//===- Trace.cpp - XRay Trace Loading implementation. ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // XRay log reader implementation. // //===----------------------------------------------------------------------===// #include "llvm/XRay/Trace.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/XRay/BlockIndexer.h" #include "llvm/XRay/BlockVerifier.h" #include "llvm/XRay/FDRRecordConsumer.h" #include "llvm/XRay/FDRRecordProducer.h" #include "llvm/XRay/FDRRecords.h" #include "llvm/XRay/FDRTraceExpander.h" #include "llvm/XRay/FileHeaderReader.h" #include "llvm/XRay/YAMLXRayRecord.h" #include #include using namespace llvm; using namespace llvm::xray; using llvm::yaml::Input; namespace { using XRayRecordStorage = std::aligned_storage::type; Error loadNaiveFormatLog(StringRef Data, bool IsLittleEndian, XRayFileHeader &FileHeader, std::vector &Records) { if (Data.size() < 32) return make_error( "Not enough bytes for an XRay log.", std::make_error_code(std::errc::invalid_argument)); if (Data.size() - 32 == 0 || Data.size() % 32 != 0) return make_error( "Invalid-sized XRay data.", std::make_error_code(std::errc::invalid_argument)); DataExtractor Reader(Data, IsLittleEndian, 8); uint64_t OffsetPtr = 0; auto FileHeaderOrError = readBinaryFormatHeader(Reader, OffsetPtr); if (!FileHeaderOrError) return FileHeaderOrError.takeError(); FileHeader = std::move(FileHeaderOrError.get()); // Each record after the header will be 32 bytes, in the following format: // // (2) uint16 : record type // (1) uint8 : cpu id // (1) uint8 : type // (4) sint32 : function id // (8) uint64 : tsc // (4) uint32 : thread id // (4) uint32 : process id // (8) - : padding while (Reader.isValidOffset(OffsetPtr)) { if (!Reader.isValidOffsetForDataOfSize(OffsetPtr, 32)) return createStringError( std::make_error_code(std::errc::executable_format_error), "Not enough bytes to read a full record at offset %" PRId64 ".", OffsetPtr); auto PreReadOffset = OffsetPtr; auto RecordType = Reader.getU16(&OffsetPtr); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading record type at offset %" PRId64 ".", OffsetPtr); switch (RecordType) { case 0: { // Normal records. Records.emplace_back(); auto &Record = Records.back(); Record.RecordType = RecordType; PreReadOffset = OffsetPtr; Record.CPU = Reader.getU8(&OffsetPtr); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading CPU field at offset %" PRId64 ".", OffsetPtr); PreReadOffset = OffsetPtr; auto Type = Reader.getU8(&OffsetPtr); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading record type field at offset %" PRId64 ".", OffsetPtr); switch (Type) { case 0: Record.Type = RecordTypes::ENTER; break; case 1: Record.Type = RecordTypes::EXIT; break; case 2: Record.Type = RecordTypes::TAIL_EXIT; break; case 3: Record.Type = RecordTypes::ENTER_ARG; break; default: return createStringError( std::make_error_code(std::errc::executable_format_error), "Unknown record type '%d' at offset %" PRId64 ".", Type, OffsetPtr); } PreReadOffset = OffsetPtr; Record.FuncId = Reader.getSigned(&OffsetPtr, sizeof(int32_t)); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading function id field at offset %" PRId64 ".", OffsetPtr); PreReadOffset = OffsetPtr; Record.TSC = Reader.getU64(&OffsetPtr); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading TSC field at offset %" PRId64 ".", OffsetPtr); PreReadOffset = OffsetPtr; Record.TId = Reader.getU32(&OffsetPtr); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading thread id field at offset %" PRId64 ".", OffsetPtr); PreReadOffset = OffsetPtr; Record.PId = Reader.getU32(&OffsetPtr); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading process id at offset %" PRId64 ".", OffsetPtr); break; } case 1: { // Arg payload record. auto &Record = Records.back(); // We skip the next two bytes of the record, because we don't need the // type and the CPU record for arg payloads. OffsetPtr += 2; PreReadOffset = OffsetPtr; int32_t FuncId = Reader.getSigned(&OffsetPtr, sizeof(int32_t)); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading function id field at offset %" PRId64 ".", OffsetPtr); PreReadOffset = OffsetPtr; auto TId = Reader.getU32(&OffsetPtr); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading thread id field at offset %" PRId64 ".", OffsetPtr); PreReadOffset = OffsetPtr; auto PId = Reader.getU32(&OffsetPtr); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading process id field at offset %" PRId64 ".", OffsetPtr); // Make a check for versions above 3 for the Pid field if (Record.FuncId != FuncId || Record.TId != TId || (FileHeader.Version >= 3 ? Record.PId != PId : false)) return createStringError( std::make_error_code(std::errc::executable_format_error), "Corrupted log, found arg payload following non-matching " "function+thread record. Record