//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements some loop unrolling utilities. It does not define any // actual pass or policy, but provides a single function to perform loop // unrolling. // // The process of unrolling can produce extraneous basic blocks linked with // unconditional branches. This will be corrected in the future. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/ilist_iterator.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/ValueMap.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GenericDomTree.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopSimplify.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/SimplifyIndVar.h" #include "llvm/Transforms/Utils/UnrollLoop.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include #include #include namespace llvm { class DataLayout; class Value; } // namespace llvm using namespace llvm; #define DEBUG_TYPE "loop-unroll" // TODO: Should these be here or in LoopUnroll? STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " "latch (completely or otherwise)"); static cl::opt UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, cl::desc("Allow runtime unrolled loops to be unrolled " "with epilog instead of prolog.")); static cl::opt UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, cl::desc("Verify domtree after unrolling"), #ifdef EXPENSIVE_CHECKS cl::init(true) #else cl::init(false) #endif ); static cl::opt UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden, cl::desc("Verify loopinfo after unrolling"), #ifdef EXPENSIVE_CHECKS cl::init(true) #else cl::init(false) #endif ); /// Check if unrolling created a situation where we need to insert phi nodes to /// preserve LCSSA form. /// \param Blocks is a vector of basic blocks representing unrolled loop. /// \param L is the outer loop. /// It's possible that some of the blocks are in L, and some are not. In this /// case, if there is a use is outside L, and definition is inside L, we need to /// insert a phi-node, otherwise LCSSA will be broken. /// The function is just a helper function for llvm::UnrollLoop that returns /// true if this situation occurs, indicating that LCSSA needs to be fixed. static bool needToInsertPhisForLCSSA(Loop *L, const std::vector &Blocks, LoopInfo *LI) { for (BasicBlock *BB : Blocks) { if (LI->getLoopFor(BB) == L) continue; for (Instruction &I : *BB) { for (Use &U : I.operands()) { if (const auto *Def = dyn_cast(U)) { Loop *DefLoop = LI->getLoopFor(Def->getParent()); if (!DefLoop) continue; if (DefLoop->contains(L)) return true; } } } } return false; } /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary /// and adds a mapping from the original loop to the new loop to NewLoops. /// Returns nullptr if no new loop was created and a pointer to the /// original loop OriginalBB was part of otherwise. const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, BasicBlock *ClonedBB, LoopInfo *LI, NewLoopsMap &NewLoops) { // Figure out which loop New is in. const Loop *OldLoop = LI->getLoopFor(OriginalBB); assert(OldLoop && "Should (at least) be in the loop being unrolled!"); Loop *&NewLoop = NewLoops[OldLoop]; if (!NewLoop) { // Found a new sub-loop. assert(OriginalBB == OldLoop->getHeader() && "Header should be first in RPO"); NewLoop = LI->AllocateLoop(); Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); if (NewLoopParent) NewLoopParent->addChildLoop(NewLoop); else LI->addTopLevelLoop(NewLoop); NewLoop->addBasicBlockToLoop(ClonedBB, *LI); return OldLoop; } else { NewLoop->addBasicBlockToLoop(ClonedBB, *LI); return nullptr; } } /// The function chooses which type of unroll (epilog or prolog) is more /// profitabale. /// Epilog unroll is more profitable when there is PHI that starts from /// constant. In this case epilog will leave PHI start from constant, /// but prolog will convert it to non-constant. /// /// loop: /// PN = PHI [I, Latch], [CI, PreHeader] /// I = foo(PN) /// ... /// /// Epilog unroll case. /// loop: /// PN = PHI [I2, Latch], [CI, PreHeader] /// I1 = foo(PN) /// I2 = foo(I1) /// ... /// Prolog unroll case. /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader] /// loop: /// PN = PHI [I2, Latch], [NewPN, PreHeader] /// I1 = foo(PN) /// I2 = foo(I1) /// ... /// static bool isEpilogProfitable(Loop *L) { BasicBlock *PreHeader = L->getLoopPreheader(); BasicBlock *Header = L->getHeader(); assert(PreHeader && Header); for (const PHINode &PN : Header->phis()) { if (isa(PN.getIncomingValueForBlock(PreHeader))) return true; } return false; } /// Perform some cleanup and simplifications on loops after unrolling. It is /// useful to simplify the IV's in the new loop, as well as do a quick /// simplify/dce pass of the instructions. void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI) { using namespace llvm::PatternMatch; // Simplify any new induction variables in the partially unrolled loop. if (SE && SimplifyIVs) { SmallVector DeadInsts; simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); // Aggressively clean up dead instructions that simplifyLoopIVs already // identified. Any remaining should be cleaned up below. while (!DeadInsts.empty()) { Value *V = DeadInsts.pop_back_val(); if (Instruction *Inst = dyn_cast_or_null(V)) RecursivelyDeleteTriviallyDeadInstructions(Inst); } } // At this point, the code is well formed. Perform constprop, instsimplify, // and dce. const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); SmallVector DeadInsts; for (BasicBlock *BB : L->getBlocks()) { for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC})) if (LI->replacementPreservesLCSSAForm(&Inst, V)) Inst.replaceAllUsesWith(V); if (isInstructionTriviallyDead(&Inst)) DeadInsts.emplace_back(&Inst); // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in // unrolled loops, and handling this early allows following code to // identify the IV as a "simple recurrence" without first folding away // a long chain of adds. { Value *X; const APInt *C1, *C2; if (match(&Inst, m_Add(m_Add(m_Value(X), m_APInt(C1)), m_APInt(C2)))) { auto *InnerI = dyn_cast(Inst.getOperand(0)); auto *InnerOBO = cast(Inst.getOperand(0)); bool SignedOverflow; APInt NewC = C1->sadd_ov(*C2, SignedOverflow); Inst.setOperand(0, X); Inst.setOperand(1, ConstantInt::get(Inst.getType(), NewC)); Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() && InnerOBO->hasNoUnsignedWrap()); Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() && InnerOBO->hasNoSignedWrap() && !SignedOverflow); if (InnerI && isInstructionTriviallyDead(InnerI)) DeadInsts.emplace_back(InnerI); } } } // We can't do recursive deletion until we're done iterating, as we might // have a phi which (potentially indirectly) uses instructions later in // the block we're iterating through. RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); } } /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling /// can only fail when the loop's latch block is not terminated by a conditional /// branch instruction. However, if the trip count (and multiple) are not known, /// loop unrolling will mostly produce more code that is no faster. /// /// If Runtime is true then UnrollLoop will try to insert a prologue or /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop /// will not runtime-unroll the loop if computing the run-time trip count will /// be expensive and AllowExpensiveTripCount is false. /// /// The LoopInfo Analysis that is passed will be kept consistent. /// /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and /// DominatorTree if they are non-null. /// /// If RemainderLoop is non-null, it will receive the remainder loop (if /// required and not fully unrolled). LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE, bool PreserveLCSSA, Loop **RemainderLoop) { assert(DT && "DomTree is required"); if (!L->getLoopPreheader()) { LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); return LoopUnrollResult::Unmodified; } if (!L->getLoopLatch()) { LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); return LoopUnrollResult::Unmodified; } // Loops with indirectbr cannot be cloned. if (!L->isSafeToClone()) { LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); return LoopUnrollResult::Unmodified; } if (L->getHeader()->hasAddressTaken()) { // The loop-rotate pass can be helpful to avoid this in many cases. LLVM_DEBUG( dbgs() << " Won't unroll loop: address of header block is taken.\n"); return LoopUnrollResult::Unmodified; } assert(ULO.Count > 0); // All these values should be taken only after peeling because they might have // changed. BasicBlock *Preheader = L->getLoopPreheader(); BasicBlock *Header = L->getHeader(); BasicBlock *LatchBlock = L->getLoopLatch(); SmallVector ExitBlocks; L->getExitBlocks(ExitBlocks); std::vector OriginalLoopBlocks = L->getBlocks(); const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); unsigned EstimatedLoopInvocationWeight = 0; std::optional OriginalTripCount = llvm::getLoopEstimatedTripCount(L, &EstimatedLoopInvocationWeight); // Effectively "DCE" unrolled iterations that are beyond the max tripcount // and will never be executed. if (MaxTripCount && ULO.Count > MaxTripCount) ULO.Count = MaxTripCount; struct ExitInfo { unsigned TripCount; unsigned TripMultiple; unsigned BreakoutTrip; bool ExitOnTrue; BasicBlock *FirstExitingBlock = nullptr; SmallVector ExitingBlocks; }; DenseMap ExitInfos; SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); for (auto *ExitingBlock : ExitingBlocks) { // The folding code is not prepared to deal with non-branch instructions // right now. auto *BI = dyn_cast(ExitingBlock->getTerminator()); if (!BI) continue; ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second; Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); if (Info.TripCount != 0) { Info.BreakoutTrip = Info.TripCount % ULO.Count; Info.TripMultiple = 0; } else { Info.BreakoutTrip = Info.TripMultiple = (unsigned)std::gcd(ULO.Count, Info.TripMultiple); } Info.ExitOnTrue = !L->contains(BI->getSuccessor(0)); Info.ExitingBlocks.push_back(ExitingBlock); LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName() << ": TripCount=" << Info.TripCount << ", TripMultiple=" << Info.TripMultiple << ", BreakoutTrip=" << Info.BreakoutTrip << "\n"); } // Are we eliminating the loop control altogether? Note that we can know // we're eliminating the backedge without knowing exactly which iteration // of the unrolled body exits. const bool CompletelyUnroll = ULO.Count == MaxTripCount; const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; // There's no point in performing runtime unrolling if this unroll count // results in a full unroll. if (CompletelyUnroll) ULO.Runtime = false; // Go through all exits of L and see if there are any phi-nodes there. We just // conservatively assume that they're inserted to preserve LCSSA form, which // means that complete unrolling might break this form. We need to either fix // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For // now we just recompute LCSSA for the outer loop, but it should be possible // to fix it in-place. bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && any_of(ExitBlocks, [](const BasicBlock *BB) { return isa(BB->begin()); }); // The current loop unroll pass can unroll loops that have // (1) single latch; and // (2a) latch is unconditional; or // (2b) latch is conditional and is an exiting block // FIXME: The implementation can be extended to work with more complicated // cases, e.g. loops with multiple latches. BranchInst *LatchBI = dyn_cast(LatchBlock->getTerminator()); // A conditional branch which exits the loop, which can be optimized to an // unconditional branch in the unrolled loop in some cases. bool LatchIsExiting = L->isLoopExiting(LatchBlock); if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { LLVM_DEBUG( dbgs() << "Can't unroll; a conditional latch must exit the loop"); return LoopUnrollResult::Unmodified; } // Loops containing convergent instructions cannot use runtime unrolling, // as the prologue/epilogue may add additional control-dependencies to // convergent operations. LLVM_DEBUG( { bool HasConvergent = false; for (auto &BB : L->blocks()) for (auto &I : *BB) if (auto *CB = dyn_cast(&I)) HasConvergent |= CB->isConvergent(); assert((!HasConvergent || !ULO.Runtime) && "Can't runtime unroll if loop contains a convergent operation."); }); bool EpilogProfitability = UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog : isEpilogProfitable(L); if (ULO.Runtime && !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, EpilogProfitability, ULO.UnrollRemainder, ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, PreserveLCSSA, RemainderLoop)) { if (ULO.Force) ULO.Runtime = false; else { LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " "generated when assuming runtime trip count\n"); return LoopUnrollResult::Unmodified; } } using namespace ore; // Report the unrolling decision. if (CompletelyUnroll) { LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() << " with trip count " << ULO.Count << "!\n"); if (ORE) ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), L->getHeader()) << "completely unrolled loop with " << NV("UnrollCount", ULO.Count) << " iterations"; }); } else { LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " << ULO.Count); if (ULO.Runtime) LLVM_DEBUG(dbgs() << " with run-time trip count"); LLVM_DEBUG(dbgs() << "!\n"); if (ORE) ORE->emit([&]() { OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), L->getHeader()); Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count); if (ULO.Runtime) Diag << " with run-time trip count"; return Diag; }); } // We are going to make changes to this loop. SCEV may be keeping cached info // about it, in particular about backedge taken count. The changes we make // are guaranteed to invalidate this information for our loop. It is tempting // to only invalidate the loop being unrolled, but it is incorrect as long as // all exiting branches from all inner loops have impact on the outer loops, // and if something changes inside them then any of outer loops may also // change. When we forget outermost loop, we also forget all contained loops // and this is what we need here. if (SE) { if (ULO.ForgetAllSCEV) SE->forgetAllLoops(); else { SE->forgetTopmostLoop(L); SE->forgetBlockAndLoopDispositions(); } } if (!LatchIsExiting) ++NumUnrolledNotLatch; // For the first iteration of the loop, we should use the precloned values for // PHI nodes. Insert associations now. ValueToValueMapTy LastValueMap; std::vector OrigPHINode; for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { OrigPHINode.push_back(cast(I)); } std::vector Headers; std::vector