//===- VPlanValue.h - Represent Values in Vectorizer Plan -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file contains the declarations of the entities induced by Vectorization /// Plans, e.g. the instructions the VPlan intends to generate if executed. /// VPlan models the following entities: /// VPValue VPUser VPDef /// | | /// VPInstruction /// These are documented in docs/VectorizationPlan.rst. /// //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/ADT/iterator_range.h" namespace llvm { // Forward declarations. class raw_ostream; class Value; class VPDef; class VPSlotTracker; class VPUser; class VPRecipeBase; class VPWidenMemoryInstructionRecipe; // This is the base class of the VPlan Def/Use graph, used for modeling the data // flow into, within and out of the VPlan. VPValues can stand for live-ins // coming from the input IR, instructions which VPlan will generate if executed // and live-outs which the VPlan will need to fix accordingly. class VPValue { friend class VPBuilder; friend class VPDef; friend class VPInstruction; friend struct VPlanTransforms; friend class VPBasicBlock; friend class VPInterleavedAccessInfo; friend class VPSlotTracker; friend class VPRecipeBase; friend class VPWidenMemoryInstructionRecipe; const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). SmallVector Users; protected: // Hold the underlying Value, if any, attached to this VPValue. Value *UnderlyingVal; /// Pointer to the VPDef that defines this VPValue. If it is nullptr, the /// VPValue is not defined by any recipe modeled in VPlan. VPDef *Def; VPValue(const unsigned char SC, Value *UV = nullptr, VPDef *Def = nullptr); // DESIGN PRINCIPLE: Access to the underlying IR must be strictly limited to // the front-end and back-end of VPlan so that the middle-end is as // independent as possible of the underlying IR. We grant access to the // underlying IR using friendship. In that way, we should be able to use VPlan // for multiple underlying IRs (Polly?) by providing a new VPlan front-end, // back-end and analysis information for the new IR. // Set \p Val as the underlying Value of this VPValue. void setUnderlyingValue(Value *Val) { assert(!UnderlyingVal && "Underlying Value is already set."); UnderlyingVal = Val; } public: /// Return the underlying Value attached to this VPValue. Value *getUnderlyingValue() { return UnderlyingVal; } const Value *getUnderlyingValue() const { return UnderlyingVal; } /// An enumeration for keeping track of the concrete subclass of VPValue that /// are actually instantiated. enum { VPValueSC, /// A generic VPValue, like live-in values or defined by a recipe /// that defines multiple values. VPVRecipeSC /// A VPValue sub-class that is a VPRecipeBase. }; /// Create a live-in VPValue. VPValue(Value *UV = nullptr) : VPValue(VPValueSC, UV, nullptr) {} /// Create a VPValue for a \p Def which is a subclass of VPValue. VPValue(VPDef *Def, Value *UV = nullptr) : VPValue(VPVRecipeSC, UV, Def) {} /// Create a VPValue for a \p Def which defines multiple values. VPValue(Value *UV, VPDef *Def) : VPValue(VPValueSC, UV, Def) {} VPValue(const VPValue &) = delete; VPValue &operator=(const VPValue &) = delete; virtual ~VPValue(); /// \return an ID for the concrete type of this object. /// This is used to implement the classof checks. This should not be used /// for any other purpose, as the values may change as LLVM evolves. unsigned getVPValueID() const { return SubclassID; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const; void print(raw_ostream &OS, VPSlotTracker &Tracker) const; /// Dump the value to stderr (for debugging). void dump() const; #endif unsigned getNumUsers() const { return Users.size(); } void addUser(VPUser &User) { Users.push_back(&User); } /// Remove a single \p User from the list of users. void removeUser(VPUser &User) { // The same user can be added multiple times, e.g. because the same VPValue // is used twice by the same VPUser. Remove a single one. auto *I = find(Users, &User); if (I != Users.end()) Users.erase(I); } typedef SmallVectorImpl::iterator user_iterator; typedef SmallVectorImpl::const_iterator const_user_iterator; typedef iterator_range user_range; typedef iterator_range const_user_range; user_iterator user_begin() { return Users.begin(); } const_user_iterator user_begin() const { return Users.begin(); } user_iterator user_end() { return Users.end(); } const_user_iterator user_end() const { return Users.end(); } user_range users() { return user_range(user_begin(), user_end()); } const_user_range users() const { return const_user_range(user_begin(), user_end()); } /// Returns true if the value has more than one unique user. bool hasMoreThanOneUniqueUser() { if (getNumUsers() == 0) return false; // Check if all users match the first user. auto