//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // \file // This file implements the Sparse Conditional Constant Propagation (SCCP) // utility. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/SCCPSolver.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ValueLattice.h" #include "llvm/Analysis/ValueLatticeUtils.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/InstVisitor.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "sccp" // The maximum number of range extensions allowed for operations requiring // widening. static const unsigned MaxNumRangeExtensions = 10; /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions. static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() { return ValueLatticeElement::MergeOptions().setMaxWidenSteps( MaxNumRangeExtensions); } static ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty, bool UndefAllowed = true) { assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector"); if (LV.isConstantRange(UndefAllowed)) return LV.getConstantRange(); return ConstantRange::getFull(Ty->getScalarSizeInBits()); } namespace llvm { bool SCCPSolver::isConstant(const ValueLatticeElement &LV) { return LV.isConstant() || (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); } bool SCCPSolver::isOverdefined(const ValueLatticeElement &LV) { return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV); } static bool canRemoveInstruction(Instruction *I) { if (wouldInstructionBeTriviallyDead(I)) return true; // Some instructions can be handled but are rejected above. Catch // those cases by falling through to here. // TODO: Mark globals as being constant earlier, so // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads // TODO: are safe to remove. return isa(I); } bool SCCPSolver::tryToReplaceWithConstant(Value *V) { Constant *Const = getConstantOrNull(V); if (!Const) return false; // Replacing `musttail` instructions with constant breaks `musttail` invariant // unless the call itself can be removed. // Calls with "clang.arc.attachedcall" implicitly use the return value and // those uses cannot be updated with a constant. CallBase *CB = dyn_cast(V); if (CB && ((CB->isMustTailCall() && !canRemoveInstruction(CB)) || CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) { Function *F = CB->getCalledFunction(); // Don't zap returns of the callee if (F) addToMustPreserveReturnsInFunctions(F); LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB << " as a constant\n"); return false; } LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); // Replaces all of the uses of a variable with uses of the constant. V->replaceAllUsesWith(Const); return true; } /// Try to use \p Inst's value range from \p Solver to infer the NUW flag. static bool refineInstruction(SCCPSolver &Solver, const SmallPtrSetImpl &InsertedValues, Instruction &Inst) { if (!isa(Inst)) return false; auto GetRange = [&Solver, &InsertedValues](Value *Op) { if (auto *Const = dyn_cast(Op)) return ConstantRange(Const->getValue()); if (isa(Op) || InsertedValues.contains(Op)) { unsigned Bitwidth = Op->getType()->getScalarSizeInBits(); return ConstantRange::getFull(Bitwidth); } return getConstantRange(Solver.getLatticeValueFor(Op), Op->getType(), /*UndefAllowed=*/false); }; auto RangeA = GetRange(Inst.getOperand(0)); auto RangeB = GetRange(Inst.getOperand(1)); bool Changed = false; if (!Inst.hasNoUnsignedWrap()) { auto NUWRange = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::BinaryOps(Inst.getOpcode()), RangeB, OverflowingBinaryOperator::NoUnsignedWrap); if (NUWRange.contains(RangeA)) { Inst.setHasNoUnsignedWrap(); Changed = true; } } if (!Inst.hasNoSignedWrap()) { auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::BinaryOps(Inst.getOpcode()), RangeB, OverflowingBinaryOperator::NoSignedWrap); if (NSWRange.contains(RangeA)) { Inst.setHasNoSignedWrap(); Changed = true; } } return Changed; } /// Try to replace signed instructions with their unsigned equivalent. static bool replaceSignedInst(SCCPSolver &Solver, SmallPtrSetImpl &InsertedValues, Instruction &Inst) { // Determine if a signed value is known to be >= 0. auto isNonNegative = [&Solver](Value *V) { // If this value was constant-folded, it may not have a solver entry. // Handle integers. Otherwise, return false. if (auto *C = dyn_cast(V)) { auto *CInt = dyn_cast(C); return CInt && !CInt->isNegative(); } const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); return IV.isConstantRange(/*UndefAllowed=*/false) && IV.getConstantRange().isAllNonNegative(); }; Instruction *NewInst = nullptr; switch (Inst.getOpcode()) { // Note: We do not fold sitofp -> uitofp here because that could be more // expensive in codegen and may not be reversible in the backend. case Instruction::SExt: { // If the source value is not negative, this is a zext. Value *Op0 = Inst.getOperand(0); if (InsertedValues.count(Op0) || !isNonNegative(Op0)) return false; NewInst = new ZExtInst(Op0, Inst.getType(), "", &Inst); break; } case Instruction::AShr: { // If the shifted value is not negative, this is a logical shift right. Value *Op0 = Inst.getOperand(0); if (InsertedValues.count(Op0) || !isNonNegative(Op0)) return false; NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", &Inst); break; } case Instruction::SDiv: case Instruction::SRem: { // If both operands are not negative, this is the same as udiv/urem. Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1); if (InsertedValues.count(Op0) || InsertedValues.count(Op1) || !isNonNegative(Op0) || !isNonNegative(Op1)) return false; auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv : Instruction::URem; NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", &Inst); break; } default: return false; } // Wire up the new instruction and update state. assert(NewInst && "Expected replacement instruction"); NewInst->takeName(&Inst); InsertedValues.insert(NewInst); Inst.replaceAllUsesWith(NewInst); Solver.removeLatticeValueFor(&Inst); Inst.eraseFromParent(); return true; } bool SCCPSolver::simplifyInstsInBlock(BasicBlock &BB, SmallPtrSetImpl &InsertedValues, Statistic &InstRemovedStat, Statistic &InstReplacedStat) { bool MadeChanges = false; for (Instruction &Inst : make_early_inc_range(BB)) { if (Inst.getType()->isVoidTy()) continue; if (tryToReplaceWithConstant(&Inst)) { if (canRemoveInstruction(&Inst)) Inst.eraseFromParent(); MadeChanges = true; ++InstRemovedStat; } else if (replaceSignedInst(*this, InsertedValues, Inst)) { MadeChanges = true; ++InstReplacedStat; } else if (refineInstruction(*this, InsertedValues, Inst)) { MadeChanges = true; } } return MadeChanges; } bool SCCPSolver::removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU, BasicBlock *&NewUnreachableBB) const { SmallPtrSet FeasibleSuccessors; bool HasNonFeasibleEdges = false; for (BasicBlock *Succ : successors(BB)) { if (isEdgeFeasible(BB, Succ)) FeasibleSuccessors.insert(Succ); else HasNonFeasibleEdges = true; } // All edges feasible, nothing to do. if (!HasNonFeasibleEdges) return false; // SCCP can only determine non-feasible edges for br, switch and indirectbr. Instruction *TI = BB->getTerminator(); assert((isa(TI) || isa(TI) || isa(TI)) && "Terminator must be a br, switch or indirectbr"); if (FeasibleSuccessors.size() == 0) { // Branch on undef/poison, replace with unreachable. SmallPtrSet SeenSuccs; SmallVector Updates; for (BasicBlock *Succ : successors(BB)) { Succ->removePredecessor(BB); if (SeenSuccs.insert(Succ).second) Updates.push_back({DominatorTree::Delete, BB, Succ}); } TI->eraseFromParent(); new UnreachableInst(BB->getContext(), BB); DTU.applyUpdatesPermissive(Updates); } else if (FeasibleSuccessors.size() == 1) { // Replace with an unconditional branch to the only feasible successor. BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin(); SmallVector Updates; bool HaveSeenOnlyFeasibleSuccessor = false; for (BasicBlock *Succ : successors(BB)) { if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) { // Don't remove the edge to the only feasible successor the first time // we see it. We still do need to remove any multi-edges to it though. HaveSeenOnlyFeasibleSuccessor = true; continue; } Succ->removePredecessor(BB); Updates.push_back({DominatorTree::Delete, BB, Succ}); } BranchInst::Create(OnlyFeasibleSuccessor, BB); TI->eraseFromParent(); DTU.applyUpdatesPermissive(Updates); } else if (FeasibleSuccessors.size() > 1) { SwitchInstProfUpdateWrapper SI(*cast(TI)); SmallVector Updates; // If the default destination is unfeasible it will never be taken. Replace // it with a new block with a single Unreachable instruction. BasicBlock *DefaultDest = SI->getDefaultDest(); if (!FeasibleSuccessors.contains(DefaultDest)) { if (!NewUnreachableBB) { NewUnreachableBB = BasicBlock::Create(DefaultDest->getContext(), "default.unreachable", DefaultDest->getParent(), DefaultDest); new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB); } SI->setDefaultDest(NewUnreachableBB); Updates.push_back({DominatorTree::Delete, BB, DefaultDest}); Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB}); } for (auto CI = SI->case_begin(); CI != SI->case_end();) { if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) { ++CI; continue; } BasicBlock *Succ = CI->getCaseSuccessor(); Succ->removePredecessor(BB); Updates.push_back({DominatorTree::Delete, BB, Succ}); SI.removeCase(CI); // Don't increment CI, as we removed a case. } DTU.applyUpdatesPermissive(Updates); } else { llvm_unreachable("Must have at least one feasible successor"); } return true; } /// Helper class for SCCPSolver. This implements the instruction visitor and /// holds all the state. class SCCPInstVisitor : public InstVisitor { const DataLayout &DL; std::function GetTLI; SmallPtrSet BBExecutable; // The BBs that are executable. DenseMap ValueState; // The state each value is in. /// StructValueState - This maintains ValueState for values that have /// StructType, for example for formal arguments, calls, insertelement, etc. DenseMap, ValueLatticeElement> StructValueState; /// GlobalValue - If we are tracking any values for the contents of a global /// variable, we keep a mapping from the constant accessor to the element of /// the global, to the currently known value. If the value becomes /// overdefined, it's entry is simply removed from this map. DenseMap TrackedGlobals; /// TrackedRetVals - If we are tracking arguments into and the return /// value out of a function, it will have an entry in this map, indicating /// what the known return value for the function is. MapVector TrackedRetVals; /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions /// that return multiple values. MapVector, ValueLatticeElement> TrackedMultipleRetVals; /// The set of values whose lattice has been invalidated. /// Populated by resetLatticeValueFor(), cleared after resolving undefs. DenseSet Invalidated; /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is /// represented here for efficient lookup. SmallPtrSet MRVFunctionsTracked; /// A list of functions whose return cannot be modified. SmallPtrSet MustPreserveReturnsInFunctions; /// TrackingIncomingArguments - This is the set of functions for whose /// arguments we make optimistic assumptions about and try to prove as /// constants. SmallPtrSet TrackingIncomingArguments; /// The reason for two worklists is that overdefined is the lowest state /// on the lattice, and moving things to overdefined as fast as possible /// makes SCCP converge much faster. /// /// By having a separate worklist, we accomplish this because everything /// possibly overdefined will become overdefined at the soonest possible /// point. SmallVector OverdefinedInstWorkList; SmallVector InstWorkList; // The BasicBlock work list SmallVector BBWorkList; /// KnownFeasibleEdges - Entries in this set are edges which have already had /// PHI nodes retriggered. using Edge = std::pair; DenseSet KnownFeasibleEdges; DenseMap> FnPredicateInfo; DenseMap> AdditionalUsers; LLVMContext &Ctx; private: ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const { return dyn_cast_or_null(getConstant(IV, Ty)); } // pushToWorkList - Helper for markConstant/markOverdefined void pushToWorkList(ValueLatticeElement &IV, Value *V); // Helper to push \p V to the worklist, after updating it to \p IV. Also // prints a debug message with the updated value. void pushToWorkListMsg(ValueLatticeElement &IV, Value *V); // markConstant - Make a value be marked as "constant". If the value // is not already a constant, add it to the instruction work list so that // the users of the instruction are updated later. bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C, bool MayIncludeUndef = false); bool markConstant(Value *V, Constant *C) { assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); return markConstant(ValueState[V], V, C); } // markOverdefined - Make a value be marked as "overdefined". If the // value is not already overdefined, add it to the overdefined instruction // work list so that the users of the instruction are updated later. bool markOverdefined(ValueLatticeElement &IV, Value *V); /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV /// changes. bool mergeInValue(ValueLatticeElement &IV, Value *V, ValueLatticeElement MergeWithV, ValueLatticeElement::MergeOptions Opts = { /*MayIncludeUndef=*/false, /*CheckWiden=*/false}); bool mergeInValue(Value *V, ValueLatticeElement MergeWithV, ValueLatticeElement::MergeOptions Opts = { /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { assert(!V->getType()->isStructTy() && "non-structs should use markConstant"); return mergeInValue(ValueState[V], V, MergeWithV, Opts); } /// getValueState - Return the ValueLatticeElement object that corresponds to /// the value. This function handles the case when the value hasn't been seen /// yet by properly seeding constants etc. ValueLatticeElement &getValueState(Value *V) { assert(!V->getType()->isStructTy() && "Should use getStructValueState"); auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement())); ValueLatticeElement &LV = I.first->second; if (!I.second) return LV; // Common case, already in the map. if (auto *C = dyn_cast(V)) LV.markConstant(C); // Constants are constant // All others are unknown by default. return LV; } /// getStructValueState - Return the ValueLatticeElement object that /// corresponds to the value/field pair. This function handles the case when /// the value hasn't been seen yet by properly seeding constants etc. ValueLatticeElement &getStructValueState(Value *V, unsigned i) { assert(V->getType()->isStructTy() && "Should use getValueState"); assert(i < cast(V->getType())->getNumElements() && "Invalid element #"); auto I = StructValueState.insert( std::make_pair(std::make_pair(V, i), ValueLatticeElement())); ValueLatticeElement &LV = I.first->second; if (!I.second) return LV; // Common case, already in the map. if (auto *C = dyn_cast(V)) { Constant *Elt = C->getAggregateElement(i); if (!Elt) LV.markOverdefined(); // Unknown sort of constant. else LV.markConstant(Elt); // Constants are constant. } // All others are underdefined by default. return LV; } /// Traverse the use-def chain of \p Call, marking itself and its users as /// "unknown" on the way. void invalidate(CallBase *Call) { SmallVector ToInvalidate; ToInvalidate.push_back(Call); while (!ToInvalidate.empty()) { Instruction *Inst = ToInvalidate.pop_back_val(); if (!Invalidated.insert(Inst).second) continue; if (!BBExecutable.count(Inst->getParent())) continue; Value *V = nullptr; // For return instructions we need to invalidate the tracked returns map. // Anything else has its lattice in the value map. if (auto *RetInst = dyn_cast(Inst)) { Function *F = RetInst->getParent()->getParent(); if (auto It = TrackedRetVals.find(F); It != TrackedRetVals.end()) { It->second = ValueLatticeElement(); V = F; } else if (MRVFunctionsTracked.count(F)) { auto *STy = cast(F->getReturnType()); for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) TrackedMultipleRetVals[{F, I}] = ValueLatticeElement(); V = F; } } else if (auto *STy = dyn_cast(Inst->getType())) { for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { if (auto It = StructValueState.find({Inst, I}); It != StructValueState.end()) { It->second = ValueLatticeElement(); V = Inst; } } } else if (auto It = ValueState.find(Inst); It != ValueState.end()) { It->second = ValueLatticeElement(); V = Inst; } if (V) { LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n"); for (User *U : V->users()) if (auto *UI = dyn_cast(U)) ToInvalidate.push_back(UI); auto It = AdditionalUsers.find(V); if (It != AdditionalUsers.end()) for (User *U : It->second) if (auto *UI = dyn_cast(U)) ToInvalidate.push_back(UI); } } } /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable. bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl &Succs); // OperandChangedState - This method is invoked on all of the users of an // instruction that was just changed state somehow. Based on this // information, we need to update the specified user of this instruction. void operandChangedState(Instruction *I) { if (BBExecutable.count(I->getParent())) // Inst is executable? visit(*I); } // Add U as additional user of V. void addAdditionalUser(Value *V, User *U) { auto Iter = AdditionalUsers.insert({V, {}}); Iter.first->second.insert(U); } // Mark I's users as changed, including AdditionalUsers. void markUsersAsChanged(Value *I) { // Functions include their arguments in the use-list. Changed function // values mean that the result of the function changed. We only need to // update the call sites with the new function result and do not have to // propagate the call arguments. if (isa(I)) { for (User *U : I->users()) { if (auto *CB = dyn_cast(U)) handleCallResult(*CB); } } else { for (User *U : I->users()) if (auto *UI = dyn_cast(U)) operandChangedState(UI); } auto Iter = AdditionalUsers.find(I); if (Iter != AdditionalUsers.end()) { // Copy additional users before notifying them of changes, because new // users may be added, potentially invalidating the iterator. SmallVector ToNotify; for (User *U : Iter->second) if (auto *UI = dyn_cast(U)) ToNotify.push_back(UI); for (Instruction *UI : ToNotify) operandChangedState(UI); } } void handleCallOverdefined(CallBase &CB); void handleCallResult(CallBase &CB); void handleCallArguments(CallBase &CB); void handleExtractOfWithOverflow(ExtractValueInst &EVI, const WithOverflowInst *WO, unsigned Idx); private: friend class InstVisitor; // visit implementations - Something changed in this instruction. Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. void visitPHINode(PHINode &I); // Terminators void visitReturnInst(ReturnInst &I); void visitTerminator(Instruction &TI); void visitCastInst(CastInst &I); void visitSelectInst(SelectInst &I); void visitUnaryOperator(Instruction &I); void visitFreezeInst(FreezeInst &I); void visitBinaryOperator(Instruction &I); void visitCmpInst(CmpInst &I); void visitExtractValueInst(ExtractValueInst &EVI); void visitInsertValueInst(InsertValueInst &IVI); void visitCatchSwitchInst(CatchSwitchInst &CPI) { markOverdefined(&CPI); visitTerminator(CPI); } // Instructions that cannot be folded away. void visitStoreInst(StoreInst &I); void visitLoadInst(LoadInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitInvokeInst(InvokeInst &II) { visitCallBase(II); visitTerminator(II); } void visitCallBrInst(CallBrInst &CBI) { visitCallBase(CBI); visitTerminator(CBI); } void visitCallBase(CallBase &CB); void visitResumeInst(ResumeInst &I) { /*returns void*/ } void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ } void visitFenceInst(FenceInst &I) { /*returns void*/ } void visitInstruction(Instruction &I); public: void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC) { FnPredicateInfo.insert({&F, std::make_unique(F, DT, AC)}); } void visitCallInst(CallInst &I) { visitCallBase(I); } bool markBlockExecutable(BasicBlock *BB); const PredicateBase *getPredicateInfoFor(Instruction *I) { auto It = FnPredicateInfo.find(I->getParent()->getParent()); if (It == FnPredicateInfo.end()) return nullptr; return It->second->getPredicateInfoFor(I); } SCCPInstVisitor(const DataLayout &DL, std::function GetTLI, LLVMContext &Ctx) : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {} void trackValueOfGlobalVariable(GlobalVariable *GV) { // We only track the contents of scalar globals. if (GV->getValueType()->isSingleValueType()) { ValueLatticeElement &IV = TrackedGlobals[GV]; IV.markConstant(GV->getInitializer()); } } void addTrackedFunction(Function *F) { // Add an entry, F -> undef. if (auto *STy = dyn_cast(F->getReturnType())) { MRVFunctionsTracked.insert(F); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) TrackedMultipleRetVals.insert( std::make_pair(std::make_pair(F, i), ValueLatticeElement())); } else if (!F->getReturnType()->isVoidTy()) TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement())); } void addToMustPreserveReturnsInFunctions(Function *F) { MustPreserveReturnsInFunctions.insert(F); } bool mustPreserveReturn(Function *F) { return MustPreserveReturnsInFunctions.count(F); } void addArgumentTrackedFunction(Function *F) { TrackingIncomingArguments.insert(F); } bool isArgumentTrackedFunction(Function *F) { return TrackingIncomingArguments.count(F); } void solve(); bool resolvedUndef(Instruction &I); bool resolvedUndefsIn(Function &F); bool isBlockExecutable(BasicBlock *BB) const { return BBExecutable.count(BB); } bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const; std::vector getStructLatticeValueFor(Value *V) const { std::vector StructValues; auto *STy = dyn_cast(V->getType()); assert(STy && "getStructLatticeValueFor() can be called only on structs"); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { auto I = StructValueState.find(std::make_pair(V, i)); assert(I != StructValueState.end() && "Value not in valuemap!"); StructValues.push_back(I->second); } return StructValues; } void removeLatticeValueFor(Value *V) { ValueState.erase(V); } /// Invalidate the Lattice Value of \p Call and its users after specializing /// the call. Then recompute it. void resetLatticeValueFor(CallBase *Call) { // Calls to void returning functions do not need invalidation. Function *F = Call->getCalledFunction(); (void)F; assert(!F->getReturnType()->isVoidTy() && (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) && "All non void specializations should be tracked"); invalidate(Call); handleCallResult(*Call); } const ValueLatticeElement &getLatticeValueFor(Value *V) const { assert(!V->getType()->isStructTy() && "Should use getStructLatticeValueFor"); DenseMap::const_iterator I = ValueState.find(V); assert(I != ValueState.end() && "V not found in ValueState nor Paramstate map!"); return I->second; } const MapVector &getTrackedRetVals() { return TrackedRetVals; } const DenseMap &getTrackedGlobals() { return TrackedGlobals; } const SmallPtrSet getMRVFunctionsTracked() { return MRVFunctionsTracked; } void markOverdefined(Value *V) { if (auto *STy = dyn_cast(V->getType())) for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) markOverdefined(getStructValueState(V, i), V); else markOverdefined(ValueState[V], V); } bool isStructLatticeConstant(Function *F, StructType *STy); Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const; Constant *getConstantOrNull(Value *V) const; SmallPtrSetImpl &getArgumentTrackedFunctions() { return TrackingIncomingArguments; } void setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl &Args); void markFunctionUnreachable(Function *F) { for (auto &BB : *F) BBExecutable.erase(&BB); } void solveWhileResolvedUndefsIn(Module &M) { bool ResolvedUndefs = true; while (ResolvedUndefs) { solve(); ResolvedUndefs = false; for (Function &F : M) ResolvedUndefs |= resolvedUndefsIn(F); } } void solveWhileResolvedUndefsIn(SmallVectorImpl &WorkList) { bool ResolvedUndefs = true; while (ResolvedUndefs) { solve(); ResolvedUndefs = false; for (Function *F : WorkList) ResolvedUndefs |= resolvedUndefsIn(*F); } } void solveWhileResolvedUndefs() { bool ResolvedUndefs = true; while (ResolvedUndefs) { solve(); ResolvedUndefs = false; for (Value *V : Invalidated) if (auto *I = dyn_cast(V)) ResolvedUndefs |= resolvedUndef(*I); } Invalidated.clear(); } }; } // namespace llvm bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) { if (!BBExecutable.insert(BB).second) return false; LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); BBWorkList.push_back(BB); // Add the block to the work list! return true; } void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) { if (IV.isOverdefined()) { if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V) OverdefinedInstWorkList.push_back(V); return; } if (InstWorkList.empty() || InstWorkList.back() != V) InstWorkList.push_back(V); } void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) { LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n'); pushToWorkList(IV, V); } bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V, Constant *C, bool MayIncludeUndef) { if (!IV.markConstant(C, MayIncludeUndef)) return false; LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); pushToWorkList(IV, V); return true; } bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) { if (!IV.markOverdefined()) return false; LLVM_DEBUG(dbgs() << "markOverdefined: "; if (auto *F = dyn_cast(V)) dbgs() << "Function '" << F->getName() << "'\n"; else dbgs() << *V << '\n'); // Only instructions go on the work list pushToWorkList(IV, V); return true; } bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); assert(It != TrackedMultipleRetVals.end()); ValueLatticeElement LV = It->second; if (!SCCPSolver::isConstant(LV)) return false; } return true; } Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV, Type *Ty) const { if (LV.isConstant()) { Constant *C = LV.getConstant(); assert(C->getType() == Ty && "Type mismatch"); return C; } if (LV.isConstantRange()) { const auto &CR = LV.getConstantRange(); if (CR.getSingleElement()) return ConstantInt::get(Ty, *CR.getSingleElement()); } return nullptr; } Constant *SCCPInstVisitor::getConstantOrNull(Value *V) const { Constant *Const = nullptr; if (V->getType()->isStructTy()) { std::vector LVs = getStructLatticeValueFor(V); if (any_of(LVs, SCCPSolver::isOverdefined)) return nullptr; std::vector ConstVals; auto *ST = cast(V->getType()); for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) { ValueLatticeElement LV = LVs[I]; ConstVals.push_back(SCCPSolver::isConstant(LV) ? getConstant(LV, ST->getElementType(I)) : UndefValue::get(ST->getElementType(I))); } Const = ConstantStruct::get(ST, ConstVals); } else { const ValueLatticeElement &LV = getLatticeValueFor(V); if (SCCPSolver::isOverdefined(LV)) return nullptr; Const = SCCPSolver::isConstant(LV) ? getConstant(LV, V->getType()) : UndefValue::get(V->getType()); } assert(Const && "Constant is nullptr here!"); return Const; } void SCCPInstVisitor::setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl &Args) { assert(!Args.empty() && "Specialization without arguments"); assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() && "Functions should have the same number of arguments"); auto Iter = Args.begin(); Function::arg_iterator NewArg = F->arg_begin(); Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin(); for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) { LLVM_DEBUG(dbgs() << "SCCP: Marking argument " << NewArg->getNameOrAsOperand() << "\n"); // Mark the argument constants in the new function // or copy the lattice state over from the old function. if (Iter != Args.end() && Iter->Formal == &*OldArg) { if (auto *STy = dyn_cast(NewArg->getType())) { for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}]; NewValue.markConstant(Iter->Actual->getAggregateElement(I)); } } else { ValueState[&*NewArg].markConstant(Iter->Actual); } ++Iter; } else { if (auto *STy = dyn_cast(NewArg->getType())) { for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}]; NewValue = StructValueState[{&*OldArg, I}]; } } else { ValueLatticeElement &NewValue = ValueState[&*NewArg]; NewValue = ValueState[&*OldArg]; } } } } void SCCPInstVisitor::visitInstruction(Instruction &I) { // All the instructions we don't do any special handling for just // go to overdefined. LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); markOverdefined(&I); } bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V, ValueLatticeElement MergeWithV, ValueLatticeElement::MergeOptions Opts) { if (IV.mergeIn(MergeWithV, Opts)) { pushToWorkList(IV, V); LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : " << IV << "\n"); return true; } return false; } bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) return false; // This edge is already known to be executable! if (!markBlockExecutable(Dest)) { // If the destination is already executable, we just made an *edge* // feasible that wasn't before. Revisit the PHI nodes in the block // because they have potentially new operands. LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> " << Dest->getName() << '\n'); for (PHINode &PN : Dest->phis()) visitPHINode(PN); } return true; } // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI, SmallVectorImpl &Succs) { Succs.resize(TI.getNumSuccessors()); if (auto *BI = dyn_cast(&TI)) { if (BI->isUnconditional()) { Succs[0] = true; return; } ValueLatticeElement BCValue = getValueState(BI->getCondition()); ConstantInt *CI = getConstantInt(BCValue, BI->getCondition()->getType()); if (!CI) { // Overdefined condition variables, and branches on unfoldable constant // conditions, mean the branch could go either way. if (!BCValue.isUnknownOrUndef()) Succs[0] = Succs[1] = true; return; } // Constant condition variables mean the branch can only go a single way. Succs[CI->isZero()] = true; return; } // Unwinding instructions successors are always executable. if (TI.isExceptionalTerminator()) { Succs.assign(TI.getNumSuccessors(), true); return; } if (auto *SI = dyn_cast(&TI)) { if (!SI->getNumCases()) { Succs[0] = true; return; } const ValueLatticeElement &SCValue = getValueState(SI->getCondition()); if (ConstantInt *CI = getConstantInt(SCValue, SI->getCondition()->getType())) { Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; return; } // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM // is ready. if (SCValue.isConstantRange(/*UndefAllowed=*/false)) { const ConstantRange &Range = SCValue.getConstantRange(); for (const auto &Case : SI->cases()) { const APInt &CaseValue = Case.getCaseValue()->getValue(); if (Range.contains(CaseValue)) Succs[Case.getSuccessorIndex()] = true; } // TODO: Determine whether default case is reachable. Succs[SI->case_default()->getSuccessorIndex()] = true; return; } // Overdefined or unknown condition? All destinations are executable! if (!SCValue.isUnknownOrUndef()) Succs.assign(TI.getNumSuccessors(), true); return; } // In case of indirect branch and its address is a blockaddress, we mark // the target as executable. if (auto *IBR = dyn_cast(&TI)) { // Casts are folded by visitCastInst. ValueLatticeElement IBRValue = getValueState(IBR->getAddress()); BlockAddress *Addr = dyn_cast_or_null( getConstant(IBRValue, IBR->getAddress()->getType())); if (!Addr) { // Overdefined or unknown condition? // All destinations are executable! if (!IBRValue.isUnknownOrUndef()) Succs.assign(TI.getNumSuccessors(), true); return; } BasicBlock *T = Addr->getBasicBlock(); assert(Addr->getFunction() == T->getParent() && "Block address of a different function ?"); for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { // This is the target. if (IBR->getDestination(i) == T) { Succs[i] = true; return; } } // If