d]\n", 8 + 2 * I, IntSZ + 16 * I); } else if (I == 0 && RF.RegI() == 0 && RF.CR() != 1) { SW.startLine() << format("stp d%d, d%d, [sp, #-%d]!\n", 8 + 2 * I, 8 + 2 * I + 1, SavSZ); } else { SW.startLine() << format("stp d%d, d%d, [sp, #%d]\n", 8 + 2 * I, 8 + 2 * I + 1, IntSZ + 16 * I); } } if (RF.CR() == 1 && (RF.RegI() % 2) == 0) { if (RF.RegI() == 0) SW.startLine() << format("str lr, [sp, #-%d]!\n", SavSZ); else SW.startLine() << format("str lr, [sp, #%d]\n", IntSZ - 8); } for (int I = (RF.RegI() + 1) / 2 - 1; I >= 0; I--) { if (I == (RF.RegI() + 1) / 2 - 1 && RF.RegI() % 2 == 1) { // The last register, an odd register without a pair if (RF.CR() == 1) { if (I == 0) { // If this is the only register pair // CR=1 combined with RegI=1 doesn't map to a documented case; // it doesn't map to any regular unwind info opcode, and the // actual unwinder doesn't support it. SW.startLine() << "INVALID!\n"; } else SW.startLine() << format("stp x%d, lr, [sp, #%d]\n", 19 + 2 * I, 16 * I); } else { if (I == 0) SW.startLine() << format("str x%d, [sp, #-%d]!\n", 19 + 2 * I, SavSZ); else SW.startLine() << format("str x%d, [sp, #%d]\n", 19 + 2 * I, 16 * I); } } else if (I == 0) { // The first register pair SW.startLine() << format("stp x19, x20, [sp, #-%d]!\n", SavSZ); } else { SW.startLine() << format("stp x%d, x%d, [sp, #%d]\n", 19 + 2 * I, 19 + 2 * I + 1, 16 * I); } } // CR=2 is yet undocumented, see // https://github.com/MicrosoftDocs/cpp-docs/pull/4202 for upstream // progress on getting it documented. if (RF.CR() == 2) SW.startLine() << "pacibsp\n"; SW.startLine() << "end\n"; return true; } bool Decoder::dumpProcedureDataEntry(const COFFObjectFile &COFF, const SectionRef Section, unsigned Index, ArrayRef Contents) { uint64_t Offset = PDataEntrySize * Index; const ulittle32_t *Data = reinterpret_cast(Contents.data() + Offset); const RuntimeFunction Entry(Data); DictScope RFS(SW, "RuntimeFunction"); if (Entry.Flag() == RuntimeFunctionFlag::RFF_Unpacked) return dumpUnpackedEntry(COFF, Section, Offset, Index, Entry); if (isAArch64) { const RuntimeFunctionARM64 EntryARM64(Data); return dumpPackedARM64Entry(COFF, Section, Offset, Index, EntryARM64); } return dumpPackedEntry(COFF, Section, Offset, Index, Entry); } void Decoder::dumpProcedureData(const COFFObjectFile &COFF, const SectionRef Section) { ArrayRef Contents; if (COFF.getSectionContents(COFF.getCOFFSection(Section), Contents)) return; if (Contents.size() % PDataEntrySize) { errs() << ".pdata content is not " << PDataEntrySize << "-byte aligned\n"; return; } for (unsigned EI = 0, EE = Contents.size() / PDataEntrySize; EI < EE; ++EI) if (!dumpProcedureDataEntry(COFF, Section, EI, Contents)) break; } Error Decoder::dumpProcedureData(const COFFObjectFile &COFF) { for (const auto &Section : COFF.sections()) { Expected NameOrErr = COFF.getSectionName(COFF.getCOFFSection(Section)); if (!NameOrErr) return NameOrErr.takeError(); if (NameOrErr->starts_with(".pdata")) dumpProcedureData(COFF, Section); } return Error::success(); } } } }