Current = std::next(user_begin()); while (Current != user_end() && *user_begin() == *Current) Current++; return Current != user_end(); } void replaceAllUsesWith(VPValue *New); /// Go through the uses list for this VPValue and make each use point to \p /// New if the callback ShouldReplace returns true for the given use specified /// by a pair of (VPUser, the use index). void replaceUsesWithIf( VPValue *New, llvm::function_ref ShouldReplace); /// Returns the recipe defining this VPValue or nullptr if it is not defined /// by a recipe, i.e. is a live-in. VPRecipeBase *getDefiningRecipe(); const VPRecipeBase *getDefiningRecipe() const; /// Returns true if this VPValue is defined by a recipe. bool hasDefiningRecipe() const { return getDefiningRecipe(); } /// Returns true if this VPValue is a live-in, i.e. defined outside the VPlan. bool isLiveIn() const { return !hasDefiningRecipe(); } /// Returns the underlying IR value, if this VPValue is defined outside the /// scope of VPlan. Returns nullptr if the VPValue is defined by a VPDef /// inside a VPlan. Value *getLiveInIRValue() { assert(isLiveIn() && "VPValue is not a live-in; it is defined by a VPDef inside a VPlan"); return getUnderlyingValue(); } const Value *getLiveInIRValue() const { assert(isLiveIn() && "VPValue is not a live-in; it is defined by a VPDef inside a VPlan"); return getUnderlyingValue(); } /// Returns true if the VPValue is defined outside any vector regions, i.e. it /// is a live-in value. /// TODO: Also handle recipes defined in pre-header blocks. bool isDefinedOutsideVectorRegions() const { return !hasDefiningRecipe(); } }; typedef DenseMap Value2VPValueTy; typedef DenseMap VPValue2ValueTy; raw_ostream &operator<<(raw_ostream &OS, const VPValue &V); /// This class augments VPValue with operands which provide the inverse def-use /// edges from VPValue's users to their defs. class VPUser { public: /// Subclass identifier (for isa/dyn_cast). enum class VPUserID { Recipe, LiveOut, }; private: SmallVector Operands; VPUserID ID; protected: #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// Print the operands to \p O. void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const; #endif VPUser(ArrayRef Operands, VPUserID ID) : ID(ID) { for (VPValue *Operand : Operands) addOperand(Operand); } VPUser(std::initializer_list Operands, VPUserID ID) : VPUser(ArrayRef(Operands), ID) {} template VPUser(iterator_range Operands, VPUserID ID) : ID(ID) { for (VPValue *Operand : Operands) addOperand(Operand); } public: VPUser() = delete; VPUser(const VPUser &) = delete; VPUser &operator=(const VPUser &) = delete; virtual ~VPUser() { for (VPValue *Op : operands()) Op->removeUser(*this); } VPUserID getVPUserID() const { return ID; } void addOperand(VPValue *Operand) { Operands.push_back(Operand); Operand->addUser(*this); } unsigned getNumOperands() const { return Operands.size(); } inline VPValue *getOperand(unsigned N) const { assert(N < Operands.size() && "Operand index out of bounds"); return Operands[N]; } void setOperand(unsigned I, VPValue *New) { Operands[I]->removeUser(*this); Operands[I] = New; New->addUser(*this); } void removeLastOperand() { VPValue *Op = Operands.pop_back_val(); Op->removeUser(*this); } typedef SmallVectorImpl::iterator operand_iterator; typedef SmallVectorImpl::const_iterator const_operand_iterator; typedef iterator_range operand_range; typedef iterator_range const_operand_range; operand_iterator op_begin() { return Operands.begin(); } const_operand_iterator op_begin() const { return Operands.begin(); } operand_iterator op_end() { return Operands.end(); } const_operand_iterator op_end() const { return Operands.end(); } operand_range operands() { return operand_range(op_begin(), op_end()); } const_operand_range operands() const { return const_operand_range(op_begin(), op_end()); } /// Returns true if the VPUser uses scalars of operand \p Op. Conservatively /// returns if only first (scalar) lane is used, as default. virtual bool usesScalars(const VPValue *Op) const { assert(is_contained(operands(), Op) && "Op must be an operand of the recipe"); return onlyFirstLaneUsed(Op); } /// Returns true if the VPUser only uses the first lane of operand \p Op. /// Conservatively returns false. virtual bool onlyFirstLaneUsed(const VPValue *Op) const { assert(is_contained(operands(), Op) && "Op must be an operand of the recipe"); return false; } /// Returns true if the VPUser only uses the first part of operand \p Op. /// Conservatively returns false. virtual bool onlyFirstPartUsed(const VPValue *Op) const { assert(is_contained(operands(), Op) && "Op must be an operand of the recipe"); return false; } }; /// This class augments a recipe with a set of VPValues defined by the recipe. /// It allows recipes to define zero, one or