for function %d != %d at offset " "%" PRId64 ".", Record.FuncId, FuncId, OffsetPtr); PreReadOffset = OffsetPtr; auto Arg = Reader.getU64(&OffsetPtr); if (OffsetPtr == PreReadOffset) return createStringError( std::make_error_code(std::errc::executable_format_error), "Failed reading argument payload at offset %" PRId64 ".", OffsetPtr); Record.CallArgs.push_back(Arg); break; } default: return createStringError( std::make_error_code(std::errc::executable_format_error), "Unknown record type '%d' at offset %" PRId64 ".", RecordType, OffsetPtr); } // Advance the offset pointer enough bytes to align to 32-byte records for // basic mode logs. OffsetPtr += 8; } return Error::success(); } /// Reads a log in FDR mode for version 1 of this binary format. FDR mode is /// defined as part of the compiler-rt project in xray_fdr_logging.h, and such /// a log consists of the familiar 32 bit XRayHeader, followed by sequences of /// of interspersed 16 byte Metadata Records and 8 byte Function Records. /// /// The following is an attempt to document the grammar of the format, which is /// parsed by this function for little-endian machines. Since the format makes /// use of BitFields, when we support big-endian architectures, we will need to /// adjust not only the endianness parameter to llvm's RecordExtractor, but also /// the bit twiddling logic, which is consistent with the little-endian /// convention that BitFields within a struct will first be packed into the /// least significant bits the address they belong to. /// /// We expect a format complying with the grammar in the following pseudo-EBNF /// in Version 1 of the FDR log. /// /// FDRLog: XRayFileHeader ThreadBuffer* /// XRayFileHeader: 32 bytes to identify the log as FDR with machine metadata. /// Includes BufferSize /// ThreadBuffer: NewBuffer WallClockTime NewCPUId FunctionSequence EOB /// BufSize: 8 byte unsigned integer indicating how large the buffer is. /// NewBuffer: 16 byte metadata record with Thread Id. /// WallClockTime: 16 byte metadata record with human readable time. /// Pid: 16 byte metadata record with Pid /// NewCPUId: 16 byte metadata record with CPUId and a 64 bit TSC reading. /// EOB: 16 byte record in a thread buffer plus mem garbage to fill BufSize. /// FunctionSequence: NewCPUId | TSCWrap | FunctionRecord /// TSCWrap: 16 byte metadata record with a full 64 bit TSC reading. /// FunctionRecord: 8 byte record with FunctionId, entry/exit, and TSC delta. /// /// In Version 2, we make the following changes: /// /// ThreadBuffer: BufferExtents NewBuffer WallClockTime NewCPUId /// FunctionSequence /// BufferExtents: 16 byte metdata record describing how many usable bytes are /// in the buffer. This is measured from the start of the buffer /// and must always be at least 48 (bytes). /// /// In Version 3, we make the following changes: /// /// ThreadBuffer: BufferExtents NewBuffer WallClockTime Pid NewCPUId /// FunctionSequence /// EOB: *deprecated* /// /// In Version 4, we make the following changes: /// /// CustomEventRecord now includes the CPU data. /// /// In Version 5, we make the following changes: /// /// CustomEventRecord and TypedEventRecord now use TSC delta encoding similar to /// what FunctionRecord instances use, and we no longer need to include the CPU /// id in the CustomEventRecord. /// Error loadFDRLog(StringRef Data, bool IsLittleEndian, XRayFileHeader &FileHeader, std::vector &Records) { if (Data.size() < 32) return createStringError(std::make_error_code(std::errc::invalid_argument), "Not enough bytes for an XRay FDR log."); DataExtractor DE(Data, IsLittleEndian, 8); uint64_t OffsetPtr = 0; auto FileHeaderOrError = readBinaryFormatHeader(DE, OffsetPtr); if (!FileHeaderOrError) return FileHeaderOrError.takeError(); FileHeader = std::move(FileHeaderOrError.get()); // First we load the records into memory. std::vector> FDRRecords; { FileBasedRecordProducer P(FileHeader, DE, OffsetPtr); LogBuilderConsumer C(FDRRecords); while (DE.isValidOffsetForDataOfSize(OffsetPtr, 1)) { auto R = P.produce(); if (!R) return R.takeError(); if (auto E = C.consume(std::move(R.get()))) return E; } } // Next we index the records into blocks. BlockIndexer::Index Index; { BlockIndexer Indexer(Index); for (auto &R : FDRRecords) if (auto E = R->apply(Indexer)) return E; if (auto E = Indexer.flush()) return E; } // Then we verify the consistency of the blocks. { for (auto &PTB : Index) { auto &Blocks = PTB.second; for (auto &B : Blocks) { BlockVerifier Verifier; for (auto *R : B.Records) if (auto E = R->apply(Verifier)) return E; if (auto E = Verifier.verify()) return E; } } } // This is now the meat of the algorithm. Here we sort the blocks according to // the Walltime record in each of the blocks for the same thread. This allows // us to more consistently