//===- FunctionComparator.h - Function Comparator -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the FunctionComparator and GlobalNumberState classes // which are used by the MergeFunctions pass for comparing functions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/FunctionComparator.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "functioncomparator" int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { if (L < R) return -1; if (L > R) return 1; return 0; } int FunctionComparator::cmpAligns(Align L, Align R) const { if (L.value() < R.value()) return -1; if (L.value() > R.value()) return 1; return 0; } int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { if ((int)L < (int)R) return -1; if ((int)L > (int)R) return 1; return 0; } int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) return Res; if (L.ugt(R)) return 1; if (R.ugt(L)) return -1; return 0; } int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { // Floats are ordered first by semantics (i.e. float, double, half, etc.), // then by value interpreted as a bitstring (aka APInt). const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), APFloat::semanticsPrecision(SR))) return Res; if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), APFloat::semanticsMaxExponent(SR))) return Res; if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), APFloat::semanticsMinExponent(SR))) return Res; if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), APFloat::semanticsSizeInBits(SR))) return Res; return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); } int FunctionComparator::cmpMem(StringRef L, StringRef R) const { // Prevent heavy comparison, compare sizes first. if (int Res = cmpNumbers(L.size(), R.size())) return Res; // Compare strings lexicographically only when it is necessary: only when // strings are equal in size. return std::clamp(L.compare(R), -1, 1); } int FunctionComparator::cmpAttrs(const AttributeList L, const AttributeList R) const { if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) return Res; for (unsigned i : L.indexes()) { AttributeSet LAS = L.getAttributes(i); AttributeSet RAS = R.getAttributes(i); AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); for (; LI != LE && RI != RE; ++LI, ++RI) { Attribute LA = *LI; Attribute RA = *RI; if (LA.isTypeAttribute() && RA.isTypeAttribute()) { if (LA.getKindAsEnum() != RA.getKindAsEnum()) return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum()); Type *TyL = LA.getValueAsType(); Type *TyR = RA.getValueAsType(); if (TyL && TyR) { if (int Res = cmpTypes(TyL, TyR)) return Res; continue; } // Two pointers, at least one null, so the comparison result is // independent of the value of a real pointer. if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR)) return Res; continue; } if (LA < RA) return -1; if (RA < LA) return 1; } if (LI != LE) return 1; if (RI != RE) return -1; } return 0; } int FunctionComparator::cmpMetadata(const Metadata *L, const Metadata *R) const { // TODO: the following routine coerce the metadata contents into constants // or MDStrings before comparison. // It ignores any other cases, so that the metadata nodes are considered // equal even though this is not correct. // We should structurally compare the metadata nodes to be perfect here. auto *MDStringL = dyn_cast(L); auto *MDStringR = dyn_cast(R); if (MDStringL && MDStringR) { if (MDStringL == MDStringR) return 0; return MDStringL->getString().compare(MDStringR->getString()); } if (MDStringR) return -1; if (MDStringL) return 1; auto *CL = dyn_cast(L); auto *CR = dyn_cast(R); if (CL == CR) return 0; if (!CL) return -1; if (!CR) return 1; return cmpConstants(CL->getValue(), CR->getValue()); } int FunctionComparator::cmpMDNode(const MDNode *L, const MDNode *R) const { if (L == R) return 0; if (!L) return -1; if (!R) return 1; // TODO: Note that as this is metadata, it is possible to drop and/or merge // this data when considering functions to merge. Thus this comparison would // return 0 (i.e. equivalent), but merging would become more complicated // because the ranges would need to be unioned. It is not likely that // functions differ ONLY in this metadata if they are actually the same // function semantically. if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) return Res; for (size_t I = 0; I < L->getNumOperands(); ++I) if (int Res = cmpMetadata(L->getOperand(I), R->getOperand(I))) return Res; return 0; } int FunctionComparator::cmpInstMetadata(Instruction const *L, Instruction const *R) const { /// These metadata