//===- CodeLayout.cpp - Implementation of code layout algorithms ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // ExtTSP - layout of basic blocks with i-cache optimization. // // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG // optimizing jump locality and thus processor I-cache utilization. This is // achieved via increasing the number of fall-through jumps and co-locating // frequently executed nodes together. The name follows the underlying // optimization problem, Extended-TSP, which is a generalization of classical // (maximum) Traveling Salesmen Problem. // // The algorithm is a greedy heuristic that works with chains (ordered lists) // of basic blocks. Initially all chains are isolated basic blocks. On every // iteration, we pick a pair of chains whose merging yields the biggest increase // in the ExtTSP score, which models how i-cache "friendly" a specific chain is. // A pair of chains giving the maximum gain is merged into a new chain. The // procedure stops when there is only one chain left, or when merging does not // increase ExtTSP. In the latter case, the remaining chains are sorted by // density in the decreasing order. // // An important aspect is the way two chains are merged. Unlike earlier // algorithms (e.g., based on the approach of Pettis-Hansen), two // chains, X and Y, are first split into three, X1, X2, and Y. Then we // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. // This improves the quality of the final result (the search space is larger) // while keeping the implementation sufficiently fast. // // Reference: // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, // IEEE Transactions on Computers, 2020 // https://arxiv.org/abs/1809.04676 // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/CodeLayout.h" #include "llvm/Support/CommandLine.h" #include using namespace llvm; #define DEBUG_TYPE "code-layout" cl::opt EnableExtTspBlockPlacement( "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false), cl::desc("Enable machine block placement based on the ext-tsp model, " "optimizing I-cache utilization.")); cl::opt ApplyExtTspWithoutProfile( "ext-tsp-apply-without-profile", cl::desc("Whether to apply ext-tsp placement for instances w/o profile"), cl::init(true), cl::Hidden); // Algorithm-specific params. The values are tuned for the best performance // of large-scale front-end bound binaries. static cl::opt ForwardWeightCond( "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of conditional forward jumps for ExtTSP value")); static cl::opt ForwardWeightUncond( "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of unconditional forward jumps for ExtTSP value")); static cl::opt BackwardWeightCond( "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of conditonal backward jumps for ExtTSP value")); static cl::opt BackwardWeightUncond( "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of unconditonal backward jumps for ExtTSP value")); static cl::opt FallthroughWeightCond( "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0), cl::desc("The weight of conditional fallthrough jumps for ExtTSP value")); static cl::opt FallthroughWeightUncond( "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05), cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value")); static cl::opt ForwardDistance( "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024), cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP")); static cl::opt BackwardDistance( "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640), cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP")); // The maximum size of a chain created by the algorithm. The size is bounded // so that the algorithm can efficiently process extremely large instance. static cl::opt MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096), cl::desc("The maximum size of a chain to create.")); // The maximum size of a chain for splitting. Larger values of the threshold // may yield better quality at the cost of worsen run-time. static cl::opt ChainSplitThreshold( "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128), cl::desc("The maximum size of a chain to apply splitting")); // The option enables splitting (large) chains along