//===- Debugify.cpp - Attach synthetic debug info to everything -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file This pass attaches synthetic debug info to everything. It can be used /// to create targeted tests for debug info preservation. /// //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Debugify.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" using namespace llvm; namespace { cl::opt Quiet("debugify-quiet", cl::desc("Suppress verbose debugify output")); raw_ostream &dbg() { return Quiet ? nulls() : errs(); } uint64_t getAllocSizeInBits(Module &M, Type *Ty) { return Ty->isSized() ? M.getDataLayout().getTypeAllocSizeInBits(Ty) : 0; } bool isFunctionSkipped(Function &F) { return F.isDeclaration() || !F.hasExactDefinition(); } /// Find the basic block's terminating instruction. /// /// Special care is needed to handle musttail and deopt calls, as these behave /// like (but are in fact not) terminators. Instruction *findTerminatingInstruction(BasicBlock &BB) { if (auto *I = BB.getTerminatingMustTailCall()) return I; if (auto *I = BB.getTerminatingDeoptimizeCall()) return I; return BB.getTerminator(); } bool applyDebugifyMetadata(Module &M, iterator_range Functions, StringRef Banner) { // Skip modules with debug info. if (M.getNamedMetadata("llvm.dbg.cu")) { dbg() << Banner << "Skipping module with debug info\n"; return false; } DIBuilder DIB(M); LLVMContext &Ctx = M.getContext(); // Get a DIType which corresponds to Ty. DenseMap TypeCache; auto getCachedDIType = [&](Type *Ty) -> DIType * { uint64_t Size = getAllocSizeInBits(M, Ty); DIType *&DTy = TypeCache[Size]; if (!DTy) { std::string Name = "ty" + utostr(Size); DTy = DIB.createBasicType(Name, Size, dwarf::DW_ATE_unsigned); } return DTy; }; unsigned NextLine = 1; unsigned NextVar = 1; auto File = DIB.createFile(M.getName(), "/"); auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "debugify", /*isOptimized=*/true, "", 0); // Visit each instruction. for (Function &F : Functions) { if (isFunctionSkipped(F)) continue; auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized; if (F.hasPrivateLinkage() || F.hasInternalLinkage()) SPFlags |= DISubprogram::SPFlagLocalToUnit; auto SP = DIB.createFunction(CU, F.getName(), F.getName(), File, NextLine, SPType, NextLine, DINode::FlagZero, SPFlags); F.setSubprogram(SP); for (BasicBlock &BB : F) { // Attach debug locations. for (Instruction &I : BB) I.setDebugLoc(DILocation::get(Ctx, NextLine++, 1, SP)); // Inserting debug values into EH pads can break IR invariants. if (BB.isEHPad()) continue; // Find the terminating instruction, after which no debug values are // attached. Instruction *LastInst = findTerminatingInstruction(BB); assert(LastInst && "Expected basic block with a terminator"); // Maintain an insertion point which can't be invalidated when updates // are made. BasicBlock::iterator InsertPt = BB.getFirstInsertionPt(); assert(InsertPt != BB.end() && "Expected to find an insertion point"); Instruction *InsertBefore = &*InsertPt; // Attach debug values. for (Instruction *I = &*BB.begin(); I != LastInst; I = I->getNextNode()) { // Skip void-valued instructions. if (I->getType()->isVoidTy()) continue; // Phis and EH pads must be grouped at the beginning of the block. // Only advance the insertion point when we finish visiting these. if (!isa(I) && !I->isEHPad()) InsertBefore = I->getNextNode(); std::string Name = utostr(NextVar++); const DILocation *Loc = I->getDebugLoc().get(); auto LocalVar = DIB.createAutoVariable(SP, Name, File, Loc->getLine(), getCachedDIType(I->getType()), /*AlwaysPreserve=*/true); DIB.insertDbgValueIntrinsic(I, LocalVar, DIB.createExpression(), Loc, InsertBefore); } } DIB.finalizeSubprogram(SP); } DIB.finalize(); // Track the number of distinct lines and variables. NamedMDNode *NMD = M.getOrInsertNamedMetadata("llvm.debugify"); auto *IntTy = Type::getInt32Ty(Ctx); auto addDebugifyOperand = [&](unsigned N) { NMD->addOperand(MDNode::get( Ctx, ValueAsMetadata::getConstant(ConstantInt::get(IntTy, N)))); }; addDebugifyOperand(NextLine - 1); // Original number of lines. addDebugifyOperand(NextVar - 1); // Original number of variables. assert(NMD->getNumOperands() == 2 && "llvm.debugify should have exactly 2 operands!"); // Claim that this synthetic debug info is valid. StringRef DIVersionKey = "Debug Info Version"; if (!M.getModuleFlag(DIVersionKey)) M.addModuleFlag(Module::Warning, DIVersionKey, DEBUG_METADATA_VERSION); return true; } /// Return true if a mis-sized diagnostic is issued for \p DVI. bool diagnoseMisSizedDbgValue(Module &M, DbgValueInst *DVI) { // The size of a dbg.value's value operand should match the size of the // variable it corresponds to. // // TODO: This, along with a check for non-null value operands, should be // promoted to verifier failures. Value *V = DVI->getValue(); if (!V) return false; // For now, don't try to interpret anything more complicated than an empty // DIExpression. Eventually we should try to handle OP_deref and fragments. if (DVI->getExpression()->getNumElements()) return false; Type *Ty = V->getType(); uint64_t ValueOperandSize = getAllocSizeInBits(M, Ty); Optional DbgVarSize = DVI->getFragmentSizeInBits(); if (!ValueOperandSize || !DbgVarSize) return false; bool HasBadSize = false; if (Ty->isIntegerTy()) { auto Signedness = DVI->getVariable()->getSignedness(); if (Signedness && *Signedness == DIBasicType::Signedness::Signed) HasBadSize = ValueOperandSize < *DbgVarSize; } else { HasBadSize = ValueOperandSize != *DbgVarSize; } if (HasBadSize) { dbg() << "ERROR: dbg.value operand has size " << ValueOperandSize << ", but its variable has size " << *DbgVarSize << ": "; DVI->print(dbg()); dbg() << "\n"; } return HasBadSize; } bool checkDebugifyMetadata(Module &M, iterator_range Functions, StringRef NameOfWrappedPass, StringRef Banner, bool Strip, DebugifyStatsMap *StatsMap) { // Skip modules without debugify metadata. NamedMDNode *NMD = M.getNamedMetadata("llvm.debugify"); if (!NMD) { dbg() << Banner << "Skipping module without debugify metadata\n"; return false; } auto getDebugifyOperand = [&](unsigned Idx) -> unsigned { return mdconst::extract(NMD->getOperand(Idx)->getOperand(0)) ->getZExtValue(); }; assert(NMD->getNumOperands() == 2 && "llvm.debugify should have exactly 2 operands!"); unsigned OriginalNumLines = getDebugifyOperand(0); unsigned OriginalNumVars = getDebugifyOperand(1); bool HasErrors = false; // Track debug info loss statistics if able. DebugifyStatistics *Stats = nullptr; if (StatsMap && !NameOfWrappedPass.empty()) Stats = &StatsMap->operator[](NameOfWrappedPass); BitVector MissingLines{OriginalNumLines, true}; BitVector MissingVars{OriginalNumVars, true}; for (Function &F : Functions) { if (isFunctionSkipped(F)) continue; // Find missing lines. for (Instruction &I : instructions(F)) { if (isa(&I)) continue; auto DL = I.getDebugLoc(); if (DL && DL.getLine() != 0) { MissingLines.reset(DL.getLine() - 1); continue; } if (!DL) { dbg() << "ERROR: Instruction with empty DebugLoc in function "; dbg() << F.getName() << " --"; I.print(dbg()); dbg() << "\n"; HasErrors = true; } } // Find missing variables and mis-sized debug values. for (Instruction &I : instructions(F)) { auto *DVI = dyn_cast(&I); if (!DVI) continue; unsigned Var = ~0U; (void)to_integer(DVI->getVariable()->getName(), Var, 10); assert(Var <= OriginalNumVars && "Unexpected name for DILocalVariable"); bool HasBadSize = diagnoseMisSizedDbgValue(M, DVI); if (!HasBadSize) MissingVars.reset(Var - 1); HasErrors |= HasBadSize; } } // Print the results. for (unsigned Idx : MissingLines.set_bits()) dbg() << "WARNING: Missing line " << Idx + 1 << "\n"; for (unsigned Idx : MissingVars.set_bits()) dbg() << "WARNING: Missing variable " << Idx + 1 << "\n"; // Update DI loss statistics. if (Stats) { Stats->NumDbgLocsExpected += OriginalNumLines; Stats->NumDbgLocsMissing += MissingLines.count(); Stats->NumDbgValuesExpected += OriginalNumVars; Stats->NumDbgValuesMissing += MissingVars.count(); } dbg() << Banner; if (!NameOfWrappedPass.empty()) dbg() << " [" << NameOfWrappedPass << "]"; dbg() << ": " << (HasErrors ? "FAIL" : "PASS") << '\n'; // Strip the Debugify Metadata if required. if (Strip) { StripDebugInfo(M); M.eraseNamedMetadata(NMD); return true; } return false; } /// ModulePass for attaching synthetic debug info to everything, used with the /// legacy module pass manager. struct DebugifyModulePass : public ModulePass { bool runOnModule(Module &M) override { return applyDebugifyMetadata(M, M.functions(), "ModuleDebugify: "); } DebugifyModulePass() : ModulePass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } static char ID; // Pass identification. }; /// FunctionPass for attaching synthetic debug info to instructions within a /// single function, used with the legacy module pass manager. struct DebugifyFunctionPass : public FunctionPass { bool runOnFunction(Function &F) override { Module &M = *F.getParent(); auto FuncIt = F.getIterator(); return applyDebugifyMetadata(M, make_range(FuncIt, std::next(FuncIt)), "FunctionDebugify: "); } DebugifyFunctionPass() : FunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } static char ID; // Pass identification. }; /// ModulePass for checking debug info inserted by -debugify, used with the /// legacy module pass manager. struct CheckDebugifyModulePass : public ModulePass { bool runOnModule(Module &M) override { return checkDebugifyMetadata(M, M.functions(), NameOfWrappedPass, "CheckModuleDebugify", Strip, StatsMap); } CheckDebugifyModulePass(bool Strip = false, StringRef NameOfWrappedPass = "", DebugifyStatsMap *StatsMap = nullptr) : ModulePass(ID), Strip(Strip), NameOfWrappedPass(NameOfWrappedPass), StatsMap(StatsMap) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } static char ID; // Pass identification. private: bool Strip; StringRef NameOfWrappedPass; DebugifyStatsMap *StatsMap; }; /// FunctionPass for checking debug info inserted by -debugify-function, used /// with the legacy module pass manager. struct CheckDebugifyFunctionPass : public FunctionPass { bool runOnFunction(Function &F) override { Module &M = *F.getParent(); auto FuncIt = F.getIterator(); return checkDebugifyMetadata(M, make_range(FuncIt, std::next(FuncIt)), NameOfWrappedPass, "CheckFunctionDebugify", Strip, StatsMap); } CheckDebugifyFunctionPass(bool Strip = false, StringRef NameOfWrappedPass = "", DebugifyStatsMap *StatsMap = nullptr) : FunctionPass(ID), Strip(Strip), NameOfWrappedPass(NameOfWrappedPass), StatsMap(StatsMap) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } static char ID; // Pass identification. private: bool Strip; StringRef NameOfWrappedPass; DebugifyStatsMap *StatsMap; }; } // end anonymous namespace ModulePass *createDebugifyModulePass() { return new DebugifyModulePass(); } FunctionPass *createDebugifyFunctionPass() { return new DebugifyFunctionPass(); } PreservedAnalyses NewPMDebugifyPass::run(Module &M, ModuleAnalysisManager &) { applyDebugifyMetadata(M, M.functions(), "ModuleDebugify: "); return PreservedAnalyses::all(); } ModulePass *createCheckDebugifyModulePass(bool Strip, StringRef NameOfWrappedPass, DebugifyStatsMap *StatsMap) { return new CheckDebugifyModulePass(Strip, NameOfWrappedPass, StatsMap); } FunctionPass *createCheckDebugifyFunctionPass(bool Strip, StringRef NameOfWrappedPass, DebugifyStatsMap *StatsMap) { return new CheckDebugifyFunctionPass(Strip, NameOfWrappedPass, StatsMap); } PreservedAnalyses NewPMCheckDebugifyPass::run(Module &M, ModuleAnalysisManager &) { checkDebugifyMetadata(M, M.functions(), "", "CheckModuleDebugify", false, nullptr); return PreservedAnalyses::all(); } char DebugifyModulePass::ID = 0; static RegisterPass DM("debugify", "Attach debug info to everything"); char CheckDebugifyModulePass::ID = 0; static RegisterPass CDM("check-debugify", "Check debug info from -debugify"); char DebugifyFunctionPass::ID = 0; static RegisterPass DF("debugify-function", "Attach debug info to a function"); char CheckDebugifyFunctionPass::ID = 0; static RegisterPass CDF("check-debugify-function", "Check debug info from -debugify-function");