affects the other optimization passes by making assertions /// or constraints. /// Values that carry different expectations should be considered different. SmallVector> MDL, MDR; L->getAllMetadataOtherThanDebugLoc(MDL); R->getAllMetadataOtherThanDebugLoc(MDR); if (MDL.size() > MDR.size()) return 1; else if (MDL.size() < MDR.size()) return -1; for (size_t I = 0, N = MDL.size(); I < N; ++I) { auto const [KeyL, ML] = MDL[I]; auto const [KeyR, MR] = MDR[I]; if (int Res = cmpNumbers(KeyL, KeyR)) return Res; if (int Res = cmpMDNode(ML, MR)) return Res; } return 0; } int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS, const CallBase &RCS) const { assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!"); if (int Res = cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) return Res; for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) { auto OBL = LCS.getOperandBundleAt(I); auto OBR = RCS.getOperandBundleAt(I); if (int Res = OBL.getTagName().compare(OBR.getTagName())) return Res; if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) return Res; } return 0; } /// Constants comparison: /// 1. Check whether type of L constant could be losslessly bitcasted to R /// type. /// 2. Compare constant contents. /// For more details see declaration comments. int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) const { Type *TyL = L->getType(); Type *TyR = R->getType(); // Check whether types are bitcastable. This part is just re-factored // Type::canLosslesslyBitCastTo method, but instead of returning true/false, // we also pack into result which type is "less" for us. int TypesRes = cmpTypes(TyL, TyR); if (TypesRes != 0) { // Types are different, but check whether we can bitcast them. if (!TyL->isFirstClassType()) { if (TyR->isFirstClassType()) return -1; // Neither TyL nor TyR are values of first class type. Return the result // of comparing the types return TypesRes; } if (!TyR->isFirstClassType()) { if (TyL->isFirstClassType()) return 1; return TypesRes; } // Vector -> Vector conversions are always lossless if the two vector types // have the same size, otherwise not. unsigned TyLWidth = 0; unsigned TyRWidth = 0; if (auto *VecTyL = dyn_cast(TyL)) TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue(); if (auto *VecTyR = dyn_cast(TyR)) TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue(); if (TyLWidth != TyRWidth) return cmpNumbers(TyLWidth, TyRWidth); // Zero bit-width means neither TyL nor TyR are vectors. if (!TyLWidth) { PointerType *PTyL = dyn_cast(TyL); PointerType *PTyR = dyn_cast(TyR); if (PTyL && PTyR) { unsigned AddrSpaceL = PTyL->getAddressSpace(); unsigned AddrSpaceR = PTyR->getAddressSpace(); if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) return Res; } if (PTyL) return 1; if (PTyR) return -1; // TyL and TyR aren't vectors, nor pointers. We don't know how to // bitcast them. return TypesRes; } } // OK, types are bitcastable, now check constant contents. if (L->isNullValue() && R->isNullValue()) return TypesRes; if (L->isNullValue() && !R->isNullValue()) return 1; if (!L->isNullValue() && R->isNullValue()) return -1; auto GlobalValueL = const_cast(dyn_cast(L)); auto GlobalValueR = const_cast(dyn_cast(R)); if (GlobalValueL && GlobalValueR) { return cmpGlobalValues(GlobalValueL, GlobalValueR); } if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) return Res; if (const auto *SeqL = dyn_cast(L)) { const auto *SeqR = cast(R); // This handles ConstantDataArray and ConstantDataVector. Note that we // compare the two raw data arrays, which might differ depending on the host // endianness. This isn't a problem though, because the endiness of a module // will affect the order of the constants, but this order is the same // for a given input module and host platform. return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); } switch (L->getValueID()) { case Value::UndefValueVal: case Value::PoisonValueVal: case Value::ConstantTokenNoneVal: return TypesRes; case Value::ConstantIntVal: { const APInt &LInt = cast(L)->getValue(); const APInt &RInt = cast(R)->getValue(); return cmpAPInts(LInt, RInt); } case Value::ConstantFPVal: { const APFloat &LAPF = cast(L)->getValueAPF(); const APFloat &RAPF = cast(R)->getValueAPF(); return cmpAPFloats(LAPF, RAPF); } case Value::ConstantArrayVal: { const ConstantArray *LA = cast(L); const ConstantArray *RA = cast(R); uint64_t NumElementsL = cast(TyL)->getNumElements(); uint64_t NumElementsR = cast(TyR)->getNumElements(); if (int Res = cmpNumbers(NumElementsL, NumElementsR)) return Res; for (uint64_t