multiple VPValues. A VPDef owns /// the VPValues it defines and is responsible for deleting its defined values. /// Single-value VPDefs that also inherit from VPValue must make sure to inherit /// from VPDef before VPValue. class VPDef { friend class VPValue; /// Subclass identifier (for isa/dyn_cast). const unsigned char SubclassID; /// The VPValues defined by this VPDef. TinyPtrVector DefinedValues; /// Add \p V as a defined value by this VPDef. void addDefinedValue(VPValue *V) { assert(V->Def == this && "can only add VPValue already linked with this VPDef"); DefinedValues.push_back(V); } /// Remove \p V from the values defined by this VPDef. \p V must be a defined /// value of this VPDef. void removeDefinedValue(VPValue *V) { assert(V->Def == this && "can only remove VPValue linked with this VPDef"); assert(is_contained(DefinedValues, V) && "VPValue to remove must be in DefinedValues"); llvm::erase(DefinedValues, V); V->Def = nullptr; } public: /// An enumeration for keeping track of the concrete subclass of VPRecipeBase /// that is actually instantiated. Values of this enumeration are kept in the /// SubclassID field of the VPRecipeBase objects. They are used for concrete /// type identification. using VPRecipeTy = enum { VPBranchOnMaskSC, VPDerivedIVSC, VPExpandSCEVSC, VPInstructionSC, VPInterleaveSC, VPReductionSC, VPReplicateSC, VPScalarIVStepsSC, VPVectorPointerSC, VPWidenCallSC, VPWidenCanonicalIVSC, VPWidenCastSC, VPWidenGEPSC, VPWidenMemoryInstructionSC, VPWidenSC, VPWidenSelectSC, // START: Phi-like recipes. Need to be kept together. VPBlendSC, VPPredInstPHISC, // START: SubclassID for recipes that inherit VPHeaderPHIRecipe. // VPHeaderPHIRecipe need to be kept together. VPCanonicalIVPHISC, VPActiveLaneMaskPHISC, VPFirstOrderRecurrencePHISC, VPWidenPHISC, VPWidenIntOrFpInductionSC, VPWidenPointerInductionSC, VPReductionPHISC, // END: SubclassID for recipes that inherit VPHeaderPHIRecipe // END: Phi-like recipes VPFirstPHISC = VPBlendSC, VPFirstHeaderPHISC = VPCanonicalIVPHISC, VPLastHeaderPHISC = VPReductionPHISC, VPLastPHISC = VPReductionPHISC, }; VPDef(const unsigned char SC) : SubclassID(SC) {} virtual ~VPDef() { for (VPValue *D : make_early_inc_range(DefinedValues)) { assert(D->Def == this && "all defined VPValues should point to the containing VPDef"); assert(D->getNumUsers() == 0 && "all defined VPValues should have no more users"); D->Def = nullptr; delete D; } } /// Returns the only VPValue defined by the VPDef. Can only be called for /// VPDefs with a single defined value. VPValue *getVPSingleValue() { assert(DefinedValues.size() == 1 && "must have exactly one defined value"); assert(DefinedValues[0] && "defined value must be non-null"); return DefinedValues[0]; } const VPValue *getVPSingleValue() const { assert(DefinedValues.size() == 1 && "must have exactly one defined value"); assert(DefinedValues[0] && "defined value must be non-null"); return DefinedValues[0]; } /// Returns the VPValue with index \p I defined by the VPDef. VPValue *getVPValue(unsigned I) { assert(DefinedValues[I] && "defined value must be non-null"); return DefinedValues[I]; } const VPValue *getVPValue(unsigned I) const { assert(DefinedValues[I] && "defined value must be non-null"); return DefinedValues[I]; } /// Returns an ArrayRef of the values defined by the VPDef. ArrayRef definedValues() { return DefinedValues; } /// Returns an ArrayRef of the values defined by the VPDef. ArrayRef definedValues() const { return DefinedValues; } /// Returns the number of values defined by the VPDef. unsigned getNumDefinedValues() const { return DefinedValues.size(); } /// \return an ID for the concrete type of this object. /// This is used to implement the classof checks. This should not be used /// for any other purpose, as the values may change as LLVM evolves. unsigned getVPDefID() const { return SubclassID; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// Dump the VPDef to stderr (for debugging). void dump() const; /// Each concrete VPDef prints itself. virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const = 0; #endif }; class VPlan; class VPBasicBlock; /// This class can be used to assign consecutive numbers to all VPValues in a /// VPlan and allows querying the numbering for printing, similar to the /// ModuleSlotTracker for IR values. class VPSlotTracker { DenseMap Slots; unsigned NextSlot = 0; void assignSlot(const VPValue *V); void assignSlots(const VPlan &Plan); void assignSlots(const VPBasicBlock *VPBB); public: VPSlotTracker(const VPlan *Plan = nullptr) { if (Plan) assignSlots(*Plan); } unsigned getSlot(const VPValue *V) const { auto I = Slots.find(V); if (I == Slots.end()) return -1; return I->second; } }; } // namespace llvm #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_VALUE_H