Latches; Headers.push_back(Header); Latches.push_back(LatchBlock); // The current on-the-fly SSA update requires blocks to be processed in // reverse postorder so that LastValueMap contains the correct value at each // exit. LoopBlocksDFS DFS(L); DFS.perform(LI); // Stash the DFS iterators before adding blocks to the loop. LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); std::vector UnrolledLoopBlocks = L->getBlocks(); // Loop Unrolling might create new loops. While we do preserve LoopInfo, we // might break loop-simplified form for these loops (as they, e.g., would // share the same exit blocks). We'll keep track of loops for which we can // break this so that later we can re-simplify them. SmallSetVector LoopsToSimplify; for (Loop *SubLoop : *L) LoopsToSimplify.insert(SubLoop); // When a FSDiscriminator is enabled, we don't need to add the multiply // factors to the discriminators. if (Header->getParent()->shouldEmitDebugInfoForProfiling() && !EnableFSDiscriminator) for (BasicBlock *BB : L->getBlocks()) for (Instruction &I : *BB) if (!I.isDebugOrPseudoInst()) if (const DILocation *DIL = I.getDebugLoc()) { auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); if (NewDIL) I.setDebugLoc(*NewDIL); else LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " << DIL->getFilename() << " Line: " << DIL->getLine()); } // Identify what noalias metadata is inside the loop: if it is inside the // loop, the associated metadata must be cloned for each iteration. SmallVector LoopLocalNoAliasDeclScopes; identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); // We place the unrolled iterations immediately after the original loop // latch. This is a reasonable default placement if we don't have block // frequencies, and if we do, well the layout will be adjusted later. auto BlockInsertPt = std::next(LatchBlock->getIterator()); for (unsigned It = 1; It != ULO.Count; ++It) { SmallVector NewBlocks; SmallDenseMap NewLoops; NewLoops[L] = L; for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { ValueToValueMapTy VMap; BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); Header->getParent()->insert(BlockInsertPt, New); assert((*BB != Header || LI->getLoopFor(*BB) == L) && "Header should not be in a sub-loop"); // Tell LI about New. const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); if (OldLoop) LoopsToSimplify.insert(NewLoops[OldLoop]); if (*BB == Header) // Loop over all of the PHI nodes in the block, changing them to use // the incoming values from the previous block. for (PHINode *OrigPHI : OrigPHINode) { PHINode *NewPHI = cast(VMap[OrigPHI]); Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); if (Instruction *InValI = dyn_cast(InVal)) if (It > 1 && L->contains(InValI)) InVal = LastValueMap[InValI]; VMap[OrigPHI] = InVal; NewPHI->eraseFromParent(); } // Update our running map of newest clones LastValueMap[*BB] = New; for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); VI != VE; ++VI) LastValueMap[VI->first] = VI->second; // Add phi entries for newly created values to all exit blocks. for (BasicBlock *Succ : successors(*BB)) { if (L->contains(Succ)) continue; for (PHINode &PHI : Succ->phis()) { Value *Incoming = PHI.getIncomingValueForBlock(*BB); ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); if (It != LastValueMap.end()) Incoming = It->second; PHI.addIncoming(Incoming, New); SE->forgetValue(&PHI); } } // Keep track of new headers and latches as we create them, so that // we can insert the proper branches later. if (*BB == Header) Headers.push_back(New); if (*BB == LatchBlock) Latches.push_back(New); // Keep track of the exiting block and its successor block contained in // the loop for the current iteration. auto ExitInfoIt = ExitInfos.find(*BB); if (ExitInfoIt != ExitInfos.end()) ExitInfoIt->second.ExitingBlocks.push_back(New); NewBlocks.push_back(New); UnrolledLoopBlocks.push_back(New); // Update DomTree: since we just copy the loop body, and each copy has a // dedicated entry block (copy of the header block), this header's copy // dominates all copied blocks. That means, dominance relations in the // copied body are the same as in the original body. if (*BB == Header) DT->addNewBlock(New, Latches[It - 1]); else { auto BBDomNode = DT->getNode(*BB); auto BBIDom = BBDomNode->getIDom(); BasicBlock *OriginalBBIDom = BBIDom->getBlock(); DT->addNewBlock( New, cast(LastValueMap[cast(OriginalBBIDom)])); } } // Remap all instructions in the most recent iteration remapInstructionsInBlocks(NewBlocks, LastValueMap); for (BasicBlock *NewBlock : NewBlocks) for (Instruction &I : *NewBlock) if (auto *II = dyn_cast(&I)) AC->registerAssumption(II); { // Identify what other metadata depends on the cloned version. After // cloning, replace the metadata with the corrected version for both // memory instructions and noalias intrinsics. std::string ext = (Twine("It") + Twine(It)).str(); cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, Header->getContext(), ext); } } // Loop