we didn't find our destination in the IBR successor list, then we // have undefined behavior. Its ok to assume no successor is executable. return; } // In case of callbr, we pessimistically assume that all successors are // feasible. if (isa(&TI)) { Succs.assign(TI.getNumSuccessors(), true); return; } LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); llvm_unreachable("SCCP: Don't know how to handle this terminator!"); } // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible. bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { // Check if we've called markEdgeExecutable on the edge yet. (We could // be more aggressive and try to consider edges which haven't been marked // yet, but there isn't any need.) return KnownFeasibleEdges.count(Edge(From, To)); } // visit Implementations - Something changed in this instruction, either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. This method // makes sure to do the following actions: // // 1. If a phi node merges two constants in, and has conflicting value coming // from different branches, or if the PHI node merges in an overdefined // value, then the PHI node becomes overdefined. // 2. If a phi node merges only constants in, and they all agree on value, the // PHI node becomes a constant value equal to that. // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined // 6. If a conditional branch has a value that is constant, make the selected // destination executable // 7. If a conditional branch has a value that is overdefined, make all // successors executable. void SCCPInstVisitor::visitPHINode(PHINode &PN) { // If this PN returns a struct, just mark the result overdefined. // TODO: We could do a lot better than this if code actually uses this. if (PN.getType()->isStructTy()) return (void)markOverdefined(&PN); if (getValueState(&PN).isOverdefined()) return; // Quick exit // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, // and slow us down a lot. Just mark them overdefined. if (PN.getNumIncomingValues() > 64) return (void)markOverdefined(&PN); unsigned NumActiveIncoming = 0; // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. If they are all // constant, and they agree with each other, the PHI becomes the identical // constant. If they are constant and don't agree, the PHI is a constant // range. If there are no executable operands, the PHI remains unknown. ValueLatticeElement PhiState = getValueState(&PN); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) continue; ValueLatticeElement IV = getValueState(PN.getIncomingValue(i)); PhiState.mergeIn(IV); NumActiveIncoming++; if (PhiState.isOverdefined()) break; } // We allow up to 1 range extension per active incoming value and one // additional extension. Note that we manually adjust the number of range // extensions to match the number of active incoming values. This helps to // limit multiple extensions caused by the same incoming value, if other // incoming values are equal. mergeInValue(&PN, PhiState, ValueLatticeElement::MergeOptions().setMaxWidenSteps( NumActiveIncoming + 1)); ValueLatticeElement &PhiStateRef = getValueState(&PN); PhiStateRef.setNumRangeExtensions( std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions())); } void SCCPInstVisitor::visitReturnInst(ReturnInst &I) { if (I.getNumOperands() == 0) return; // ret void Function *F = I.getParent()->getParent(); Value *ResultOp = I.getOperand(0); // If we are tracking the return value of this function, merge it in. if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { auto TFRVI = TrackedRetVals.find(F); if (TFRVI != TrackedRetVals.end()) { mergeInValue(TFRVI->second, F, getValueState(ResultOp)); return; } } // Handle functions that return multiple values. if (!TrackedMultipleRetVals.empty()) { if (auto *STy = dyn_cast(ResultOp->getType())) if (MRVFunctionsTracked.count(F)) for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, getStructValueState(ResultOp, i)); } } void SCCPInstVisitor::visitTerminator(Instruction &TI) { SmallVector SuccFeasible; getFeasibleSuccessors(TI, SuccFeasible); BasicBlock *BB = TI.getParent(); // Mark all feasible successors executable. for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (SuccFeasible[i]) markEdgeExecutable(BB, TI.getSuccessor(i)); } void SCCPInstVisitor::visitCastInst(CastInst &I) { // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (ValueState[&I].isOverdefined()) return; ValueLatticeElement OpSt = getValueState(I.getOperand(0)); if (OpSt.isUnknownOrUndef()) return; if (Constant *OpC = getConstant(OpSt, I.getOperand(0)->getType())) { // Fold the constant as we build. Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL); markConstant(&I, C); } else if (I.getDestTy()->isIntegerTy() && I.getSrcTy()->isIntOrIntVectorTy()) { auto &LV = getValueState(&I); ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy()); Type *DestTy = I.getDestTy(); // Vectors where all elements have the same known constant range are treated // as a single constant range in the lattice. When bitcasting such vectors, // there is a mis-match between the width of the lattice value (single // constant range) and the original operands (vector). Go to overdefined in // that case. if (I.getOpcode() == Instruction::BitCast && I.getOperand(0)->getType()->isVectorTy() && OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy)) return (void)markOverdefined(&I); ConstantRange Res = OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy)); mergeInValue(LV, &I, ValueLatticeElement::getRange(Res)); } else markOverdefined(&I); } void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI, const WithOverflowInst *WO, unsigned Idx) { Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); ValueLatticeElement L = getValueState(LHS); ValueLatticeElement R = getValueState(RHS); addAdditionalUser(LHS, &EVI); addAdditionalUser(RHS, &EVI); if (L.isUnknownOrUndef() || R.isUnknownOrUndef()) return; // Wait to resolve. Type *Ty = LHS->getType(); ConstantRange LR = getConstantRange(L, Ty); ConstantRange RR = getConstantRange(R, Ty); if (Idx == 0) { ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR); mergeInValue(&EVI, ValueLatticeElement::getRange(Res)); } else { assert(Idx == 1 && "Index can only be 0 or 1"); ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion( WO->getBinaryOp(), RR, WO->getNoWrapKind()); if (NWRegion.contains(LR)) return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType())); markOverdefined(&EVI); } } void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) { // If this returns a struct, mark all elements over defined, we don't track // structs in structs. if (EVI.getType()->isStructTy()) return (void)markOverdefined(&EVI); // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (ValueState[&EVI].isOverdefined()) return (void)markOverdefined(&EVI); // If this is extracting from more than one level of struct, we don't know. if (EVI.getNumIndices() != 1) return (void)markOverdefined(&EVI); Value *AggVal = EVI.getAggregateOperand(); if (AggVal->getType()->isStructTy()) { unsigned i = *EVI.idx_begin(); if (auto *WO = dyn_cast(AggVal)) return handleExtractOfWithOverflow(EVI, WO, i); ValueLatticeElement EltVal = getStructValueState(AggVal, i); mergeInValue(getValueState(&EVI), &EVI, EltVal); } else { // Otherwise, must be extracting from an array. return (void)markOverdefined(&EVI); } } void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) { auto *STy = dyn_cast(IVI.getType()); if (!STy) return (void)markOverdefined(&IVI); // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (SCCPSolver::isOverdefined(ValueState[&IVI])) return (void)markOverdefined(&IVI); // If this has more than one index, we can't handle it, drive all results to // undef. if (IVI.getNumIndices() != 1) return (void)markOverdefined(&IVI); Value *Aggr = IVI.getAggregateOperand(); unsigned Idx = *IVI.idx_begin(); // Compute the result based on what we're inserting. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { // This passes through all values that aren't the inserted element. if (i != Idx) { ValueLatticeElement EltVal = getStructValueState(Aggr, i); mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); continue; } Value *Val = IVI.getInsertedValueOperand(); if (Val->getType()->isStructTy()) // We don't track structs in structs. markOverdefined(getStructValueState(&IVI, i), &IVI); else { ValueLatticeElement InVal = getValueState(Val); mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); } } } void SCCPInstVisitor::visitSelectInst(SelectInst &I) { // If this select returns a struct, just mark the result overdefined. // TODO: We could do a lot better than this if code actually uses this. if (I.getType()->isStructTy()) return (void)markOverdefined(&I); // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (ValueState[&I].isOverdefined()) return (void)markOverdefined(&I); ValueLatticeElement CondValue = getValueState(I.getCondition()); if (CondValue.isUnknownOrUndef()) return; if (ConstantInt *CondCB = getConstantInt(CondValue, I.getCondition()->getType())) { Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); mergeInValue(&I, getValueState(OpVal)); return; } // Otherwise, the condition is overdefined or a constant we can't evaluate. // See if we can produce something better than overdefined based on the T/F // value. ValueLatticeElement TVal = getValueState(I.getTrueValue()); ValueLatticeElement FVal = getValueState(I.getFalseValue()); bool Changed = ValueState[&I].mergeIn(TVal); Changed |= ValueState[&I].mergeIn(FVal); if (Changed) pushToWorkListMsg(ValueState[&I], &I); } // Handle Unary Operators. void SCCPInstVisitor::visitUnaryOperator(Instruction &I) { ValueLatticeElement V0State = getValueState(I.getOperand(0)); ValueLatticeElement &IV = ValueState[&I]; // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (SCCPSolver::isOverdefined(IV)) return (void)markOverdefined(&I); // If something is unknown/undef, wait for it to resolve. if (V0State.isUnknownOrUndef()) return; if (SCCPSolver::isConstant(V0State)) if (Constant *C = ConstantFoldUnaryOpOperand( I.getOpcode(), getConstant(V0State, I.getType()), DL)) return (void)markConstant(IV, &I, C); markOverdefined(&I); } void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) { // If this freeze returns a struct, just mark the result overdefined. // TODO: We could do a lot better than this. if (I.getType()->isStructTy()) return (void)markOverdefined(&I); ValueLatticeElement V0State = getValueState(I.getOperand(0)); ValueLatticeElement &IV = ValueState[&I]; // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (SCCPSolver::isOverdefined(IV)) return (void)markOverdefined(&I); // If something is unknown/undef, wait for it to resolve. if (V0State.isUnknownOrUndef()) return; if (SCCPSolver::isConstant(V0State) && isGuaranteedNotToBeUndefOrPoison(getConstant(V0State, I.getType()))) return (void)markConstant(IV, &I, getConstant(V0State, I.getType())); markOverdefined(&I); } // Handle Binary Operators. void SCCPInstVisitor::visitBinaryOperator(Instruction &I) { ValueLatticeElement V1State = getValueState(I.getOperand(0)); ValueLatticeElement V2State = getValueState(I.getOperand(1)); ValueLatticeElement &IV = ValueState[&I]; if (IV.isOverdefined()) return; // If something is undef, wait for it to resolve. if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) return; if (V1State.isOverdefined() && V2State.isOverdefined()) return (void)markOverdefined(&I); // If either of the operands is a constant, try to fold it to a constant. // TODO: Use information from notconstant better. if ((V1State.isConstant() || V2State.isConstant())) { Value *V1 = SCCPSolver::isConstant(V1State) ? getConstant(V1State, I.getOperand(0)->getType()) : I.getOperand(0); Value *V2 = SCCPSolver::isConstant(V2State) ? getConstant(V2State, I.getOperand(1)->getType()) : I.getOperand(1); Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL)); auto *C = dyn_cast_or_null(R); if (C) { // Conservatively assume that the result may be based on operands that may // be undef. Note that we use mergeInValue to combine the constant with // the existing lattice value for I, as different constants might be found // after one of the operands go to overdefined, e.g. due to one operand // being a special floating value. ValueLatticeElement NewV; NewV.markConstant(C, /*MayIncludeUndef=*/true); return (void)mergeInValue(&I, NewV); } } // Only use ranges for binary operators on integers. if (!I.getType()->isIntegerTy()) return markOverdefined(&I); // Try to simplify to a constant range. ConstantRange A = getConstantRange(V1State, I.getType()); ConstantRange B = getConstantRange(V2State, I.getType()); ConstantRange R = A.binaryOp(cast(&I)->getOpcode(), B); mergeInValue(&I, ValueLatticeElement::getRange(R)); // TODO: Currently we do not exploit special values that produce something // better than overdefined with an overdefined operand for vector or floating // point types, like and <4 x i32> overdefined, zeroinitializer. } // Handle ICmpInst instruction. void SCCPInstVisitor::visitCmpInst(CmpInst &I) { // Do not cache this lookup, getValueState calls later in the function might // invalidate the reference. if (SCCPSolver::isOverdefined(ValueState[&I])) return (void)markOverdefined(&I); Value *Op1 = I.getOperand(0); Value *Op2 = I.getOperand(1); // For parameters, use ParamState which includes constant range info if // available. auto V1State = getValueState(Op1); auto V2State = getValueState(Op2); Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL); if (C) { ValueLatticeElement CV; CV.markConstant(C); mergeInValue(&I, CV); return; } // If operands are still unknown, wait for it to resolve. if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) && !SCCPSolver::isConstant(ValueState[&I])) return; markOverdefined(&I); } // Handle getelementptr instructions. If all operands are constants then we // can turn this into a getelementptr ConstantExpr. void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { if (SCCPSolver::isOverdefined(ValueState[&I])) return (void)markOverdefined(&I); SmallVector Operands; Operands.reserve(I.getNumOperands()); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { ValueLatticeElement State = getValueState(I.getOperand(i)); if (State.isUnknownOrUndef()) return; // Operands are not resolved yet. if (SCCPSolver::isOverdefined(State)) return (void)markOverdefined(&I); if (Constant *C = getConstant(State, I.getOperand(i)->getType())) { Operands.push_back(C); continue; } return (void)markOverdefined(&I); } Constant *Ptr = Operands[0]; auto Indices = ArrayRef(Operands.begin() + 1, Operands.end()); Constant *C = ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); markConstant(&I, C); } void SCCPInstVisitor::visitStoreInst(StoreInst &SI) { // If this store is of a struct, ignore it. if (SI.getOperand(0)->getType()->isStructTy()) return; if (TrackedGlobals.empty() || !isa(SI.getOperand(1))) return; GlobalVariable *GV = cast(SI.getOperand(1)); auto I = TrackedGlobals.find(GV); if (I == TrackedGlobals.end()) return; // Get the value we are storing into the global, then merge it. mergeInValue(I->second, GV, getValueState(SI.getOperand(0)), ValueLatticeElement::MergeOptions().setCheckWiden(false)); if (I->second.isOverdefined()) TrackedGlobals.erase(I); // No need to keep tracking this! } static ValueLatticeElement getValueFromMetadata(const Instruction *I) { if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) if (I->getType()->isIntegerTy()) return ValueLatticeElement::getRange( getConstantRangeFromMetadata(*Ranges)); if (I->hasMetadata(LLVMContext::MD_nonnull)) return ValueLatticeElement::getNot( ConstantPointerNull::get(cast(I->getType()))); return ValueLatticeElement::getOverdefined(); } // Handle load instructions. If