//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the construction of a VPlan-based Hierarchical CFG /// (H-CFG) for an incoming IR. This construction comprises the following /// components and steps: // /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top /// Region) is created to enclose and serve as parent of all the VPBasicBlocks /// in the plain CFG. /// NOTE: At this point, there is a direct correspondence between all the /// VPBasicBlocks created for the initial plain CFG and the incoming /// BasicBlocks. However, this might change in the future. /// //===----------------------------------------------------------------------===// #include "VPlanHCFGBuilder.h" #include "LoopVectorizationPlanner.h" #include "llvm/Analysis/LoopIterator.h" #define DEBUG_TYPE "loop-vectorize" using namespace llvm; namespace { // Class that is used to build the plain CFG for the incoming IR. class PlainCFGBuilder { private: // The outermost loop of the input loop nest considered for vectorization. Loop *TheLoop; // Loop Info analysis. LoopInfo *LI; // Vectorization plan that we are working on. VPlan &Plan; // Builder of the VPlan instruction-level representation. VPBuilder VPIRBuilder; // NOTE: The following maps are intentionally destroyed after the plain CFG // construction because subsequent VPlan-to-VPlan transformation may // invalidate them. // Map incoming BasicBlocks to their newly-created VPBasicBlocks. DenseMap BB2VPBB; // Map incoming Value definitions to their newly-created VPValues. DenseMap IRDef2VPValue; // Hold phi node's that need to be fixed once the plain CFG has been built. SmallVector PhisToFix; /// Maps loops in the original IR to their corresponding region. DenseMap Loop2Region; // Utility functions. void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB); void fixPhiNodes(); VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); #ifndef NDEBUG bool isExternalDef(Value *Val); #endif VPValue *getOrCreateVPOperand(Value *IRVal); void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); public: PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) : TheLoop(Lp), LI(LI), Plan(P) {} /// Build plain CFG for TheLoop and connects it to Plan's entry. void buildPlainCFG(); }; } // anonymous namespace // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB // must have no predecessors. void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * { auto *SinglePred = BB->getSinglePredecessor(); Loop *LoopForBB = LI->getLoopFor(BB); if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB) return nullptr; // The input IR must be in loop-simplify form, ensuring a single predecessor // for exit blocks. assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() && "SinglePred must be the only loop latch"); return SinglePred; }; if (auto *LatchBB = GetLatchOfExit(BB)) { auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent(); assert(VPBB == cast(PredRegion->getSingleSuccessor()) && "successor must already be set for PredRegion; it must have VPBB " "as single successor"); VPBB->setPredecessors({PredRegion}); return; } // Collect VPBB predecessors. SmallVector VPBBPreds; for (BasicBlock *Pred : predecessors(BB)) VPBBPreds.push_back(getOrCreateVPBB(Pred)); VPBB->setPredecessors(VPBBPreds); } static bool isHeaderBB(BasicBlock *BB, Loop *L) { return L && BB == L->getHeader(); } void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region, BasicBlock *BB) { // BB is a loop header block. Connect the region to the loop preheader. Loop *LoopOfBB = LI->getLoopFor(BB); Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())}); } // Add operands to VPInstructions representing phi nodes from the input IR. void PlainCFGBuilder::fixPhiNodes() { for (auto *Phi : PhisToFix) { assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); VPValue *VPVal = IRDef2VPValue[Phi]; assert(isa(VPVal) && "Expected WidenPHIRecipe for phi node."); auto *VPPhi = cast(VPVal); assert(VPPhi->getNumOperands() == 0 && "Expected VPInstruction with no operands."); Loop *L = LI->getLoopFor(Phi->getParent()); if (isHeaderBB(Phi->getParent(), L)) { // For header phis, make sure the incoming value from the loop // predecessor is the first operand of the recipe. assert(Phi->getNumOperands() == 2); BasicBlock *LoopPred = L->getLoopPredecessor(); VPPhi->addIncoming( getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)), BB2VPBB[LoopPred]); BasicBlock *LoopLatch = L->getLoopLatch(); VPPhi->addIncoming( getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)), BB2VPBB[LoopLatch]); continue; } for (unsigned I = 0; I != Phi->getNumOperands(); ++I) VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)), BB2VPBB[Phi->getIncomingBlock(I)]); } } static bool isHeaderVPBB(VPBasicBlock *VPBB) { return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB; } /// Return true of \p L loop is contained within \p OuterLoop. static bool doesContainLoop(const Loop *L, const Loop *OuterLoop) { if (L->getLoopDepth() < OuterLoop->getLoopDepth()) return false; const Loop *P = L; while (P) { if (P == OuterLoop) return true; P = P->getParentLoop(); } return