//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This utility provides a simple wrapper around the LLVM Execution Engines, // which allow the direct execution of LLVM programs through a Just-In-Time // compiler, or through an interpreter if no JIT is available for this platform. // //===----------------------------------------------------------------------===// #include "ForwardingMemoryManager.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/CodeGen/CommandFlags.h" #include "llvm/CodeGen/LinkAllCodegenComponents.h" #include "llvm/Config/llvm-config.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/Interpreter.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/JITSymbol.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/ExecutionEngine/ObjectCache.h" #include "llvm/ExecutionEngine/Orc/DebugUtils.h" #include "llvm/ExecutionEngine/Orc/Debugging/DebuggerSupport.h" #include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h" #include "llvm/ExecutionEngine/Orc/EPCEHFrameRegistrar.h" #include "llvm/ExecutionEngine/Orc/EPCGenericRTDyldMemoryManager.h" #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h" #include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h" #include "llvm/ExecutionEngine/Orc/LLJIT.h" #include "llvm/ExecutionEngine/Orc/ObjectTransformLayer.h" #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h" #include "llvm/ExecutionEngine/Orc/SimpleRemoteEPC.h" #include "llvm/ExecutionEngine/Orc/SymbolStringPool.h" #include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h" #include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h" #include "llvm/ExecutionEngine/Orc/TargetProcess/TargetExecutionUtils.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Verifier.h" #include "llvm/IRReader/IRReader.h" #include "llvm/Object/Archive.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/Format.h" #include "llvm/Support/InitLLVM.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Memory.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/PluginLoader.h" #include "llvm/Support/Process.h" #include "llvm/Support/Program.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Triple.h" #include "llvm/Transforms/Instrumentation.h" #include #include #if !defined(_MSC_VER) && !defined(__MINGW32__) #include #else #include #endif #ifdef __CYGWIN__ #include #if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007 #define DO_NOTHING_ATEXIT 1 #endif #endif using namespace llvm; static codegen::RegisterCodeGenFlags CGF; #define DEBUG_TYPE "lli" namespace { enum class JITKind { MCJIT, Orc, OrcLazy }; enum class JITLinkerKind { Default, RuntimeDyld, JITLink }; cl::opt InputFile(cl::desc(""), cl::Positional, cl::init("-")); cl::list InputArgv(cl::ConsumeAfter, cl::desc("...")); cl::opt ForceInterpreter("force-interpreter", cl::desc("Force interpretation: disable JIT"), cl::init(false)); cl::opt UseJITKind( "jit-kind", cl::desc("Choose underlying JIT kind."), cl::init(JITKind::Orc), cl::values(clEnumValN(JITKind::MCJIT, "mcjit", "MCJIT"), clEnumValN(JITKind::Orc, "orc", "Orc JIT"), clEnumValN(JITKind::OrcLazy, "orc-lazy", "Orc-based lazy JIT."))); cl::opt JITLinker("jit-linker", cl::desc("Choose the dynamic linker/loader."), cl::init(JITLinkerKind::Default), cl::values(clEnumValN(JITLinkerKind::Default, "default", "Default for platform and JIT-kind"), clEnumValN(JITLinkerKind::RuntimeDyld, "rtdyld", "RuntimeDyld"), clEnumValN(JITLinkerKind::JITLink, "jitlink", "Orc-specific linker"))); cl::opt OrcRuntime("orc-runtime", cl::desc("Use ORC runtime from given path"), cl::init("")); cl::opt LazyJITCompileThreads("compile-threads", cl::desc("Choose the number of compile threads " "(jit-kind=orc-lazy only)"), cl::init(0)); cl::list ThreadEntryPoints("thread-entry", cl::desc("calls the given entry-point on a new thread " "(jit-kind=orc-lazy only)")); cl::opt PerModuleLazy( "per-module-lazy", cl::desc("Performs lazy compilation on whole module boundaries " "rather than individual functions"), cl::init(false)); cl::list JITDylibs("jd", cl::desc("Specifies the JITDylib to be used for any subsequent " "-extra-module arguments.")); cl::list Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking")); // The MCJIT supports building for a target address space separate from // the JIT compilation process. Use a forked process and a copying // memory manager with IPC to execute using this functionality. cl::opt RemoteMCJIT("remote-mcjit", cl::desc("Execute MCJIT'ed code in a separate process."), cl::init(false)); // Manually specify the child process for remote execution. This overrides // the simulated remote execution that allocates address space for child // execution. The child process will be executed and will communicate with // lli via stdin/stdout pipes. cl::opt ChildExecPath("mcjit-remote-process", cl::desc("Specify the filename of the process to launch " "for remote MCJIT execution. If none is specified," "\n\tremote execution will be