the operand is a constant pointer to a constant // global, we can replace the load with the loaded constant value! void SCCPInstVisitor::visitLoadInst(LoadInst &I) { // If this load is of a struct or the load is volatile, just mark the result // as overdefined. if (I.getType()->isStructTy() || I.isVolatile()) return (void)markOverdefined(&I); // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (ValueState[&I].isOverdefined()) return (void)markOverdefined(&I); ValueLatticeElement PtrVal = getValueState(I.getOperand(0)); if (PtrVal.isUnknownOrUndef()) return; // The pointer is not resolved yet! ValueLatticeElement &IV = ValueState[&I]; if (SCCPSolver::isConstant(PtrVal)) { Constant *Ptr = getConstant(PtrVal, I.getOperand(0)->getType()); // load null is undefined. if (isa(Ptr)) { if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) return (void)markOverdefined(IV, &I); else return; } // Transform load (constant global) into the value loaded. if (auto *GV = dyn_cast(Ptr)) { if (!TrackedGlobals.empty()) { // If we are tracking this global, merge in the known value for it. auto It = TrackedGlobals.find(GV); if (It != TrackedGlobals.end()) { mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts()); return; } } } // Transform load from a constant into a constant if possible. if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) return (void)markConstant(IV, &I, C); } // Fall back to metadata. mergeInValue(&I, getValueFromMetadata(&I)); } void SCCPInstVisitor::visitCallBase(CallBase &CB) { handleCallResult(CB); handleCallArguments(CB); } void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) { Function *F = CB.getCalledFunction(); // Void return and not tracking callee, just bail. if (CB.getType()->isVoidTy()) return; // Always mark struct return as overdefined. if (CB.getType()->isStructTy()) return (void)markOverdefined(&CB); // Otherwise, if we have a single return value case, and if the function is // a declaration, maybe we can constant fold it. if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) { SmallVector Operands; for (const Use &A : CB.args()) { if (A.get()->getType()->isStructTy()) return markOverdefined(&CB); // Can't handle struct args. if (A.get()->getType()->isMetadataTy()) continue; // Carried in CB, not allowed in Operands. ValueLatticeElement State = getValueState(A); if (State.isUnknownOrUndef()) return; // Operands are not resolved yet. if (SCCPSolver::isOverdefined(State)) return (void)markOverdefined(&CB); assert(SCCPSolver::isConstant(State) && "Unknown state!"); Operands.push_back(getConstant(State, A->getType())); } if (SCCPSolver::isOverdefined(getValueState(&CB))) return (void)markOverdefined(&CB); // If we can constant fold this, mark the result of the call as a // constant. if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) return (void)markConstant(&CB, C); } // Fall back to metadata. mergeInValue(&CB, getValueFromMetadata(&CB)); } void SCCPInstVisitor::handleCallArguments(CallBase &CB) { Function *F = CB.getCalledFunction(); // If this is a local function that doesn't have its address taken, mark its // entry block executable and merge in the actual arguments to the call into // the formal arguments of the function. if (TrackingIncomingArguments.count(F)) { markBlockExecutable(&F->front()); // Propagate information from this call site into the callee. auto CAI = CB.arg_begin(); for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++CAI) { // If this argument is byval, and if the function is not readonly, there // will be an implicit copy formed of the input aggregate. if (AI->hasByValAttr() && !F->onlyReadsMemory()) { markOverdefined(&*AI); continue; } if (auto *STy = dyn_cast(AI->getType())) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { ValueLatticeElement CallArg = getStructValueState(*CAI, i); mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg, getMaxWidenStepsOpts()); } } else mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts()); } } } void SCCPInstVisitor::handleCallResult(CallBase &CB) { Function *F = CB.getCalledFunction(); if (auto *II = dyn_cast(&CB)) { if (II->getIntrinsicID() == Intrinsic::ssa_copy) { if (ValueState[&CB].isOverdefined()) return; Value *CopyOf = CB.getOperand(0); ValueLatticeElement CopyOfVal = getValueState(CopyOf); const auto *PI = getPredicateInfoFor(&CB); assert(PI && "Missing predicate info for ssa.copy"); const std::optional &Constraint = PI->getConstraint(); if (!Constraint) { mergeInValue(ValueState[&CB], &CB, CopyOfVal); return; } CmpInst::Predicate Pred = Constraint->Predicate; Value *OtherOp = Constraint->OtherOp; // Wait until OtherOp is resolved. if (getValueState(OtherOp).isUnknown()) { addAdditionalUser(OtherOp, &CB); return; } ValueLatticeElement CondVal = getValueState(OtherOp); ValueLatticeElement &IV = ValueState[&CB]; if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) { auto ImposedCR = ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType())); // Get the range imposed by the condition. if (CondVal.isConstantRange()) ImposedCR = ConstantRange::makeAllowedICmpRegion( Pred, CondVal.getConstantRange()); // Combine range info for the original value with the new range from the // condition. auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType()); auto NewCR = ImposedCR.intersectWith(CopyOfCR); // If the existing information is != x, do not use the information from // a chained predicate, as the != x information is more likely to be // helpful in practice. if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement()) NewCR = CopyOfCR; // The new range is based on a branch condition. That guarantees that // neither of the compare operands can be undef in the branch targets, // unless we have conditions that are always true/false (e.g. icmp ule // i32, %a, i32_max). For the latter overdefined/empty range will be // inferred, but the branch will get folded accordingly anyways. addAdditionalUser(OtherOp, &CB); mergeInValue( IV, &CB, ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false)); return; } else if (Pred == CmpInst::ICMP_EQ && (CondVal.isConstant() || CondVal.isNotConstant())) { // For non-integer values or integer constant expressions, only // propagate equal constants or not-constants. addAdditionalUser(OtherOp, &CB); mergeInValue(IV, &CB, CondVal); return; } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) { // Propagate inequalities. addAdditionalUser(OtherOp, &CB); mergeInValue(IV, &CB, ValueLatticeElement::getNot(CondVal.getConstant())); return; } return (void)mergeInValue(IV, &CB, CopyOfVal); } if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { // Compute result range for intrinsics supported by ConstantRange. // Do this even if we don't know a range for all operands, as we may // still know something about the result range, e.g. of abs(x). SmallVector OpRanges; for (Value *Op : II->args()) { const ValueLatticeElement &State = getValueState(Op); if (State.isUnknownOrUndef()) return; OpRanges.push_back(getConstantRange(State, Op->getType())); } ConstantRange Result = ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges); return (void)mergeInValue(II, ValueLatticeElement::getRange(Result)); } } // The common case is that we aren't tracking the callee, either because we // are not doing interprocedural analysis or the callee is indirect, or is // external. Handle these cases first. if (!F || F->isDeclaration()) return handleCallOverdefined(CB); // If this is a single/zero retval case, see if we're tracking the function. if (auto *STy = dyn_cast(F->getReturnType())) { if (!MRVFunctionsTracked.count(F)) return handleCallOverdefined(CB); // Not tracking this callee. // If we are tracking this callee, propagate the result of the function // into this call site. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(getStructValueState(&CB, i), &CB, TrackedMultipleRetVals[std::make_pair(F, i)], getMaxWidenStepsOpts()); } else { auto TFRVI = TrackedRetVals.find(F); if (TFRVI == TrackedRetVals.end()) return handleCallOverdefined(CB); // Not tracking this callee. // If so, propagate the return value of the callee into this call result. mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts()); } } void SCCPInstVisitor::solve() { // Process the work lists until they are empty! while (!BBWorkList.empty() || !InstWorkList.empty() || !OverdefinedInstWorkList.empty()) { // Process the overdefined instruction's work list first, which drives other // things to overdefined more quickly. while (!OverdefinedInstWorkList.empty()) { Value *I = OverdefinedInstWorkList.pop_back_val(); Invalidated.erase(I); LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); // "I" got into the work list because it either made the transition from // bottom to constant, or to overdefined. // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined // Update all of the users of this instruction's value. // markUsersAsChanged(I); } // Process the instruction work list. while (!InstWorkList.empty()) { Value *I = InstWorkList.pop_back_val(); Invalidated.erase(I); LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); // "I" got into the work list because it made the transition from undef to // constant. // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined. // Update all of the users of this instruction's value. // if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) markUsersAsChanged(I); } // Process the basic block work list. while (!BBWorkList.empty()) { BasicBlock *BB = BBWorkList.pop_back_val(); LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); // Notify all instructions in this basic block that they are newly // executable. visit(BB); } } } bool SCCPInstVisitor::resolvedUndef(Instruction &I) { // Look for instructions which produce undef values. if (I.getType()->isVoidTy()) return false; if (auto *STy = dyn_cast(I.getType())) { // Only a few things that can be structs matter for undef. // Tracked calls must never be marked overdefined in resolvedUndefsIn. if (auto *CB = dyn_cast(&I)) if (Function *F = CB->getCalledFunction()) if (MRVFunctionsTracked.count(F)) return false; // extractvalue and insertvalue don't need to be marked; they are // tracked as precisely as their operands. if (isa(I) || isa(I)) return false; // Send the results of everything else to overdefined. We could be // more precise than this but it isn't worth bothering. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { ValueLatticeElement &LV = getStructValueState(&I, i); if (LV.isUnknown()) { markOverdefined(LV, &I); return true; } } return false; } ValueLatticeElement &LV = getValueState(&I); if (!LV.isUnknown()) return false; // There are two reasons a call can have an undef result // 1. It could be tracked. // 2. It could be constant-foldable. // Because of the way we solve return values, tracked calls must // never be marked overdefined in resolvedUndefsIn. if (auto *CB = dyn_cast(&I)) if (Function *F = CB->getCalledFunction()) if (TrackedRetVals.count(F)) return false; if (isa(I)) { // A load here means one of two things: a load of undef from a global, // a load from an unknown pointer. Either way, having it return undef // is okay. return false; } markOverdefined(&I); return true; } /// While solving the dataflow for a function, we don't compute a result for /// operations with an undef operand, to allow undef to be lowered to a /// constant later. For example, constant folding of "zext i8 undef to i16" /// would result in "i16 0", and if undef is later lowered to "i8 1", then the /// zext result would become "i16 1" and would result into an overdefined /// lattice value once merged with the previous result. Not computing the /// result of the zext (treating undef the same as unknown) allows us to handle /// a later undef->constant lowering more optimally. /// /// However, if the operand remains undef when the solver returns, we do need /// to assign some result to the instruction (otherwise we would treat it as /// unreachable). For simplicity, we mark any instructions that are still /// unknown as overdefined. bool SCCPInstVisitor::resolvedUndefsIn(Function &F) { bool MadeChange = false; for (BasicBlock &BB : F) { if (!BBExecutable.count(&BB)) continue; for (Instruction &I : BB) MadeChange |= resolvedUndef(I); } LLVM_DEBUG(if (MadeChange) dbgs() << "\nResolved undefs in " << F.getName() << '\n'); return MadeChange; } //===----------------------------------------------------------------------===// // // SCCPSolver implementations // SCCPSolver::SCCPSolver( const DataLayout &DL, std::function GetTLI, LLVMContext &Ctx) : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {} SCCPSolver::~SCCPSolver() = default; void SCCPSolver::addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC) { Visitor->addPredicateInfo(F, DT, AC); } bool SCCPSolver::markBlockExecutable(BasicBlock *BB) { return Visitor->markBlockExecutable(BB); } const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) { return Visitor->getPredicateInfoFor(I); } void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) { Visitor->trackValueOfGlobalVariable(GV); } void SCCPSolver::addTrackedFunction(Function *F) { Visitor->addTrackedFunction(F); } void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) { Visitor->addToMustPreserveReturnsInFunctions(F); } bool SCCPSolver::mustPreserveReturn(Function *F) { return Visitor->mustPreserveReturn(F); } void SCCPSolver::addArgumentTrackedFunction(Function *F) { Visitor->addArgumentTrackedFunction(F); } bool SCCPSolver::isArgumentTrackedFunction(Function *F) { return Visitor->isArgumentTrackedFunction(F); } void SCCPSolver::solve() { Visitor->solve(); } bool SCCPSolver::resolvedUndefsIn(Function &F) { return Visitor->resolvedUndefsIn(F); } void SCCPSolver::solveWhileResolvedUndefsIn(Module &M) { Visitor->solveWhileResolvedUndefsIn(M); } void SCCPSolver::solveWhileResolvedUndefsIn(SmallVectorImpl &WorkList) { Visitor->solveWhileResolvedUndefsIn(WorkList); } void SCCPSolver::solveWhileResolvedUndefs() { Visitor->solveWhileResolvedUndefs(); } bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const { return Visitor->isBlockExecutable(BB); } bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { return Visitor->isEdgeFeasible(From, To); } std::vector SCCPSolver::getStructLatticeValueFor(Value *V) const { return Visitor->getStructLatticeValueFor(V); } void SCCPSolver::removeLatticeValueFor(Value *V) { return Visitor->removeLatticeValueFor(V); } void SCCPSolver::resetLatticeValueFor(CallBase *Call) { Visitor->resetLatticeValueFor(Call); } const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const { return Visitor->getLatticeValueFor(V); } const MapVector & SCCPSolver::getTrackedRetVals() { return Visitor->getTrackedRetVals(); } const DenseMap & SCCPSolver::getTrackedGlobals() { return Visitor->getTrackedGlobals(); } const SmallPtrSet SCCPSolver::getMRVFunctionsTracked() { return Visitor->getMRVFunctionsTracked(); } void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); } bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) { return Visitor->isStructLatticeConstant(F, STy); } Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV, Type *Ty) const { return Visitor->getConstant(LV, Ty); } Constant *SCCPSolver::getConstantOrNull(Value *V) const { return Visitor->getConstantOrNull(V); } SmallPtrSetImpl &SCCPSolver::getArgumentTrackedFunctions() { return Visitor->getArgumentTrackedFunctions(); } void SCCPSolver::setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl &Args) { Visitor->setLatticeValueForSpecializationArguments(F, Args); } void SCCPSolver::markFunctionUnreachable(Function *F) { Visitor->markFunctionUnreachable(F); } void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); } void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }