//===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // For each natural loop with multiple exit blocks, this pass creates a new // block N such that all exiting blocks now branch to N, and then control flow // is redistributed to all the original exit blocks. // // Limitation: This assumes that all terminators in the CFG are direct branches // (the "br" instruction). The presence of any other control flow // such as indirectbr, switch or callbr will cause an assert. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/UnifyLoopExits.h" #include "llvm/ADT/MapVector.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #define DEBUG_TYPE "unify-loop-exits" using namespace llvm; static cl::opt MaxBooleansInControlFlowHub( "max-booleans-in-control-flow-hub", cl::init(32), cl::Hidden, cl::desc("Set the maximum number of outgoing blocks for using a boolean " "value to record the exiting block in CreateControlFlowHub.")); namespace { struct UnifyLoopExitsLegacyPass : public FunctionPass { static char ID; UnifyLoopExitsLegacyPass() : FunctionPass(ID) { initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } bool runOnFunction(Function &F) override; }; } // namespace char UnifyLoopExitsLegacyPass::ID = 0; FunctionPass *llvm::createUnifyLoopExitsPass() { return new UnifyLoopExitsLegacyPass(); } INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits", "Fixup each natural loop to have a single exit block", false /* Only looks at CFG */, false /* Analysis Pass */) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits", "Fixup each natural loop to have a single exit block", false /* Only looks at CFG */, false /* Analysis Pass */) // The current transform introduces new control flow paths which may break the // SSA requirement that every def must dominate all its uses. For example, // consider a value D defined inside the loop that is used by some instruction // U outside the loop. It follows that D dominates U, since the original // program has valid SSA form. After merging the exits, all paths from D to U // now flow through the unified exit block. In addition, there may be other // paths that do not pass through D, but now reach the unified exit // block. Thus, D no longer dominates U. // // Restore the dominance by creating a phi for each such D at the new unified // loop exit. But when doing this, ignore any uses U that are in the new unified // loop exit, since those were introduced specially when the block was created. // // The use of SSAUpdater seems like overkill for this operation. The location // for creating the new PHI is well-known, and also the set of incoming blocks // to the new PHI. static void restoreSSA(const DominatorTree &DT, const Loop *L, const SetVector &Incoming, BasicBlock *LoopExitBlock) { using InstVector = SmallVector; using IIMap = MapVector; IIMap ExternalUsers; for (auto *BB : L->blocks()) { for (auto &I : *BB) { for (auto &U : I.uses()) { auto UserInst = cast(U.getUser()); auto UserBlock = UserInst->getParent(); if (UserBlock == LoopExitBlock) continue; if (L->contains(UserBlock)) continue; LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "(" << BB->getName() << ")" << ": " << UserInst->getName() << "(" << UserBlock->getName() << ")" << "\n"); ExternalUsers[&I].push_back(UserInst); } } } for (const auto &II : ExternalUsers) { // For each Def used outside the loop, create NewPhi in // LoopExitBlock. NewPhi receives Def only along exiting blocks that // dominate it, while the remaining values are undefined since those paths // didn't exist in the original CFG. auto Def = II.first; LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n"); auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(), Def->getName() + ".moved", LoopExitBlock->begin()); for (auto *In : Incoming) { LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": "); if (Def->getParent() == In || DT.dominates(Def, In)) { LLVM_DEBUG(dbgs() << "dominated\n"); NewPhi->addIncoming(Def, In); } else { LLVM_DEBUG(dbgs() << "not dominated\n"); NewPhi->addIncoming(PoisonValue::get(Def->getType()), In); } } LLVM_DEBUG(dbgs() << "external users:"); for (auto *U : II.second) { LLVM_DEBUG(dbgs() << " " << U->getName()); U->replaceUsesOfWith(Def, NewPhi); } LLVM_DEBUG(dbgs() << "\n"); } } static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) { // To unify the loop exits, we need a list of the exiting blocks as // well as exit blocks. The functions for locating these lists both // traverse the entire loop body. It is more efficient to first // locate the exiting blocks and then examine their successors to // locate the exit blocks. SetVector ExitingBlocks; SetVector Exits; // We need SetVectors, but the Loop API takes a vector, so we use a temporary. SmallVector Temp; L->getExitingBlocks(Temp); for (auto *BB : Temp) { ExitingBlocks.insert(BB); for (auto *S : successors(BB)) { auto SL = LI.getLoopFor(S); // A successor is not an exit if it is directly or indirectly in the // current loop. if (SL == L || L->contains(SL)) continue; Exits.insert(S); } } LLVM_DEBUG( dbgs() << "Found exit blocks:"; for (auto Exit : Exits) { dbgs() << " " << Exit->getName(); } dbgs() << "\n"; dbgs() << "Found exiting blocks:"; for (auto EB : ExitingBlocks) { dbgs() << " " << EB->getName(); } dbgs() << "\n";); if (Exits.size() <= 1) { LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n"); return false; } SmallVector GuardBlocks; DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks, Exits, "loop.exit", MaxBooleansInControlFlowHub.getValue()); restoreSSA(DT, L, ExitingBlocks, LoopExitBlock); #if defined(EXPENSIVE_CHECKS) assert(DT.verify(DominatorTree::VerificationLevel::Full)); #else assert(DT.verify(DominatorTree::VerificationLevel::Fast)); #endif // EXPENSIVE_CHECKS L->verifyLoop(); // The guard blocks were created outside the loop, so they need to become // members of the parent loop. if (auto ParentLoop = L->getParentLoop()) { for (auto *G : GuardBlocks) { ParentLoop->addBasicBlockToLoop(G, LI); } ParentLoop->verifyLoop(); } #if defined(EXPENSIVE_CHECKS) LI.verify(DT); #endif // EXPENSIVE_CHECKS return true; } static bool runImpl(LoopInfo &LI, DominatorTree &DT) { bool Changed = false; auto Loops = LI.getLoopsInPreorder(); for (auto *L : Loops) { LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: " << LI.getLoopDepth(L->getHeader()) << ")\n"); Changed |= unifyLoopExits(DT, LI, L); } return Changed; } bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) { LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName() << "\n"); auto &LI = getAnalysis().getLoopInfo(); auto &DT = getAnalysis().getDomTree(); assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator."); return runImpl(LI, DT); } namespace llvm { PreservedAnalyses UnifyLoopExitsPass::run(Function &F, FunctionAnalysisManager &AM) { auto &LI = AM.getResult(F); auto &DT = AM.getResult(F); if (!runImpl(LI, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); return PA; } } // namespace llvm