recreate the execution trace in temporal order. // After the sort, we then reconstitute `Trace` records using a stateful // visitor associated with a single process+thread pair. { for (auto &PTB : Index) { auto &Blocks = PTB.second; llvm::sort(Blocks, [](const BlockIndexer::Block &L, const BlockIndexer::Block &R) { return (L.WallclockTime->seconds() < R.WallclockTime->seconds() && L.WallclockTime->nanos() < R.WallclockTime->nanos()); }); auto Adder = [&](const XRayRecord &R) { Records.push_back(R); }; TraceExpander Expander(Adder, FileHeader.Version); for (auto &B : Blocks) { for (auto *R : B.Records) if (auto E = R->apply(Expander)) return E; } if (auto E = Expander.flush()) return E; } } return Error::success(); } Error loadYAMLLog(StringRef Data, XRayFileHeader &FileHeader, std::vector &Records) { YAMLXRayTrace Trace; Input In(Data); In >> Trace; if (In.error()) return make_error("Failed loading YAML Data.", In.error()); FileHeader.Version = Trace.Header.Version; FileHeader.Type = Trace.Header.Type; FileHeader.ConstantTSC = Trace.Header.ConstantTSC; FileHeader.NonstopTSC = Trace.Header.NonstopTSC; FileHeader.CycleFrequency = Trace.Header.CycleFrequency; if (FileHeader.Version != 1) return make_error( Twine("Unsupported XRay file version: ") + Twine(FileHeader.Version), std::make_error_code(std::errc::invalid_argument)); Records.clear(); std::transform(Trace.Records.begin(), Trace.Records.end(), std::back_inserter(Records), [&](const YAMLXRayRecord &R) { return XRayRecord{R.RecordType, R.CPU, R.Type, R.FuncId, R.TSC, R.TId, R.PId, R.CallArgs, R.Data}; }); return Error::success(); } } // namespace Expected llvm::xray::loadTraceFile(StringRef Filename, bool Sort) { Expected FdOrErr = sys::fs::openNativeFileForRead(Filename); if (!FdOrErr) return FdOrErr.takeError(); uint64_t FileSize; if (auto EC = sys::fs::file_size(Filename, FileSize)) { return make_error( Twine("Cannot read log from '") + Filename + "'", EC); } if (FileSize < 4) { return make_error( Twine("File '") + Filename + "' too small for XRay.", std::make_error_code(std::errc::executable_format_error)); } // Map the opened file into memory and use a StringRef to access it later. std::error_code EC; sys::fs::mapped_file_region MappedFile( *FdOrErr, sys::fs::mapped_file_region::mapmode::readonly, FileSize, 0, EC); sys::fs::closeFile(*FdOrErr); if (EC) { return make_error( Twine("Cannot read log from '") + Filename + "'", EC); } auto Data = StringRef(MappedFile.data(), MappedFile.size()); // TODO: Lift the endianness and implementation selection here. DataExtractor LittleEndianDE(Data, true, 8); auto TraceOrError = loadTrace(LittleEndianDE, Sort); if (!TraceOrError) { DataExtractor BigEndianDE(Data, false, 8); TraceOrError = loadTrace(BigEndianDE, Sort); } return TraceOrError; } Expected llvm::xray::loadTrace(const DataExtractor &DE, bool Sort) { // Attempt to detect the file type using file magic. We have a slight bias // towards the binary format, and we do this by making sure that the first 4 // bytes of the binary file is some combination of the following byte // patterns: (observe the code loading them assumes they're little endian) // // 0x01 0x00 0x00 0x00 - version 1, "naive" format // 0x01 0x00 0x01 0x00 - version 1, "flight data recorder" format // 0x02 0x00 0x01 0x00 - version 2, "flight data recorder" format // // YAML files don't typically have those first four bytes as valid text so we // try loading assuming YAML if we don't find these bytes. // // Only if we can't load either the binary or the YAML format will we yield an // error. DataExtractor HeaderExtractor(DE.getData(), DE.isLittleEndian(), 8); uint64_t OffsetPtr = 0; uint16_t Version = HeaderExtractor.getU16(&OffsetPtr); uint16_t Type = HeaderExtractor.getU16(&OffsetPtr); enum BinaryFormatType { NAIVE_FORMAT = 0, FLIGHT_DATA_RECORDER_FORMAT = 1 }; Trace T; switch (Type) { case NAIVE_FORMAT: if (Version == 1 || Version == 2 || Version == 3) { if (auto E = loadNaiveFormatLog(DE.getData(), DE.isLittleEndian(), T.FileHeader, T.Records)) return std::move(E); } else { return make_error( Twine("Unsupported version for Basic/Naive Mode logging: ") + Twine(Version), std::make_error_code(std::errc::executable_format_error)); } break; case FLIGHT_DATA_RECORDER_FORMAT: if (Version >= 1 && Version <= 5) { if (auto E = loadFDRLog(DE.getData(), DE.isLittleEndian(), T.FileHeader, T.Records)) return std::move(E); } else { return make_error( Twine("Unsupported version for FDR Mode logging: ") + Twine(Version), std::make_error_code(std::errc::executable_format_error)); } break; default: if (auto E = loadYAMLLog(DE.getData(), T.FileHeader, T.Records)) return std::move(E); } if (Sort) llvm::stable_sort(T.Records, [&](const XRayRecord &L, const XRayRecord &R) { return L.TSC < R.TSC; }); return std::move(T); }