simulated in-process."), cl::value_desc("filename"), cl::init("")); // Determine optimization level. cl::opt OptLevel("O", cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] " "(default = '-O2')"), cl::Prefix, cl::init('2')); cl::opt TargetTriple("mtriple", cl::desc("Override target triple for module")); cl::opt EntryFunc("entry-function", cl::desc("Specify the entry function (default = 'main') " "of the executable"), cl::value_desc("function"), cl::init("main")); cl::list ExtraModules("extra-module", cl::desc("Extra modules to be loaded"), cl::value_desc("input bitcode")); cl::list ExtraObjects("extra-object", cl::desc("Extra object files to be loaded"), cl::value_desc("input object")); cl::list ExtraArchives("extra-archive", cl::desc("Extra archive files to be loaded"), cl::value_desc("input archive")); cl::opt EnableCacheManager("enable-cache-manager", cl::desc("Use cache manager to save/load modules"), cl::init(false)); cl::opt ObjectCacheDir("object-cache-dir", cl::desc("Directory to store cached object files " "(must be user writable)"), cl::init("")); cl::opt FakeArgv0("fake-argv0", cl::desc("Override the 'argv[0]' value passed into the executing" " program"), cl::value_desc("executable")); cl::opt DisableCoreFiles("disable-core-files", cl::Hidden, cl::desc("Disable emission of core files if possible")); cl::opt NoLazyCompilation("disable-lazy-compilation", cl::desc("Disable JIT lazy compilation"), cl::init(false)); cl::opt GenerateSoftFloatCalls("soft-float", cl::desc("Generate software floating point library calls"), cl::init(false)); cl::opt NoProcessSymbols( "no-process-syms", cl::desc("Do not resolve lli process symbols in JIT'd code"), cl::init(false)); enum class LLJITPlatform { Inactive, Auto, ExecutorNative, GenericIR }; cl::opt Platform( "lljit-platform", cl::desc("Platform to use with LLJIT"), cl::init(LLJITPlatform::Auto), cl::values(clEnumValN(LLJITPlatform::Auto, "Auto", "Like 'ExecutorNative' if ORC runtime " "provided, otherwise like 'GenericIR'"), clEnumValN(LLJITPlatform::ExecutorNative, "ExecutorNative", "Use the native platform for the executor." "Requires -orc-runtime"), clEnumValN(LLJITPlatform::GenericIR, "GenericIR", "Use LLJITGenericIRPlatform"), clEnumValN(LLJITPlatform::Inactive, "Inactive", "Disable platform support explicitly")), cl::Hidden); enum class DumpKind { NoDump, DumpFuncsToStdOut, DumpModsToStdOut, DumpModsToDisk, DumpDebugDescriptor, DumpDebugObjects, }; cl::opt OrcDumpKind( "orc-lazy-debug", cl::desc("Debug dumping for the orc-lazy JIT."), cl::init(DumpKind::NoDump), cl::values( clEnumValN(DumpKind::NoDump, "no-dump", "Don't dump anything."), clEnumValN(DumpKind::DumpFuncsToStdOut, "funcs-to-stdout", "Dump function names to stdout."), clEnumValN(DumpKind::DumpModsToStdOut, "mods-to-stdout", "Dump modules to stdout."), clEnumValN(DumpKind::DumpModsToDisk, "mods-to-disk", "Dump modules to the current " "working directory. (WARNING: " "will overwrite existing files)."), clEnumValN(DumpKind::DumpDebugDescriptor, "jit-debug-descriptor", "Dump __jit_debug_descriptor contents to stdout"), clEnumValN(DumpKind::DumpDebugObjects, "jit-debug-objects", "Dump __jit_debug_descriptor in-memory debug " "objects as tool output")), cl::Hidden); ExitOnError ExitOnErr; } LLVM_ATTRIBUTE_USED void linkComponents() { errs() << (void *)&llvm_orc_registerEHFrameSectionWrapper << (void *)&llvm_orc_deregisterEHFrameSectionWrapper << (void *)&llvm_orc_registerJITLoaderGDBWrapper << (void *)&llvm_orc_registerJITLoaderGDBAllocAction; } //===----------------------------------------------------------------------===// // Object cache // // This object cache implementation writes cached objects to disk to the // directory specified by CacheDir, using a filename provided in the module // descriptor. The cache tries to load a saved object using that path if the // file exists. CacheDir defaults to "", in which case objects are cached // alongside their originating bitcodes. // class LLIObjectCache : public ObjectCache { public: LLIObjectCache(const std::string& CacheDir) : CacheDir(CacheDir) { // Add trailing '/' to cache dir if necessary. if (!this->CacheDir.empty() && this->CacheDir[this->CacheDir.size() - 1] != '/') this->CacheDir += '/'; } ~LLIObjectCache() override {} void notifyObjectCompiled(const Module *M, MemoryBufferRef Obj) override { const std::string &ModuleID = M->getModuleIdentifier(); std::string CacheName; if (!getCacheFilename(ModuleID, CacheName)) return; if (!CacheDir.empty()) { // Create user-defined cache dir. SmallString<128> dir(sys::path::parent_path(CacheName)); sys::fs::create_directories(Twine(dir)); } std::error_code EC; raw_fd_ostream outfile(CacheName, EC, sys::fs::OF_None); outfile.write(Obj.getBufferStart(), Obj.getBufferSize()); outfile.close(); } std::unique_ptr getObject(const Module* M) override { const std::string &ModuleID = M->getModuleIdentifier(); std::string CacheName; if (!getCacheFilename(ModuleID, CacheName)) return nullptr; // Load the object from the cache filename ErrorOr> IRObjectBuffer = MemoryBuffer::getFile(CacheName, /*IsText=*/false, /*RequiresNullTerminator=*/false); // If the file isn't there, that's OK. if (!IRObjectBuffer) return nullptr; // MCJIT will want to write into this buffer, and we don't want that // because the file has probably just been mmapped. Instead we make // a copy. The filed-based buffer will be released when it goes // out of scope. return MemoryBuffer::getMemBufferCopy(IRObjectBuffer.get()->getBuffer()); } private: std::string CacheDir; bool getCacheFilename(const std::string &ModID, std::string &CacheName) { std::string Prefix("file:"); size_t PrefixLength = Prefix.length(); if (ModID.substr(0, PrefixLength) != Prefix) return false; std::string CacheSubdir = ModID.substr(PrefixLength); // Transform "X:\foo" => "/X\foo" for convenience on Windows. if (is_style_windows(llvm::sys::path::Style::native) && isalpha(CacheSubdir[0]) && CacheSubdir[1] == ':') { CacheSubdir[1] = CacheSubdir[0]; CacheSubdir[0] = '/'; } CacheName = CacheDir + CacheSubdir; size_t pos = CacheName.rfind('.'); CacheName.replace(pos, CacheName.length() - pos, ".o"); return true; } }; // On Mingw and Cygwin, an external symbol named '__main' is called from the // generated 'main' function to allow static initialization. To avoid linking // problems with remote targets (because lli's remote target support does not // currently handle external linking) we add a secondary module which defines // an empty '__main' function. static void addCygMingExtraModule(ExecutionEngine &EE, LLVMContext &Context, StringRef TargetTripleStr) { IRBuilder<> Builder(Context); Triple TargetTriple(TargetTripleStr); // Create a new module. std::unique_ptr M = std::make_unique("CygMingHelper", Context); M->setTargetTriple(TargetTripleStr); // Create an empty function named "__main". Type *ReturnTy; if (TargetTriple.isArch64Bit()) ReturnTy = Type::getInt64Ty(Context); else ReturnTy = Type::getInt32Ty(Context); Function *Result = Function::Create(FunctionType::get(ReturnTy, {}, false), GlobalValue::ExternalLinkage, "__main", M.get()); BasicBlock *BB = BasicBlock::Create(Context, "__main", Result); Builder.SetInsertPoint(BB); Value *ReturnVal = ConstantInt::get(ReturnTy, 0); Builder.CreateRet(ReturnVal); // Add this new module to the ExecutionEngine. EE.addModule(std::move(M)); } CodeGenOptLevel getOptLevel() { if (auto Level = CodeGenOpt::parseLevel(OptLevel)) return *Level; WithColor::error(errs(), "lli") << "invalid optimization level.\n"; exit(1); } [[noreturn]] static void reportError(SMDiagnostic Err, const char *ProgName) { Err.print(ProgName, errs()); exit(1); } Error loadDylibs(); int runOrcJIT(const char *ProgName); void disallowOrcOptions(); Expected> launchRemote(); //===----------------------------------------------------------------------===// // main Driver function // int main(int argc, char **argv, char * const *envp) { InitLLVM X(argc, argv); if (argc > 1) ExitOnErr.setBanner(std::string(argv[0]) + ": "); // If we have a native target, initialize it to ensure it is linked in and // usable by the JIT. InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); InitializeNativeTargetAsmParser(); cl::ParseCommandLineOptions(argc, argv, "llvm interpreter & dynamic compiler\n"); // If the user doesn't want core files, disable them. if (DisableCoreFiles) sys::Process::PreventCoreFiles(); ExitOnErr(loadDylibs()); if (EntryFunc.empty()) { WithColor::error(errs(), argv[0]) << "--entry-function name cannot be empty\n"; exit(1); } if (UseJITKind == JITKind::MCJIT || ForceInterpreter) disallowOrcOptions(); else return runOrcJIT(argv[0]); // Old lli implementation based on ExecutionEngine and MCJIT. LLVMContext Context; // Load the bitcode... SMDiagnostic Err; std::unique_ptr Owner = parseIRFile(InputFile, Err, Context); Module *Mod = Owner.get(); if (!Mod) reportError(Err, argv[0]); if (EnableCacheManager) { std::string CacheName("file:"); CacheName.append(InputFile); Mod->setModuleIdentifier(CacheName); } // If not jitting lazily, load the whole bitcode file eagerly too. if (NoLazyCompilation) { // Use *argv instead of argv[0] to work around a wrong GCC warning. ExitOnError ExitOnErr(std::string(*argv) + ": bitcode didn't read correctly: "); ExitOnErr(Mod->materializeAll()); } std::string ErrorMsg; EngineBuilder builder(std::move(Owner)); builder.setMArch(codegen::getMArch()); builder.setMCPU(codegen::getCPUStr()); builder.setMAttrs(codegen::getFeatureList()); if (auto RM = codegen::getExplicitRelocModel()) builder.setRelocationModel(*RM); if (auto CM = codegen::getExplicitCodeModel()) builder.setCodeModel(*CM); builder.setErrorStr(&ErrorMsg); builder.setEngineKind(ForceInterpreter ? EngineKind::Interpreter : EngineKind::JIT); // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) Mod->setTargetTriple(Triple::normalize(TargetTriple)); // Enable MCJIT if desired. RTDyldMemoryManager *RTDyldMM = nullptr; if (!ForceInterpreter) { if (RemoteMCJIT) RTDyldMM = new ForwardingMemoryManager(); else RTDyldMM = new SectionMemoryManager(); // Deliberately construct a temp std::unique_ptr to pass in. Do not null out // RTDyldMM: We still use it below, even though we don't own it. builder.setMCJITMemoryManager( std::unique_ptr(RTDyldMM)); } else if (RemoteMCJIT) { WithColor::error(errs(), argv[0]) << "remote process execution does not work with the interpreter.