i = 0; i < NumElementsL; ++i) { if (int Res = cmpConstants(cast(LA->getOperand(i)), cast(RA->getOperand(i)))) return Res; } return 0; } case Value::ConstantStructVal: { const ConstantStruct *LS = cast(L); const ConstantStruct *RS = cast(R); unsigned NumElementsL = cast(TyL)->getNumElements(); unsigned NumElementsR = cast(TyR)->getNumElements(); if (int Res = cmpNumbers(NumElementsL, NumElementsR)) return Res; for (unsigned i = 0; i != NumElementsL; ++i) { if (int Res = cmpConstants(cast(LS->getOperand(i)), cast(RS->getOperand(i)))) return Res; } return 0; } case Value::ConstantVectorVal: { const ConstantVector *LV = cast(L); const ConstantVector *RV = cast(R); unsigned NumElementsL = cast(TyL)->getNumElements(); unsigned NumElementsR = cast(TyR)->getNumElements(); if (int Res = cmpNumbers(NumElementsL, NumElementsR)) return Res; for (uint64_t i = 0; i < NumElementsL; ++i) { if (int Res = cmpConstants(cast(LV->getOperand(i)), cast(RV->getOperand(i)))) return Res; } return 0; } case Value::ConstantExprVal: { const ConstantExpr *LE = cast(L); const ConstantExpr *RE = cast(R); if (int Res = cmpNumbers(LE->getOpcode(), RE->getOpcode())) return Res; unsigned NumOperandsL = LE->getNumOperands(); unsigned NumOperandsR = RE->getNumOperands(); if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) return Res; for (unsigned i = 0; i < NumOperandsL; ++i) { if (int Res = cmpConstants(cast(LE->getOperand(i)), cast(RE->getOperand(i)))) return Res; } if (LE->isCompare()) if (int Res = cmpNumbers(LE->getPredicate(), RE->getPredicate())) return Res; if (auto *GEPL = dyn_cast(LE)) { auto *GEPR = cast(RE); if (int Res = cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) return Res; if (int Res = cmpNumbers(GEPL->isInBounds(), GEPR->isInBounds())) return Res; if (int Res = cmpNumbers(GEPL->getInRangeIndex().value_or(unsigned(-1)), GEPR->getInRangeIndex().value_or(unsigned(-1)))) return Res; } if (auto *OBOL = dyn_cast(LE)) { auto *OBOR = cast(RE); if (int Res = cmpNumbers(OBOL->hasNoUnsignedWrap(), OBOR->hasNoUnsignedWrap())) return Res; if (int Res = cmpNumbers(OBOL->hasNoSignedWrap(), OBOR->hasNoSignedWrap())) return Res; } return 0; } case Value::BlockAddressVal: { const BlockAddress *LBA = cast(L); const BlockAddress *RBA = cast(R); if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) return Res; if (LBA->getFunction() == RBA->getFunction()) { // They are BBs in the same function. Order by which comes first in the // BB order of the function. This order is deterministic. Function *F = LBA->getFunction(); BasicBlock *LBB = LBA->getBasicBlock(); BasicBlock *RBB = RBA->getBasicBlock(); if (LBB == RBB) return 0; for (BasicBlock &BB : *F) { if (&BB == LBB) { assert(&BB != RBB); return -1; } if (&BB == RBB) return 1; } llvm_unreachable("Basic Block Address does not point to a basic block in " "its function."); return -1; } else { // cmpValues said the functions are the same. So because they aren't // literally the same pointer, they must respectively be the left and // right functions. assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); // cmpValues will tell us if these are equivalent BasicBlocks, in the // context of their respective functions. return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); } } case Value::DSOLocalEquivalentVal: { // dso_local_equivalent is functionally equivalent to whatever it points to. // This means the behavior of the IR should be the exact same as if the // function was referenced directly rather than through a // dso_local_equivalent. const auto *LEquiv = cast(L); const auto *REquiv = cast(R); return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue()); } default: // Unknown constant, abort. LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); llvm_unreachable("Constant ValueID not recognized."); return -1; } } int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { uint64_t LNumber = GlobalNumbers->getNumber(L); uint64_t RNumber = GlobalNumbers->getNumber(R); return cmpNumbers(LNumber, RNumber); } /// cmpType - compares two types, /// defines total ordering among the types set. /// See method declaration comments for more details. int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { PointerType *PTyL = dyn_cast(TyL); PointerType *PTyR = dyn_cast(TyR); const DataLayout &DL = FnL->getParent()->getDataLayout(); if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL.getIntPtrType(TyL); if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL.getIntPtrType(TyR); if (TyL == TyR) return 