//===- RelLookupTableConverterPass - Rel Table Conv -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements relative lookup table converter that converts // lookup tables to relative lookup tables to make them PIC-friendly. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/RelLookupTableConverter.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; static bool shouldConvertToRelLookupTable(Module &M, GlobalVariable &GV) { // If lookup table has more than one user, // do not generate a relative lookup table. // This is to simplify the analysis that needs to be done for this pass. // TODO: Add support for lookup tables with multiple uses. // For ex, this can happen when a function that uses a lookup table gets // inlined into multiple call sites. if (!GV.hasInitializer() || !GV.isConstant() || !GV.hasOneUse()) return false; GetElementPtrInst *GEP = dyn_cast(GV.use_begin()->getUser()); if (!GEP || !GEP->hasOneUse()) return false; LoadInst *Load = dyn_cast(GEP->use_begin()->getUser()); if (!Load || !Load->hasOneUse()) return false; // If the original lookup table does not have local linkage and is // not dso_local, do not generate a relative lookup table. // This optimization creates a relative lookup table that consists of // offsets between the start of the lookup table and its elements. // To be able to generate these offsets, relative lookup table and // its elements should have internal linkage and be dso_local, which means // that they should resolve to symbols within the same linkage unit. if (!GV.hasLocalLinkage() || !GV.isDSOLocal() || !GV.isImplicitDSOLocal()) return false; ConstantArray *Array = dyn_cast(GV.getInitializer()); // If values are not pointers, do not generate a relative lookup table. if (!Array || !Array->getType()->getElementType()->isPointerTy()) return false; const DataLayout &DL = M.getDataLayout(); for (const Use &Op : Array->operands()) { Constant *ConstOp = cast(&Op); GlobalValue *GVOp; APInt Offset; // If an operand is not a constant offset from a lookup table, // do not generate a relative lookup table. if (!IsConstantOffsetFromGlobal(ConstOp, GVOp, Offset, DL)) return false; // If operand is mutable, do not generate a relative lookup table. auto *GlovalVarOp = dyn_cast(GVOp); if (!GlovalVarOp || !GlovalVarOp->isConstant()) return false; if (!GlovalVarOp->hasLocalLinkage() || !GlovalVarOp->isDSOLocal() || !GlovalVarOp->isImplicitDSOLocal()) return false; } return true; } static GlobalVariable *createRelLookupTable(Function &Func, GlobalVariable &LookupTable) { Module &M = *Func.getParent(); ConstantArray *LookupTableArr = cast(LookupTable.getInitializer()); unsigned NumElts = LookupTableArr->getType()->getNumElements(); ArrayType *IntArrayTy = ArrayType::get(Type::getInt32Ty(M.getContext()), NumElts); GlobalVariable *RelLookupTable = new GlobalVariable( M, IntArrayTy, LookupTable.isConstant(), LookupTable.getLinkage(), nullptr, "reltable." + Func.getName(), &LookupTable, LookupTable.getThreadLocalMode(), LookupTable.getAddressSpace(), LookupTable.isExternallyInitialized()); uint64_t Idx = 0; SmallVector RelLookupTableContents(NumElts); for (Use &Operand : LookupTableArr->operands()) { Constant *Element = cast(Operand); Type *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext()); Constant *Base = llvm::ConstantExpr::getPtrToInt(RelLookupTable, IntPtrTy); Constant *Target = llvm::ConstantExpr::getPtrToInt(Element, IntPtrTy); Constant *Sub = llvm::ConstantExpr::getSub(Target, Base); Constant *RelOffset = llvm::ConstantExpr::getTrunc(Sub, Type::getInt32Ty(M.getContext())); RelLookupTableContents[Idx++] = RelOffset; } Constant *Initializer = ConstantArray::get(IntArrayTy, RelLookupTableContents); RelLookupTable->setInitializer(Initializer); RelLookupTable->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); RelLookupTable->setAlignment(llvm::Align(4)); return RelLookupTable; } static void convertToRelLookupTable(GlobalVariable &LookupTable) { GetElementPtrInst *GEP = cast(LookupTable.use_begin()->getUser()); LoadInst *Load = cast(GEP->use_begin()->getUser()); Module &M = *LookupTable.getParent(); BasicBlock *BB = GEP->getParent(); IRBuilder<> Builder(BB); Function &Func = *BB->getParent(); // Generate an array that consists of relative offsets. GlobalVariable *RelLookupTable = createRelLookupTable(Func, LookupTable); // Place new instruction sequence before GEP. Builder.SetInsertPoint(GEP); Value *Index = GEP->getOperand(2); IntegerType *IntTy = cast(Index->getType()); Value *Offset = Builder.CreateShl(Index, ConstantInt::get(IntTy, 2), "reltable.shift"); // Insert the call to load.relative instrinsic before LOAD. // GEP might not be immediately followed by a LOAD, like it can be hoisted // outside the loop or another instruction might be inserted them in between. Builder.SetInsertPoint(Load); Function *LoadRelIntrinsic = llvm::Intrinsic::getDeclaration( &M, Intrinsic::load_relative, {Index->getType()}); Value *Base = Builder.CreateBitCast(RelLookupTable, Builder.getInt8PtrTy()); // Create a call to load.relative intrinsic that computes the target address // by adding base address (lookup table address) and relative offset. Value *Result = Builder.CreateCall(LoadRelIntrinsic, {Base, Offset}, "reltable.intrinsic"); // Create a bitcast instruction if necessary. if (Load->getType() != Builder.getInt8PtrTy()) Result = Builder.CreateBitCast(Result, Load->getType(), "reltable.bitcast"); // Replace load instruction with the new generated instruction sequence. Load->replaceAllUsesWith(Result); // Remove Load and GEP instructions. Load->eraseFromParent(); GEP->eraseFromParent(); } // Convert lookup tables to relative lookup tables in the module. static bool convertToRelativeLookupTables( Module &M, function_ref GetTTI) { Module::iterator FI = M.begin(); if (FI == M.end()) return false; // Check if we have a target that supports relative lookup tables. if (!GetTTI(*FI).shouldBuildRelLookupTables()) return false; bool Changed = false; for (auto GVI = M.global_begin(), E = M.global_end(); GVI != E;) { GlobalVariable &GV = *GVI++; if (!shouldConvertToRelLookupTable(M, GV)) continue; convertToRelLookupTable(GV); // Remove the original lookup table. GV.eraseFromParent(); Changed = true; } return Changed; } PreservedAnalyses RelLookupTableConverterPass::run(Module &M, ModuleAnalysisManager &AM) { FunctionAnalysisManager &FAM = AM.getResult(M).getManager(); auto GetTTI = [&](Function &F) -> TargetTransformInfo & { return FAM.getResult(F); }; if (!convertToRelativeLookupTables(M, GetTTI)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); return PA; }