\n"; exit(1); } builder.setOptLevel(getOptLevel()); TargetOptions Options = codegen::InitTargetOptionsFromCodeGenFlags(Triple(TargetTriple)); if (codegen::getFloatABIForCalls() != FloatABI::Default) Options.FloatABIType = codegen::getFloatABIForCalls(); builder.setTargetOptions(Options); std::unique_ptr EE(builder.create()); if (!EE) { if (!ErrorMsg.empty()) WithColor::error(errs(), argv[0]) << "error creating EE: " << ErrorMsg << "\n"; else WithColor::error(errs(), argv[0]) << "unknown error creating EE!\n"; exit(1); } std::unique_ptr CacheManager; if (EnableCacheManager) { CacheManager.reset(new LLIObjectCache(ObjectCacheDir)); EE->setObjectCache(CacheManager.get()); } // Load any additional modules specified on the command line. for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) { std::unique_ptr XMod = parseIRFile(ExtraModules[i], Err, Context); if (!XMod) reportError(Err, argv[0]); if (EnableCacheManager) { std::string CacheName("file:"); CacheName.append(ExtraModules[i]); XMod->setModuleIdentifier(CacheName); } EE->addModule(std::move(XMod)); } for (unsigned i = 0, e = ExtraObjects.size(); i != e; ++i) { Expected> Obj = object::ObjectFile::createObjectFile(ExtraObjects[i]); if (!Obj) { // TODO: Actually report errors helpfully. consumeError(Obj.takeError()); reportError(Err, argv[0]); } object::OwningBinary &O = Obj.get(); EE->addObjectFile(std::move(O)); } for (unsigned i = 0, e = ExtraArchives.size(); i != e; ++i) { ErrorOr> ArBufOrErr = MemoryBuffer::getFileOrSTDIN(ExtraArchives[i]); if (!ArBufOrErr) reportError(Err, argv[0]); std::unique_ptr &ArBuf = ArBufOrErr.get(); Expected> ArOrErr = object::Archive::create(ArBuf->getMemBufferRef()); if (!ArOrErr) { std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(ArOrErr.takeError(), OS); OS.flush(); errs() << Buf; exit(1); } std::unique_ptr &Ar = ArOrErr.get(); object::OwningBinary OB(std::move(Ar), std::move(ArBuf)); EE->addArchive(std::move(OB)); } // If the target is Cygwin/MingW and we are generating remote code, we // need an extra module to help out with linking. if (RemoteMCJIT && Triple(Mod->getTargetTriple()).isOSCygMing()) { addCygMingExtraModule(*EE, Context, Mod->getTargetTriple()); } // The following functions have no effect if their respective profiling // support wasn't enabled in the build configuration. EE->RegisterJITEventListener( JITEventListener::createOProfileJITEventListener()); EE->RegisterJITEventListener( JITEventListener::createIntelJITEventListener()); if (!RemoteMCJIT) EE->RegisterJITEventListener( JITEventListener::createPerfJITEventListener()); if (!NoLazyCompilation && RemoteMCJIT) { WithColor::warning(errs(), argv[0]) << "remote mcjit does not support lazy compilation\n"; NoLazyCompilation = true; } EE->DisableLazyCompilation(NoLazyCompilation); // If the user specifically requested an argv[0] to pass into the program, // do it now. if (!FakeArgv0.empty()) { InputFile = static_cast(FakeArgv0); } else { // Otherwise, if there is a .bc suffix on the executable strip it off, it // might confuse the program. if (StringRef(InputFile).ends_with(".bc")) InputFile.erase(InputFile.length() - 3); } // Add the module's name to the start of the vector of arguments to main(). InputArgv.insert(InputArgv.begin(), InputFile); // Call the main function from M as if its signature were: // int main (int argc, char **argv, const char **envp) // using the contents of Args to determine argc & argv, and the contents of // EnvVars to determine envp. // Function *EntryFn = Mod->getFunction(EntryFunc); if (!EntryFn) { WithColor::error(errs(), argv[0]) << '\'' << EntryFunc << "\' function not found in module.\n"; return -1; } // Reset errno to zero on entry to main. errno = 0; int Result = -1; // Sanity check use of remote-jit: LLI currently only supports use of the // remote JIT on Unix platforms. if (RemoteMCJIT) { #ifndef LLVM_ON_UNIX WithColor::warning(errs(), argv[0]) << "host does not support external remote targets.\n"; WithColor::note() << "defaulting to local execution\n"; return -1; #else if (ChildExecPath.empty()) { WithColor::error(errs(), argv[0]) << "-remote-mcjit requires -mcjit-remote-process.\n"; exit(1); } else if (!sys::fs::can_execute(ChildExecPath)) { WithColor::error(errs(), argv[0]) << "unable to find usable child executable: '" << ChildExecPath << "'\n"; return -1; } #endif } if (!RemoteMCJIT) { // If the program doesn't explicitly call exit, we will need the Exit // function later on to make an explicit call, so get the function now. FunctionCallee Exit = Mod->getOrInsertFunction( "exit", Type::getVoidTy(Context), Type::getInt32Ty(Context)); // Run static constructors. if (!ForceInterpreter) { // Give MCJIT a chance to apply relocations and set page permissions. EE->finalizeObject(); } EE->runStaticConstructorsDestructors(false); // Trigger compilation separately so code regions that need to be // invalidated will be known. (void)EE->getPointerToFunction(EntryFn); // Clear instruction cache before code will be executed. if (RTDyldMM) static_cast(RTDyldMM)->invalidateInstructionCache(); // Run main. Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp); // Run static destructors. EE->runStaticConstructorsDestructors(true); // If the program didn't call exit explicitly, we should call it now. // This ensures that any atexit handlers get called correctly. if (Function *ExitF = dyn_cast(Exit.getCallee()->stripPointerCasts())) { if (ExitF->getFunctionType() == Exit.getFunctionType()) { std::vector Args; GenericValue ResultGV; ResultGV.IntVal = APInt(32, Result); Args.push_back(ResultGV); EE->runFunction(ExitF, Args); WithColor::error(errs(), argv[0]) << "exit(" << Result << ") returned!\n"; abort(); } } WithColor::error(errs(), argv[0]) << "exit defined with wrong prototype!\n"; abort(); } else { // else == "if (RemoteMCJIT)" std::unique_ptr EPC = ExitOnErr(launchRemote()); // Remote target MCJIT doesn't (yet) support static constructors. No reason // it couldn't. This is a limitation of the LLI implementation, not the // MCJIT itself. FIXME. // Create a remote memory manager. auto RemoteMM = ExitOnErr( orc::EPCGenericRTDyldMemoryManager::CreateWithDefaultBootstrapSymbols( *EPC)); // Forward MCJIT's memory manager calls to the remote memory manager. static_cast(RTDyldMM)->setMemMgr( std::move(RemoteMM)); // Forward MCJIT's symbol resolution calls to the remote. static_cast(RTDyldMM)->setResolver( ExitOnErr(RemoteResolver::Create(*EPC))); // Grab the target address of the JIT'd main function on the remote and call // it. // FIXME: argv and envp handling. auto Entry = orc::ExecutorAddr(EE->getFunctionAddress(EntryFn->getName().str())); EE->finalizeObject(); LLVM_DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x" << format("%llx", Entry.getValue()) << "\n"); Result = ExitOnErr(EPC->runAsMain(Entry, {})); // Like static constructors, the remote target MCJIT support doesn't handle // this yet. It could. FIXME. // Delete the EE - we need to tear it down *before* we terminate the session // with the remote, otherwise it'll crash when it tries to release resources // on a remote that has already been disconnected. EE.reset(); // Signal the remote target that we're done JITing. ExitOnErr(EPC->disconnect()); } return Result; } // JITLink debug support plugins put information about JITed code in this GDB // JIT Interface global from OrcTargetProcess. extern "C" struct jit_descriptor __jit_debug_descriptor; static struct jit_code_entry * findNextDebugDescriptorEntry(struct jit_code_entry *Latest) { if (Latest == nullptr) return __jit_debug_descriptor.first_entry; if (Latest->next_entry) return Latest->next_entry; return nullptr; } static ToolOutputFile &claimToolOutput() { static std::unique_ptr ToolOutput = nullptr; if (ToolOutput) { WithColor::error(errs(), "lli") << "Can not claim stdout for tool output twice\n"; exit(1); } std::error_code EC; ToolOutput = std::make_unique("-", EC, sys::fs::OF_None); if (EC) { WithColor::error(errs(), "lli") << "Failed to create tool output file: " << EC.message() << "\n"; exit(1); } return *ToolOutput; } static std::function createIRDebugDumper() { switch (OrcDumpKind) { case DumpKind::NoDump: case DumpKind::DumpDebugDescriptor: case DumpKind::DumpDebugObjects: return [](Module &M) {}; case DumpKind::DumpFuncsToStdOut: return [](Module &M) { printf("[ "); for (const auto &F : M) { if (F.isDeclaration()) continue; if (F.hasName()) { std::string Name(std::string(F.getName())); printf("%s ", Name.c_str()); } else printf(" "); } printf("]\n"); }; case DumpKind::DumpModsToStdOut: return [](Module &M) { outs() << "----- Module Start -----\n" << M << "----- Module End -----\n"; }; case DumpKind::DumpModsToDisk: return [](Module &M) { std::error_code EC; raw_fd_ostream Out(M.getModuleIdentifier() + ".ll", EC, sys::fs::OF_TextWithCRLF); if (EC) { errs() << "Couldn't open " << M.getModuleIdentifier() << " for dumping.