false; } // Create a new empty VPBasicBlock for an incoming BasicBlock in the region // corresponding to the containing loop or retrieve an existing one if it was // already created. If no region exists yet for the loop containing \p BB, a new // one is created. VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { if (auto *VPBB = BB2VPBB.lookup(BB)) { // Retrieve existing VPBB. return VPBB; } // Create new VPBB. StringRef Name = isHeaderBB(BB, TheLoop) ? "vector.body" : BB->getName(); LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n"); VPBasicBlock *VPBB = new VPBasicBlock(Name); BB2VPBB[BB] = VPBB; // Get or create a region for the loop containing BB. Loop *LoopOfBB = LI->getLoopFor(BB); if (!LoopOfBB || !doesContainLoop(LoopOfBB, TheLoop)) return VPBB; auto *RegionOfVPBB = Loop2Region.lookup(LoopOfBB); if (!isHeaderBB(BB, LoopOfBB)) { assert(RegionOfVPBB && "Region should have been created by visiting header earlier"); VPBB->setParent(RegionOfVPBB); return VPBB; } assert(!RegionOfVPBB && "First visit of a header basic block expects to register its region."); // Handle a header - take care of its Region. if (LoopOfBB == TheLoop) { RegionOfVPBB = Plan.getVectorLoopRegion(); } else { RegionOfVPBB = new VPRegionBlock(Name.str(), false /*isReplicator*/); RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]); } RegionOfVPBB->setEntry(VPBB); Loop2Region[LoopOfBB] = RegionOfVPBB; return VPBB; } #ifndef NDEBUG // Return true if \p Val is considered an external definition. An external // definition is either: // 1. A Value that is not an Instruction. This will be refined in the future. // 2. An Instruction that is outside of the CFG snippet represented in VPlan, // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) // outermost loop exits. bool PlainCFGBuilder::isExternalDef(Value *Val) { // All the Values that are not Instructions are considered external // definitions for now. Instruction *Inst = dyn_cast(Val); if (!Inst) return true; BasicBlock *InstParent = Inst->getParent(); assert(InstParent && "Expected instruction parent."); // Check whether Instruction definition is in loop PH. BasicBlock *PH = TheLoop->getLoopPreheader(); assert(PH && "Expected loop pre-header."); if (InstParent == PH) // Instruction definition is in outermost loop PH. return false; // Check whether Instruction definition is in the loop exit. BasicBlock *Exit = TheLoop->getUniqueExitBlock(); assert(Exit && "Expected loop with single exit."); if (InstParent == Exit) { // Instruction definition is in outermost loop exit. return false; } // Check whether Instruction definition is in loop body. return !TheLoop->contains(Inst); } #endif // Create a new VPValue or retrieve an existing one for the Instruction's // operand \p IRVal. This function must only be used to create/retrieve VPValues // for *Instruction's operands* and not to create regular VPInstruction's. For // the latter, please, look at 'createVPInstructionsForVPBB'. VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { auto VPValIt = IRDef2VPValue.find(IRVal); if (VPValIt != IRDef2VPValue.end()) // Operand has an associated VPInstruction or VPValue that was previously // created. return VPValIt->second; // Operand doesn't have a previously created VPInstruction/VPValue. This // means that operand is: // A) a definition external to VPlan, // B) any other Value without specific representation in VPlan. // For now, we use VPValue to represent A and B and classify both as external // definitions. We may introduce specific VPValue subclasses for them in the // future. assert(isExternalDef(IRVal) && "Expected external definition as operand."); // A and B: Create VPValue and add it to the pool of external definitions and // to the Value->VPValue map. VPValue *NewVPVal = Plan.getVPValueOrAddLiveIn(IRVal); IRDef2VPValue[IRVal] = NewVPVal; return NewVPVal; } // Create new VPInstructions in a VPBasicBlock, given its BasicBlock // counterpart. This function must be invoked in RPO so that the operands of a // VPInstruction in \p BB have been visited before (except for Phi nodes). void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB) { VPIRBuilder.setInsertPoint(VPBB); for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) { Instruction *Inst = &InstRef; // There shouldn't be any VPValue for Inst at this point. Otherwise, we // visited Inst when we shouldn't, breaking the RPO traversal order. assert(!IRDef2VPValue.count(Inst) && "Instruction shouldn't have been visited."); if (auto *Br = dyn_cast(Inst)) { // Conditional branch instruction are represented using BranchOnCond // recipes. if (Br->isConditional()) { VPValue *Cond = getOrCreateVPOperand(Br->getCondition()); VPBB->appendRecipe( new VPInstruction(VPInstruction::BranchOnCond, {Cond})); } // Skip the rest of the Instruction processing for Branch instructions. continue; } VPValue *NewVPV; if (auto *Phi = dyn_cast(Inst)) { // Phi node's operands may have not been visited at this point. We create // an empty VPInstruction that we will fix once the whole plain CFG has // been built. NewVPV = new