0; if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) return Res; switch (TyL->getTypeID()) { default: llvm_unreachable("Unknown type!"); case Type::IntegerTyID: return cmpNumbers(cast(TyL)->getBitWidth(), cast(TyR)->getBitWidth()); // TyL == TyR would have returned true earlier, because types are uniqued. case Type::VoidTyID: case Type::FloatTyID: case Type::DoubleTyID: case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: case Type::LabelTyID: case Type::MetadataTyID: case Type::TokenTyID: return 0; case Type::PointerTyID: assert(PTyL && PTyR && "Both types must be pointers here."); return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); case Type::StructTyID: { StructType *STyL = cast(TyL); StructType *STyR = cast(TyR); if (STyL->getNumElements() != STyR->getNumElements()) return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); if (STyL->isPacked() != STyR->isPacked()) return cmpNumbers(STyL->isPacked(), STyR->isPacked()); for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) return Res; } return 0; } case Type::FunctionTyID: { FunctionType *FTyL = cast(TyL); FunctionType *FTyR = cast(TyR); if (FTyL->getNumParams() != FTyR->getNumParams()) return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); if (FTyL->isVarArg() != FTyR->isVarArg()) return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) return Res; for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) return Res; } return 0; } case Type::ArrayTyID: { auto *STyL = cast(TyL); auto *STyR = cast(TyR); if (STyL->getNumElements() != STyR->getNumElements()) return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); return cmpTypes(STyL->getElementType(), STyR->getElementType()); } case Type::FixedVectorTyID: case Type::ScalableVectorTyID: { auto *STyL = cast(TyL); auto *STyR = cast(TyR); if (STyL->getElementCount().isScalable() != STyR->getElementCount().isScalable()) return cmpNumbers(STyL->getElementCount().isScalable(), STyR->getElementCount().isScalable()); if (STyL->getElementCount() != STyR->getElementCount()) return cmpNumbers(STyL->getElementCount().getKnownMinValue(), STyR->getElementCount().getKnownMinValue()); return cmpTypes(STyL->getElementType(), STyR->getElementType()); } } } // Determine whether the two operations are the same except that pointer-to-A // and pointer-to-B are equivalent. This should be kept in sync with // Instruction::isSameOperationAs. // Read method declaration comments for more details. int FunctionComparator::cmpOperations(const Instruction *L, const Instruction *R, bool &needToCmpOperands) const { needToCmpOperands = true; if (int Res = cmpValues(L, R)) return Res; // Differences from Instruction::isSameOperationAs: // * replace type comparison with calls to cmpTypes. // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. // * because of the above, we don't test for the tail bit on calls later on. if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) return Res; if (const GetElementPtrInst *GEPL = dyn_cast(L)) { needToCmpOperands = false; const GetElementPtrInst *GEPR = cast(R); if (int Res = cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) return Res; return cmpGEPs(GEPL, GEPR); } if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) return Res; if (int Res = cmpTypes(L->getType(), R->getType())) return Res; if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), R->getRawSubclassOptionalData())) return Res; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { if (int Res = cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) return Res; } // Check special state that is a part of some instructions. if (const AllocaInst *AI = dyn_cast(L)) { if (int Res = cmpTypes(AI->getAllocatedType(), cast(R)->getAllocatedType())) return Res; return cmpAligns(AI->getAlign(), cast(R)->getAlign()); } if (const LoadInst *LI = dyn_cast(L)) { if (int Res = cmpNumbers(LI->isVolatile(), cast(R)->isVolatile())) return Res; if (int Res = cmpAligns(LI->getAlign(), cast(R)->getAlign())) return Res; if (int Res = cmpOrderings(LI->getOrdering(), cast(R)->getOrdering())) return Res; if (int Res = cmpNumbers(LI->getSyncScopeID(), cast(R)->getSyncScopeID())) return Res; return cmpInstMetadata(L, R); } if (const StoreInst *SI = dyn_cast(L)) { if (int Res = cmpNumbers(SI->isVolatile(), cast(R)->isVolatile())) return Res; if (int Res = cmpAligns(SI->getAlign(), cast(R)->getAlign())) return Res; if (int Res = cmpOrderings(SI->getOrdering(), cast(R)->getOrdering())) return Res; return cmpNumbers(SI->getSyncScopeID(), cast(R)->getSyncScopeID()); } if (const CmpInst *CI = dyn_cast(L)) return cmpNumbers(CI->getPredicate(), cast(R)->getPredicate()); if (auto *CBL = dyn_cast(L)) { auto *CBR = cast(R); if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv())) return Res; if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes())) return Res; if (int Res = cmpOperandBundlesSchema(*CBL, *CBR)) return Res; if (const CallInst *CI = dyn_cast(L)) if (int Res = cmpNumbers(CI->getTailCallKind(), cast(R)->getTailCallKind())) return Res; return cmpMDNode(L->getMetadata(LLVMContext::MD_range), R->getMetadata(LLVMContext::MD_range)); } if (const InsertValueInst *IVI = dyn_cast(L)) { ArrayRef LIndices = IVI->getIndices(); ArrayRef RIndices = cast(R)->getIndices(); if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) return Res; for (size_t i = 0, e = LIndices.size(); i != e; ++i) { if (int Res = cmpNumbers(LIndices[i], RIndices[i])) return Res; } return 0; } if (const ExtractValueInst *EVI = dyn_cast(L)) { ArrayRef LIndices = EVI->getIndices(); ArrayRef RIndices = cast(R)->getIndices(); if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) return Res; for (size_t i = 0, e = LIndices.size(); i != e; ++i) { if (int Res = cmpNumbers(LIndices[i], RIndices[i])) return Res; } } if (const FenceInst *FI = dyn_cast(L)) { if (int Res = cmpOrderings(FI->getOrdering(), cast(R)->getOrdering())) return Res; return cmpNumbers(FI->getSyncScopeID(), cast(R)->getSyncScopeID()); } if (const AtomicCmpXchgInst *CXI = dyn_cast(L)) { if (int Res = cmpNumbers(CXI->isVolatile(), cast(R)->isVolatile())) return Res; if (int Res = cmpNumbers(CXI->isWeak(), cast(R)->isWeak())) return Res; if (int Res = cmpOrderings(CXI->getSuccessOrdering(), cast(R)->getSuccessOrdering())) return Res; if (int Res = cmpOrderings(CXI->getFailureOrdering(), cast(R)->getFailureOrdering())) return Res; return cmpNumbers(CXI->getSyncScopeID(), cast(R)->getSyncScopeID()); } if (const AtomicRMWInst *RMWI = dyn_cast(L)) { if (int Res = cmpNumbers(RMWI->getOperation(), cast(R)->getOperation())) return Res; if (int Res = cmpNumbers(RMWI->isVolatile(), cast(R)->isVolatile())) return Res; if (int Res = cmpOrderings(RMWI->getOrdering(), cast(R)->getOrdering())) return Res; return cmpNumbers(RMWI->getSyncScopeID(), cast(R)->getSyncScopeID()); } if (const ShuffleVectorInst *SVI = dyn_cast(L)) { ArrayRef LMask = SVI->getShuffleMask(); ArrayRef RMask = cast(R)->getShuffleMask(); if (int Res = cmpNumbers(LMask.size(), RMask.size())) return Res; for (size_t i = 0, e = LMask.size(); i != e; ++i) { if (int Res = cmpNumbers(LMask[i], RMask[i])) return Res; } } if (const PHINode *PNL = dyn_cast(L)) { const PHINode *PNR = cast(R); // Ensure that in addition to the incoming values being identical // (checked by the caller of this function), the incoming blocks // are also identical. for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { if (int Res = cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) return Res; } } return 0; } // Determine whether two GEP operations perform the same underlying arithmetic. // Read method declaration comments for more details. int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR) const { unsigned int ASL = GEPL->getPointerAddressSpace(); unsigned int ASR = GEPR->getPointerAddressSpace(); if (int Res = cmpNumbers(ASL, ASR)) return Res; // When we have target data, we can reduce the GEP down to the value in bytes // added to the address. const DataLayout &DL = FnL->getParent()->getDataLayout(); unsigned OffsetBitWidth = DL.getIndexSizeInBits(ASL); APInt OffsetL(OffsetBitWidth, 0), OffsetR(OffsetBitWidth, 0); if (GEPL->accumulateConstantOffset(DL, OffsetL) && GEPR->accumulateConstantOffset(DL, OffsetR)) return cmpAPInts(OffsetL, OffsetR); if (int Res = cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) return Res; if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) return Res; for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) return Res; } return 0; } int FunctionComparator::cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const { // InlineAsm's are uniqued. If they are the same pointer, obviously they are // the same, otherwise compare the fields. if (L == R) return 0; if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) return Res; if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) return Res; if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) return Res; if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) return Res; if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) return Res; if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) return Res; assert(L->getFunctionType() != R->getFunctionType()); return 0; } /// Compare two values used by the two functions under pair-wise comparison. If /// this is the first time the values are seen, they're added to the mapping so /// that we will detect mismatches on next use. /// See comments in declaration for more details. int FunctionComparator::cmpValues(const Value *L, const Value *R) const { // Catch self-reference case. if (L == FnL) { if (R == FnR) return 0; return -1; } if (R == FnR) { if (L == FnL) return 0; return 1; } const Constant *ConstL = dyn_cast(L); const Constant *ConstR = dyn_cast(R); if (ConstL && ConstR) { if (L == R) return 0; return cmpConstants(ConstL, ConstR); } if (ConstL) return 1; if (ConstR) return -1; const MetadataAsValue *MetadataValueL = dyn_cast(L); const MetadataAsValue *MetadataValueR = dyn_cast(R); if (MetadataValueL && MetadataValueR) { if (MetadataValueL == MetadataValueR) return 0; return cmpMetadata(MetadataValueL->getMetadata(), MetadataValueR->getMetadata()); } if (MetadataValueL) return 1; if (MetadataValueR) return -1; const InlineAsm *InlineAsmL = dyn_cast(L); const InlineAsm *InlineAsmR = dyn_cast(R); if (InlineAsmL && InlineAsmR) return cmpInlineAsm(InlineAsmL, InlineAsmR); if (InlineAsmL) return 1; if (InlineAsmR) return -1; auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); return cmpNumbers(LeftSN.first->second, RightSN.first->second); } // Test whether two basic blocks have equivalent behaviour. int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const { BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); do { bool needToCmpOperands = true; if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) return Res; if (needToCmpOperands) { assert(InstL->getNumOperands() == InstR->getNumOperands()); for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { Value *OpL = InstL->getOperand(i); Value *OpR = InstR->getOperand(i); if (int Res = cmpValues(OpL, OpR)) return Res; // cmpValues should ensure this is true. assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); } } ++InstL; ++InstR; } while (InstL != InstLE && InstR != InstRE); if (InstL != InstLE && InstR == InstRE) return 1; if (InstL == InstLE && InstR != InstRE) return -1; return 0; } int FunctionComparator::compareSignature() const { if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) return Res; if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) return Res; if (FnL->hasGC()) { if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) return Res; } if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) return Res; if (FnL->hasSection()) { if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) return Res; } if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) return Res; // TODO: if it's internal and only used in direct calls, we could handle this // case too. if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) return Res; if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) return Res; assert(FnL->arg_size() == FnR->arg_size() && "Identically typed functions have different numbers of args!"); // Visit the arguments so that they get enumerated in the order they're // passed in. for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), ArgRI = FnR->arg_begin(), ArgLE = FnL->arg_end(); ArgLI != ArgLE; ++ArgLI, ++ArgRI) { if (cmpValues(&*ArgLI, &*ArgRI) != 0) llvm_unreachable("Arguments repeat!"); } return 0; } // Test whether the two functions have equivalent behaviour. int FunctionComparator::compare() { beginCompare(); if (int Res = compareSignature()) return Res; // We do a CFG-ordered walk since the actual ordering of the blocks in the // linked list is immaterial. Our walk starts at the entry block for both // functions, then takes each block from each terminator in order. As an // artifact, this also means that unreachable blocks are ignored. SmallVector FnLBBs, FnRBBs; SmallPtrSet VisitedBBs; // in terms of F1. FnLBBs.push_back(&FnL->getEntryBlock()); FnRBBs.push_back(&FnR->getEntryBlock()); VisitedBBs.insert(FnLBBs[0]); while (!FnLBBs.empty()) { const BasicBlock *BBL = FnLBBs.pop_back_val(); const BasicBlock *BBR = FnRBBs.pop_back_val(); if (int Res = cmpValues(BBL, BBR)) return Res; if (int Res = cmpBasicBlocks(BBL, BBR)) return Res; const Instruction *TermL = BBL->getTerminator(); const Instruction *TermR = BBR->getTerminator(); assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) continue; FnLBBs.push_back(TermL->getSuccessor(i)); FnRBBs.push_back(TermR->getSuccessor(i)); } } return 0; }