\nError:" << EC.message() << "\n"; exit(1); } Out << M; }; } llvm_unreachable("Unknown DumpKind"); } static std::function createObjDebugDumper() { switch (OrcDumpKind) { case DumpKind::NoDump: case DumpKind::DumpFuncsToStdOut: case DumpKind::DumpModsToStdOut: case DumpKind::DumpModsToDisk: return [](MemoryBuffer &) {}; case DumpKind::DumpDebugDescriptor: { // Dump the empty descriptor at startup once fprintf(stderr, "jit_debug_descriptor 0x%016" PRIx64 "\n", pointerToJITTargetAddress(__jit_debug_descriptor.first_entry)); return [](MemoryBuffer &) { // Dump new entries as they appear static struct jit_code_entry *Latest = nullptr; while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) { fprintf(stderr, "jit_debug_descriptor 0x%016" PRIx64 "\n", pointerToJITTargetAddress(NewEntry)); Latest = NewEntry; } }; } case DumpKind::DumpDebugObjects: { return [](MemoryBuffer &Obj) { static struct jit_code_entry *Latest = nullptr; static ToolOutputFile &ToolOutput = claimToolOutput(); while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) { ToolOutput.os().write(NewEntry->symfile_addr, NewEntry->symfile_size); Latest = NewEntry; } }; } } llvm_unreachable("Unknown DumpKind"); } Error loadDylibs() { for (const auto &Dylib : Dylibs) { std::string ErrMsg; if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg)) return make_error(ErrMsg, inconvertibleErrorCode()); } return Error::success(); } static void exitOnLazyCallThroughFailure() { exit(1); } Expected loadModule(StringRef Path, orc::ThreadSafeContext TSCtx) { SMDiagnostic Err; auto M = parseIRFile(Path, Err, *TSCtx.getContext()); if (!M) { std::string ErrMsg; { raw_string_ostream ErrMsgStream(ErrMsg); Err.print("lli", ErrMsgStream); } return make_error(std::move(ErrMsg), inconvertibleErrorCode()); } if (EnableCacheManager) M->setModuleIdentifier("file:" + M->getModuleIdentifier()); return orc::ThreadSafeModule(std::move(M), std::move(TSCtx)); } int mingw_noop_main(void) { // Cygwin and MinGW insert calls from the main function to the runtime // function __main. The __main function is responsible for setting up main's // environment (e.g. running static constructors), however this is not needed // when running under lli: the executor process will have run non-JIT ctors, // and ORC will take care of running JIT'd ctors. To avoid a missing symbol // error we just implement __main as a no-op. // // FIXME: Move this to ORC-RT (and the ORC-RT substitution library once it // exists). That will allow it to work out-of-process, and for all // ORC tools (the problem isn't lli specific). return 0; } // Try to enable debugger support for the given instance. // This alway returns success, but prints a warning if it's not able to enable // debugger support. Error tryEnableDebugSupport(orc::LLJIT &J) { if (auto Err = enableDebuggerSupport(J)) { [[maybe_unused]] std::string ErrMsg = toString(std::move(Err)); LLVM_DEBUG(dbgs() << "lli: " << ErrMsg << "\n"); } return Error::success(); } int runOrcJIT(const char *ProgName) { // Start setting up the JIT environment. // Parse the main module. orc::ThreadSafeContext TSCtx(std::make_unique()); auto MainModule = ExitOnErr(loadModule(InputFile, TSCtx)); // Get TargetTriple and DataLayout from the main module if they're explicitly // set. std::optional TT; std::optional DL; MainModule.withModuleDo([&](Module &M) { if (!M.getTargetTriple().empty()) TT = Triple(M.getTargetTriple()); if (!M.getDataLayout().isDefault()) DL = M.getDataLayout(); }); orc::LLLazyJITBuilder Builder; Builder.setJITTargetMachineBuilder( TT ? orc::JITTargetMachineBuilder(*TT) : ExitOnErr(orc::JITTargetMachineBuilder::detectHost())); TT = Builder.getJITTargetMachineBuilder()->getTargetTriple(); if (DL) Builder.setDataLayout(DL); if (!codegen::getMArch().empty()) Builder.getJITTargetMachineBuilder()->getTargetTriple().setArchName( codegen::getMArch()); Builder.getJITTargetMachineBuilder() ->setCPU(codegen::getCPUStr()) .addFeatures(codegen::getFeatureList()) .setRelocationModel(codegen::getExplicitRelocModel()) .setCodeModel(codegen::getExplicitCodeModel()); // Link process symbols unless NoProcessSymbols is set. Builder.setLinkProcessSymbolsByDefault(!NoProcessSymbols); // FIXME: Setting a dummy call-through manager in non-lazy mode prevents the // JIT builder to instantiate a default (which would fail with an error for // unsupported architectures). if (UseJITKind != JITKind::OrcLazy) { auto ES = std::make_unique( ExitOnErr(orc::SelfExecutorProcessControl::Create())); Builder.setLazyCallthroughManager( std::make_unique(*ES, orc::ExecutorAddr(), nullptr)); Builder.setExecutionSession(std::move(ES)); } Builder.setLazyCompileFailureAddr( orc::ExecutorAddr::fromPtr(exitOnLazyCallThroughFailure)); Builder.setNumCompileThreads(LazyJITCompileThreads); // If the object cache is enabled then set a custom compile function // creator to use the cache. std::unique_ptr CacheManager; if (EnableCacheManager) { CacheManager = std::make_unique(ObjectCacheDir); Builder.setCompileFunctionCreator( [&](orc::JITTargetMachineBuilder JTMB) -> Expected> { if (LazyJITCompileThreads > 0) return std::make_unique(std::move(JTMB), CacheManager.get()); auto TM = JTMB.createTargetMachine(); if (!TM) return TM.takeError(); return std::make_unique(std::move(*TM), CacheManager.get()); }); } // Enable debugging of JIT'd code (only works on JITLink for ELF and MachO). Builder.setPrePlatformSetup(tryEnableDebugSupport); // Set up LLJIT platform. LLJITPlatform