VPWidenPHIRecipe(Phi); VPBB->appendRecipe(cast(NewVPV)); PhisToFix.push_back(Phi); } else { // Translate LLVM-IR operands into VPValue operands and set them in the // new VPInstruction. SmallVector VPOperands; for (Value *Op : Inst->operands()) VPOperands.push_back(getOrCreateVPOperand(Op)); // Build VPInstruction for any arbitrary Instruction without specific // representation in VPlan. NewVPV = cast( VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); } IRDef2VPValue[Inst] = NewVPV; } } // Main interface to build the plain CFG. void PlainCFGBuilder::buildPlainCFG() { // 0. Reuse the top-level region, vector-preheader and exit VPBBs from the // skeleton. These were created directly rather than via getOrCreateVPBB(), // revisit them now to update BB2VPBB. Note that header/entry and // latch/exiting VPBB's of top-level region have yet to be created. VPRegionBlock *TheRegion = Plan.getVectorLoopRegion(); BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader(); assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) && "Unexpected loop preheader"); auto *VectorPreheaderVPBB = cast(TheRegion->getSinglePredecessor()); // ThePreheaderBB conceptually corresponds to both Plan.getPreheader() (which // wraps the original preheader BB) and Plan.getEntry() (which represents the // new vector preheader); here we're interested in setting BB2VPBB to the // latter. BB2VPBB[ThePreheaderBB] = VectorPreheaderVPBB; BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); assert(LoopExitBB && "Loops with multiple exits are not supported."); BB2VPBB[LoopExitBB] = cast(TheRegion->getSingleSuccessor()); // 1. Scan the body of the loop in a topological order to visit each basic // block after having visited its predecessor basic blocks. Create a VPBB for // each BB and link it to its successor and predecessor VPBBs. Note that // predecessors must be set in the same order as they are in the incomming IR. // Otherwise, there might be problems with existing phi nodes and algorithm // based on predecessors traversal. // Loop PH needs to be explicitly visited since it's not taken into account by // LoopBlocksDFS. for (auto &I : *ThePreheaderBB) { if (I.getType()->isVoidTy()) continue; IRDef2VPValue[&I] = Plan.getVPValueOrAddLiveIn(&I); } LoopBlocksRPO RPO(TheLoop); RPO.perform(LI); for (BasicBlock *BB : RPO) { // Create or retrieve the VPBasicBlock for this BB and create its // VPInstructions. VPBasicBlock *VPBB = getOrCreateVPBB(BB); VPRegionBlock *Region = VPBB->getParent(); createVPInstructionsForVPBB(VPBB, BB); Loop *LoopForBB = LI->getLoopFor(BB); // Set VPBB predecessors in the same order as they are in the incoming BB. if (!isHeaderBB(BB, LoopForBB)) { setVPBBPredsFromBB(VPBB, BB); } else { // BB is a loop header, set the predecessor for the region, except for the // top region, whose predecessor was set when creating VPlan's skeleton. assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree"); if (TheRegion != Region) setRegionPredsFromBB(Region, BB); } // Set VPBB successors. We create empty VPBBs for successors if they don't // exist already. Recipes will be created when the successor is visited // during the RPO traversal. auto *BI = cast(BB->getTerminator()); unsigned NumSuccs = succ_size(BB); if (NumSuccs == 1) { auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor()); VPBB->setOneSuccessor(isHeaderVPBB(Successor) ? Successor->getParent() : static_cast(Successor)); continue; } assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() && "block must have conditional branch with 2 successors"); // Look up the branch condition to get the corresponding VPValue // representing the condition bit in VPlan (which may be in another VPBB). assert(IRDef2VPValue.contains(BI->getCondition()) && "Missing condition bit in IRDef2VPValue!"); VPBasicBlock *Successor0 = getOrCreateVPBB(BI->getSuccessor(0)); VPBasicBlock *Successor1 = getOrCreateVPBB(BI->getSuccessor(1)); if (!LoopForBB || BB != LoopForBB->getLoopLatch()) { VPBB->setTwoSuccessors(Successor0, Successor1); continue; } // For a latch we need to set the successor of the region rather than that // of VPBB and it should be set to the exit, i.e., non-header successor, // except for the top region, whose successor was set when creating VPlan's // skeleton. if (TheRegion != Region) Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1 : Successor0); Region->setExiting(VPBB); } // 2. The whole CFG has been built at this point so all the input Values must // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding // VPlan operands. fixPhiNodes(); } void VPlanHCFGBuilder::buildPlainCFG() { PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); PCFGBuilder.buildPlainCFG(); } // Public interface to build a H-CFG. void VPlanHCFGBuilder::buildHierarchicalCFG() { // Build Top Region enclosing the plain CFG. buildPlainCFG(); LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); Verifier.verifyHierarchicalCFG(TopRegion); // Compute plain CFG dom tree for VPLInfo. VPDomTree.recalculate(Plan); LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n"; VPDomTree.print(dbgs())); }