over the PHI nodes in the original block, setting incoming values. for (PHINode *PN : OrigPHINode) { if (CompletelyUnroll) { PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); PN->eraseFromParent(); } else if (ULO.Count > 1) { Value *InVal = PN->removeIncomingValue(LatchBlock, false); // If this value was defined in the loop, take the value defined by the // last iteration of the loop. if (Instruction *InValI = dyn_cast(InVal)) { if (L->contains(InValI)) InVal = LastValueMap[InVal]; } assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); PN->addIncoming(InVal, Latches.back()); } } // Connect latches of the unrolled iterations to the headers of the next // iteration. Currently they point to the header of the same iteration. for (unsigned i = 0, e = Latches.size(); i != e; ++i) { unsigned j = (i + 1) % e; Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); } // Update dominators of blocks we might reach through exits. // Immediate dominator of such block might change, because we add more // routes which can lead to the exit: we can now reach it from the copied // iterations too. if (ULO.Count > 1) { for (auto *BB : OriginalLoopBlocks) { auto *BBDomNode = DT->getNode(BB); SmallVector ChildrenToUpdate; for (auto *ChildDomNode : BBDomNode->children()) { auto *ChildBB = ChildDomNode->getBlock(); if (!L->contains(ChildBB)) ChildrenToUpdate.push_back(ChildBB); } // The new idom of the block will be the nearest common dominator // of all copies of the previous idom. This is equivalent to the // nearest common dominator of the previous idom and the first latch, // which dominates all copies of the previous idom. BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); for (auto *ChildBB : ChildrenToUpdate) DT->changeImmediateDominator(ChildBB, NewIDom); } } assert(!UnrollVerifyDomtree || DT->verify(DominatorTree::VerificationLevel::Fast)); SmallVector DTUpdates; auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { auto *Term = cast(Src->getTerminator()); const unsigned Idx = ExitOnTrue ^ WillExit; BasicBlock *Dest = Term->getSuccessor(Idx); BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); // Remove predecessors from all non-Dest successors. DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); // Replace the conditional branch with an unconditional one. BranchInst::Create(Dest, Term); Term->eraseFromParent(); DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc); }; auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j, bool IsLatch) -> std::optional { if (CompletelyUnroll) { if (PreserveOnlyFirst) { if (i == 0) return std::nullopt; return j == 0; } // Complete (but possibly inexact) unrolling if (j == 0) return true; if (Info.TripCount && j != Info.TripCount) return false; return std::nullopt; } if (ULO.Runtime) { // If runtime unrolling inserts a prologue, information about non-latch // exits may be stale. if (IsLatch && j != 0) return false; return std::nullopt; } if (j != Info.BreakoutTrip && (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) { // If we know the trip count or a multiple of it, we can safely use an // unconditional branch for some iterations. return false; } return std::nullopt; }; // Fold branches for iterations where we know that they will exit or not // exit. for (auto &Pair : ExitInfos) { ExitInfo &Info = Pair.second; for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) { // The branch destination. unsigned j = (i + 1) % e; bool IsLatch = Pair.first == LatchBlock; std::optional KnownWillExit = WillExit(Info, i, j, IsLatch); if (!KnownWillExit) { if (!Info.FirstExitingBlock) Info.FirstExitingBlock = Info.ExitingBlocks[i]; continue; } // We don't fold known-exiting branches for non-latch exits here, // because this ensures that both all loop blocks and all exit blocks // remain reachable in the CFG. // TODO: We could fold these branches, but it would require much more // sophisticated updates to LoopInfo. if (*KnownWillExit && !IsLatch) { if (!Info.FirstExitingBlock) Info.FirstExitingBlock = Info.ExitingBlocks[i]; continue; } SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue); } } DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); DomTreeUpdater *DTUToUse = &DTU; if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) { // Manually update the DT if there's a single exiting node. In that case // there's a single exit node and it is sufficient to update the nodes // immediately dominated by the original exiting block. They will become // dominated by the first exiting block that leaves the loop after // unrolling. Note that the CFG inside the loop does not change, so there's // no need to update the DT inside the unrolled loop. DTUToUse = nullptr; auto &[OriginalExit, Info] = *ExitInfos.begin(); if (!Info.FirstExitingBlock) Info.FirstExitingBlock = Info.ExitingBlocks.back(); for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) { if (L->contains(C->getBlock())) continue; C->setIDom(DT->getNode(Info.FirstExitingBlock)); } } else { DTU.applyUpdates(DTUpdates); } // When completely unrolling, the last latch becomes unreachable. if (!LatchIsExiting && CompletelyUnroll) { // There is no need to update the DT here, because there must be a unique // latch. Hence if the latch is not exiting it must directly branch back to // the original loop header and does not dominate any nodes. assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?"); changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA); } // Merge adjacent basic blocks, if possible. for (BasicBlock *Latch : Latches) { BranchInst *Term = dyn_cast(Latch->getTerminator()); assert((Term || (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && "Need a branch as terminator, except when fully unrolling with " "unconditional latch"); if (Term && Term->isUnconditional()) { BasicBlock *Dest = Term->getSuccessor(0); BasicBlock *Fold = Dest->getUniquePredecessor(); if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI, /*MSSAU=*/nullptr, /*MemDep=*/nullptr, /*PredecessorWithTwoSuccessors=*/false, DTUToUse ? nullptr : DT)) { // Dest has been folded into Fold. Update our worklists accordingly. std::replace(Latches.begin(), Latches.end(), Dest, Fold); llvm::erase(UnrolledLoopBlocks, Dest); } } } if (DTUToUse) { // Apply updates to the DomTree. DT = &DTU.getDomTree(); } assert(!UnrollVerifyDomtree || DT->verify(DominatorTree::VerificationLevel::Fast)); // At this point, the code is well formed. We now simplify the unrolled loop, // doing constant propagation and dead code elimination as we go. simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, TTI); NumCompletelyUnrolled += CompletelyUnroll; ++NumUnrolled; Loop *OuterL = L->getParentLoop(); // Update LoopInfo if the loop is completely removed. if (CompletelyUnroll) { LI->erase(L); // We shouldn't try to use `L` anymore. L = nullptr; } else if (OriginalTripCount) { // Update the trip count. Note that the remainder has already logic // computing it in `UnrollRuntimeLoopRemainder`. setLoopEstimatedTripCount(L, *OriginalTripCount / ULO.Count, EstimatedLoopInvocationWeight); } // LoopInfo should not be valid, confirm that. if (UnrollVerifyLoopInfo) LI->verify(*DT); // After complete unrolling most of the blocks should be contained in OuterL. // However, some of them might happen to be out of OuterL (e.g. if they // precede a loop exit). In this case we might need to insert PHI nodes in // order to preserve LCSSA form. // We don't need to check this if we already know that we need to fix LCSSA // form. // TODO: For now we just recompute LCSSA for the outer loop in this case, but // it should be possible to fix it in-place. if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); // Make sure that loop-simplify form is preserved. We want to simplify // at least one layer outside of the loop that was unrolled so that any // changes to the parent loop exposed by the unrolling are considered. if (OuterL) { // OuterL includes all loops for which we can break loop-simplify, so // it's sufficient to simplify only it (it'll recursively simplify inner // loops too). if (NeedToFixLCSSA) { // LCSSA must be performed on the outermost affected loop. The unrolled // loop's last loop latch is guaranteed to be in the outermost loop // after LoopInfo's been updated by LoopInfo::erase. Loop *LatchLoop = LI->getLoopFor(Latches.back()); Loop *FixLCSSALoop = OuterL; if (!FixLCSSALoop->contains(LatchLoop)) while (FixLCSSALoop->getParentLoop() != LatchLoop) FixLCSSALoop = FixLCSSALoop->getParentLoop(); formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); } else if (PreserveLCSSA) { assert(OuterL->isLCSSAForm(*DT) && "Loops should be in LCSSA form after loop-unroll."); } // TODO: That potentially might be compile-time expensive. We should try // to fix the loop-simplified form incrementally. simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); } else { // Simplify loops for which we might've broken loop-simplify form. for (Loop *SubLoop : LoopsToSimplify) simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); } return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled : LoopUnrollResult::PartiallyUnrolled; } /// Given an llvm.loop loop id metadata node, returns the loop hint metadata /// node with the given name (for example, "llvm.loop.unroll.count"). If no /// such metadata node exists, then nullptr is returned. MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { // First operand should refer to the loop id itself. assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { MDNode *MD = dyn_cast(LoopID->getOperand(i)); if (!MD) continue; MDString *S = dyn_cast(MD->getOperand(0)); if (!S) continue; if (Name.equals(S->getString())) return MD; } return nullptr; }