P = Platform; if (P == LLJITPlatform::Auto) P = OrcRuntime.empty() ? LLJITPlatform::GenericIR : LLJITPlatform::ExecutorNative; switch (P) { case LLJITPlatform::ExecutorNative: { Builder.setPlatformSetUp(orc::ExecutorNativePlatform(OrcRuntime)); break; } case LLJITPlatform::GenericIR: // Nothing to do: LLJITBuilder will use this by default. break; case LLJITPlatform::Inactive: Builder.setPlatformSetUp(orc::setUpInactivePlatform); break; default: llvm_unreachable("Unrecognized platform value"); } std::unique_ptr EPC = nullptr; if (JITLinker == JITLinkerKind::JITLink) { EPC = ExitOnErr(orc::SelfExecutorProcessControl::Create( std::make_shared())); Builder.getJITTargetMachineBuilder() ->setRelocationModel(Reloc::PIC_) .setCodeModel(CodeModel::Small); Builder.setObjectLinkingLayerCreator([&P](orc::ExecutionSession &ES, const Triple &TT) { auto L = std::make_unique(ES); if (P != LLJITPlatform::ExecutorNative) L->addPlugin(std::make_unique( ES, ExitOnErr(orc::EPCEHFrameRegistrar::Create(ES)))); return L; }); } auto J = ExitOnErr(Builder.create()); auto *ObjLayer = &J->getObjLinkingLayer(); if (auto *RTDyldObjLayer = dyn_cast(ObjLayer)) { RTDyldObjLayer->registerJITEventListener( *JITEventListener::createGDBRegistrationListener()); #if LLVM_USE_OPROFILE RTDyldObjLayer->registerJITEventListener( *JITEventListener::createOProfileJITEventListener()); #endif #if LLVM_USE_INTEL_JITEVENTS RTDyldObjLayer->registerJITEventListener( *JITEventListener::createIntelJITEventListener()); #endif #if LLVM_USE_PERF RTDyldObjLayer->registerJITEventListener( *JITEventListener::createPerfJITEventListener()); #endif } if (PerModuleLazy) J->setPartitionFunction(orc::CompileOnDemandLayer::compileWholeModule); auto IRDump = createIRDebugDumper(); J->getIRTransformLayer().setTransform( [&](orc::ThreadSafeModule TSM, const orc::MaterializationResponsibility &R) { TSM.withModuleDo([&](Module &M) { if (verifyModule(M, &dbgs())) { dbgs() << "Bad module: " << &M << "\n"; exit(1); } IRDump(M); }); return TSM; }); auto ObjDump = createObjDebugDumper(); J->getObjTransformLayer().setTransform( [&](std::unique_ptr Obj) -> Expected> { ObjDump(*Obj); return std::move(Obj); }); // If this is a Mingw or Cygwin executor then we need to alias __main to // orc_rt_int_void_return_0. if (J->getTargetTriple().isOSCygMing()) ExitOnErr(J->getProcessSymbolsJITDylib()->define( orc::absoluteSymbols({{J->mangleAndIntern("__main"), {orc::ExecutorAddr::fromPtr(mingw_noop_main), JITSymbolFlags::Exported}}}))); // Regular modules are greedy: They materialize as a whole and trigger // materialization for all required symbols recursively. Lazy modules go // through partitioning and they replace outgoing calls with reexport stubs // that resolve on call-through. auto AddModule = [&](orc::JITDylib &JD, orc::ThreadSafeModule M) { return UseJITKind == JITKind::OrcLazy ? J->addLazyIRModule(JD, std::move(M)) : J->addIRModule(JD, std::move(M)); }; // Add the main module. ExitOnErr(AddModule(J->getMainJITDylib(), std::move(MainModule))); // Create JITDylibs and add any extra modules. { // Create JITDylibs, keep a map from argument index to dylib. We will use // -extra-module argument indexes to determine what dylib to use for each // -extra-module. std::map IdxToDylib; IdxToDylib[0] = &J->getMainJITDylib(); for (auto JDItr = JITDylibs.begin(), JDEnd = JITDylibs.end(); JDItr != JDEnd; ++JDItr) { orc::JITDylib *JD = J->getJITDylibByName(*JDItr); if (!JD) { JD = &ExitOnErr(J->createJITDylib(*JDItr)); J->getMainJITDylib().addToLinkOrder(*JD); JD->addToLinkOrder(J->getMainJITDylib()); } IdxToDylib[JITDylibs.getPosition(JDItr - JITDylibs.begin())] = JD; } for (auto EMItr = ExtraModules.begin(), EMEnd = ExtraModules.end(); EMItr != EMEnd; ++EMItr) { auto M = ExitOnErr(loadModule(*EMItr, TSCtx)); auto EMIdx = ExtraModules.getPosition(EMItr - ExtraModules.begin()); assert(EMIdx != 0 && "ExtraModule should have index > 0"); auto JDItr = std::prev(IdxToDylib.lower_bound(EMIdx)); auto &JD = *JDItr->second; ExitOnErr(AddModule(JD, std::move(M))); } for (auto EAItr = ExtraArchives.begin(), EAEnd = ExtraArchives.end(); EAItr != EAEnd; ++EAItr) { auto EAIdx = ExtraArchives.getPosition(EAItr - ExtraArchives.begin()); assert(EAIdx != 0 && "ExtraArchive should have index > 0"); auto JDItr = std::prev(IdxToDylib.lower_bound(EAIdx)); auto &JD = *JDItr->second; ExitOnErr(J->linkStaticLibraryInto(JD, EAItr->c_str())); } } // Add the objects. for (auto &ObjPath : ExtraObjects) { auto Obj = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ObjPath))); ExitOnErr(J->addObjectFile(std::move(Obj))); } // Run any static constructors. ExitOnErr(J->initialize(J->getMainJITDylib())); // Run any -thread-entry points. std::vector AltEntryThreads; for (auto &ThreadEntryPoint : ThreadEntryPoints) { auto EntryPointSym = ExitOnErr(J->lookup(ThreadEntryPoint)); typedef void (*EntryPointPtr)(); auto EntryPoint = EntryPointSym.toPtr(); AltEntryThreads.push_back(std::thread([EntryPoint]() { EntryPoint(); })); } // Resolve and run the main function. auto MainAddr = ExitOnErr(J->lookup(EntryFunc)); int Result; if (EPC) { // ExecutorProcessControl-based execution with JITLink. Result = ExitOnErr(EPC->runAsMain(MainAddr, InputArgv)); } else { // Manual in-process execution with RuntimeDyld. using MainFnTy = int(int, char *[]); auto MainFn = MainAddr.toPtr(); Result = orc::runAsMain(MainFn, InputArgv, StringRef(InputFile)); } // Wait for -entry-point threads. for (auto &AltEntryThread : AltEntryThreads) AltEntryThread.join(); // Run destructors. ExitOnErr(J->deinitialize(J->getMainJITDylib())); return Result; } void disallowOrcOptions() { // Make sure nobody used an orc-lazy specific option accidentally. if (LazyJITCompileThreads != 0) { errs() << "-compile-threads requires -jit-kind=orc-lazy\n"; exit(1); } if (!ThreadEntryPoints.empty()) { errs() << "-thread-entry requires -jit-kind=orc-lazy\n"; exit(1); } if (PerModuleLazy) { errs() << "-per-module-lazy requires -jit-kind=orc-lazy\n"; exit(1); } } Expected> launchRemote() { #ifndef LLVM_ON_UNIX llvm_unreachable("launchRemote not supported on non-Unix platforms"); #else int PipeFD[2][2]; pid_t ChildPID; // Create two pipes. if (pipe(PipeFD[0]) != 0 || pipe(PipeFD[1]) != 0) perror("Error creating pipe: "); ChildPID = fork(); if (ChildPID == 0) { // In the child... // Close the parent ends of the pipes close(PipeFD[0][1]); close(PipeFD[1][0]); // Execute the child process. std::unique_ptr ChildPath, ChildIn, ChildOut; { ChildPath.reset(new char[ChildExecPath.size() + 1]); std::copy(ChildExecPath.begin(), ChildExecPath.end(), &ChildPath[0]); ChildPath[ChildExecPath.size()] = '\0'; std::string ChildInStr = utostr(PipeFD[0][0]); ChildIn.reset(new char[ChildInStr.size() + 1]); std::copy(ChildInStr.begin(), ChildInStr.end(), &ChildIn[0]); ChildIn[ChildInStr.size()] = '\0'; std::string ChildOutStr = utostr(PipeFD[1][1]); ChildOut.reset(new char[ChildOutStr.size() + 1]); std::copy(ChildOutStr.begin(), ChildOutStr.end(), &ChildOut[0]); ChildOut[ChildOutStr.size()] = '\0'; } char * const args[] = { &ChildPath[0], &ChildIn[0], &ChildOut[0], nullptr }; int rc = execv(ChildExecPath.c_str(), args); if (rc != 0) perror("Error executing child process: "); llvm_unreachable("Error executing child process"); } // else we're the parent... // Close the child ends of the pipes close(PipeFD[0][0]); close(PipeFD[1][1]); // Return a SimpleRemoteEPC instance connected to our end of the pipes. return orc::SimpleRemoteEPC::Create( std::make_unique(), llvm::orc::SimpleRemoteEPC::Setup(), PipeFD[1][0], PipeFD[0][1]); #endif } // For MinGW environments, manually export the __chkstk function from the lli // executable. // // Normally, this function is provided by compiler-rt builtins or libgcc. // It is named "_alloca" on i386, "___chkstk_ms" on x86_64, and "__chkstk" on // arm/aarch64. In MSVC configurations, it's named "__chkstk" in all // configurations. // // When Orc tries to resolve symbols at runtime, this succeeds in MSVC // configurations, somewhat by accident/luck; kernelbase.dll does export a // symbol named "__chkstk" which gets found by Orc, even if regular applications // never link against that function from that DLL (it's linked in statically // from a compiler support library). // // The MinGW specific symbol names aren't available in that DLL though. // Therefore, manually export the relevant symbol from lli, to let it be // found at runtime during tests. // // For real JIT uses, the real compiler support libraries should be linked // in, somehow; this is a workaround to let tests pass. // // We need to make sure that this symbol actually is linked in when we // try to export it; if no functions allocate a large enough stack area, // nothing would reference it. Therefore, manually declare it and add a // reference to it. (Note, the declarations of _alloca/___chkstk_ms/__chkstk // are somewhat bogus, these functions use a different custom calling // convention.) // // TODO: Move this into libORC at some point, see // https://github.com/llvm/llvm-project/issues/56603. #ifdef __MINGW32__ // This is a MinGW version of #pragma comment(linker, "...") that doesn't // require compiling with -fms-extensions. #if defined(__i386__) #undef _alloca extern "C" void _alloca(void); static __attribute__((used)) void (*const ref_func)(void) = _alloca; static __attribute__((section(".drectve"), used)) const char export_chkstk[] = "-export:_alloca"; #elif defined(__x86_64__) extern "C" void ___chkstk_ms(void); static __attribute__((used)) void (*const ref_func)(void) = ___chkstk_ms; static __attribute__((section(".drectve"), used)) const char export_chkstk[] = "-export:___chkstk_ms"; #else extern "C" void __chkstk(void); static __attribute__((used)) void (*const ref_func)(void) = __chkstk; static __attribute__((section(".drectve"), used)) const char export_chkstk[] = "-export:__chkstk"; #endif #endif