in-coming and out-going // jumps. This typically results in a better quality. static cl::opt EnableChainSplitAlongJumps( "ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true), cl::desc("The maximum size of a chain to apply splitting")); namespace { // Epsilon for comparison of doubles. constexpr double EPS = 1e-8; // Compute the Ext-TSP score for a given jump. double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count, double Weight) { if (JumpDist > JumpMaxDist) return 0; double Prob = 1.0 - static_cast(JumpDist) / JumpMaxDist; return Weight * Prob * Count; } // Compute the Ext-TSP score for a jump between a given pair of blocks, // using their sizes, (estimated) addresses and the jump execution count. double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, uint64_t Count, bool IsConditional) { // Fallthrough if (SrcAddr + SrcSize == DstAddr) { return jumpExtTSPScore(0, 1, Count, IsConditional ? FallthroughWeightCond : FallthroughWeightUncond); } // Forward if (SrcAddr + SrcSize < DstAddr) { const uint64_t Dist = DstAddr - (SrcAddr + SrcSize); return jumpExtTSPScore(Dist, ForwardDistance, Count, IsConditional ? ForwardWeightCond : ForwardWeightUncond); } // Backward const uint64_t Dist = SrcAddr + SrcSize - DstAddr; return jumpExtTSPScore(Dist, BackwardDistance, Count, IsConditional ? BackwardWeightCond : BackwardWeightUncond); } /// A type of merging two chains, X and Y. The former chain is split into /// X1 and X2 and then concatenated with Y in the order specified by the type. enum class MergeTypeTy : int { X_Y, X1_Y_X2, Y_X2_X1, X2_X1_Y }; /// The gain of merging two chains, that is, the Ext-TSP score of the merge /// together with the corresponfiding merge 'type' and 'offset'. class MergeGainTy { public: explicit MergeGainTy() = default; explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType) : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} double score() const { return Score; } size_t mergeOffset() const { return MergeOffset; } MergeTypeTy mergeType() const { return MergeType; } // Returns 'true' iff Other is preferred over this. bool operator<(const MergeGainTy &Other) const { return (Other.Score > EPS && Other.Score > Score + EPS); } // Update the current gain if Other is preferred over this. void updateIfLessThan(const MergeGainTy &Other) { if (*this < Other) *this = Other; } private: double Score{-1.0}; size_t MergeOffset{0}; MergeTypeTy MergeType{MergeTypeTy::X_Y}; }; class Jump; class Chain; class ChainEdge; /// A node in the graph, typically corresponding to a basic block in CFG. class Block { public: Block(const Block &) = delete; Block(Block &&) = default; Block &operator=(const Block &) = delete; Block &operator=(Block &&) = default; // The original index of the block in CFG. size_t Index{0}; // The index of the block in the current chain. size_t CurIndex{0}; // Size of the block in the binary. uint64_t Size{0}; // Execution count of the block in the profile data. uint64_t ExecutionCount{0}; // Current chain of the node. Chain *CurChain{nullptr}; // An offset of the block in the current chain. mutable uint64_t EstimatedAddr{0}; // Forced successor of the block in CFG. Block *ForcedSucc{nullptr}; // Forced predecessor of the block in CFG. Block *ForcedPred{nullptr}; // Outgoing jumps from the block. std::vector OutJumps; // Incoming jumps to the block. std::vector InJumps; public: explicit Block(size_t Index, uint64_t Size, uint64_t EC) : Index(Index), Size(Size), ExecutionCount(EC) {} bool isEntry() const { return Index == 0; } }; /// An arc in the graph, typically corresponding to a jump between two blocks. class Jump { public: Jump(const Jump &) = delete; Jump(Jump &&) = default; Jump &operator=(const Jump &) = delete; Jump &operator=(Jump &&) = default; // Source block of the jump. Block *Source; // Target block of the jump. Block *Target; // Execution count of the arc in the profile data. uint64_t ExecutionCount{0}; // Whether the jump corresponds to a conditional branch. bool IsConditional{false}; public: explicit Jump(Block *Source, Block *Target, uint64_t ExecutionCount) : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {} }; /// A chain (ordered sequence) of blocks. class Chain { public: Chain(const Chain &) = delete; Chain(Chain &&) = default; Chain &operator=(const Chain &) = delete; Chain &operator=(Chain &&) = default; explicit Chain(uint64_t Id, Block *Block) : Id(Id), Score(0), Blocks(1, Block) {} uint64_t id() const { return Id; } bool isEntry() const { return Blocks[0]->Index == 0; } bool isCold() const { for (auto *Block : Blocks) { if (Block->ExecutionCount > 0) return false; } return true; } double score() const { return Score; } void setScore(double NewScore) { Score = NewScore; } const std::vector &blocks() const { return Blocks; } size_t numBlocks() const { return Blocks.size(); } const std::vector> &edges() const { return Edges; } ChainEdge *getEdge(Chain *Other) const { for (auto It : Edges) { if (It.first == Other) return It.second; } return nullptr; } void removeEdge(Chain *Other) { auto It = Edges.begin(); while (It != Edges.end()) { if (It->first == Other) { Edges.erase(It); return; } It++; } } void addEdge(Chain *Other, ChainEdge *Edge) { Edges.push_back(std::make_pair(Other, Edge)); } void merge(Chain *Other, const std::vector &MergedBlocks) { Blocks = MergedBlocks; // Update the block's chains for (size_t Idx = 0; Idx < Blocks.size(); Idx++) { Blocks[Idx]->CurChain = this; Blocks[Idx]->CurIndex = Idx; } } void mergeEdges(Chain *Other); void clear() { Blocks.clear(); Blocks.shrink_to_fit(); Edges.clear(); Edges.shrink_to_fit(); } private: // Unique chain identifier. uint64_t Id; // Cached ext-tsp score for the chain. double Score; // Blocks of the chain. std::vector Blocks; // Adjacent chains and corresponding edges (lists of jumps). std::vector> Edges; }; /// An edge in CFG representing jumps between two chains. /// When blocks are merged into chains, the edges are combined too so that /// there is always at most one edge between a pair of chains class ChainEdge { public: ChainEdge(const ChainEdge &) = delete; ChainEdge(ChainEdge &&) = default; ChainEdge &operator=(const ChainEdge &) = delete; ChainEdge &operator=(ChainEdge &&) = default; explicit ChainEdge(Jump *Jump) : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain), Jumps(1, Jump) {} const std::vector &jumps() const { return Jumps; } void changeEndpoint(Chain *From, Chain *To) { if (From == SrcChain) SrcChain = To; if (From == DstChain) DstChain = To; } void appendJump(Jump *Jump) { Jumps.push_back(Jump); } void moveJumps(ChainEdge *Other) { Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end()); Other->Jumps.clear(); Other->Jumps.shrink_to_fit(); } bool hasCachedMergeGain(Chain *Src, Chain *Dst) const { return Src == SrcChain ? CacheValidForward : CacheValidBackward; } MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const { return Src == SrcChain ? CachedGainForward : CachedGainBackward; } void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) { if (Src == SrcChain) { CachedGainForward = MergeGain; CacheValidForward = true; } else { CachedGainBackward = MergeGain; CacheValidBackward = true; } } void invalidateCache() { CacheValidForward = false; CacheValidBackward = false; } private: // Source chain. Chain *SrcChain{nullptr}; // Destination chain. Chain *DstChain{nullptr}; // Original jumps in the binary with correspinding execution counts. std::vector Jumps; // Cached ext-tsp value for merging the pair of chains. // Since the gain of merging (Src, Dst) and (Dst, Src) might be different, // we store both values here. MergeGainTy CachedGainForward; MergeGainTy CachedGainBackward; // Whether the cached value must be recomputed. bool CacheValidForward{false}; bool CacheValidBackward{false}; }; void Chain::mergeEdges(Chain *Other) { assert(this != Other && "cannot merge a chain with itself"); // Update edges adjacent to chain Other for (auto EdgeIt : Other->Edges) { Chain *DstChain = EdgeIt.first; ChainEdge *DstEdge = EdgeIt.second; Chain *TargetChain = DstChain == Other ? this : DstChain; ChainEdge *CurEdge = getEdge(TargetChain); if (CurEdge == nullptr) { DstEdge->changeEndpoint(Other, this); this->addEdge(TargetChain, DstEdge); if (DstChain != this && DstChain != Other) { DstChain->addEdge(this, DstEdge); } } else { CurEdge->moveJumps(DstEdge); } // Cleanup leftover edge if (DstChain != Other) { DstChain->removeEdge(Other); } } } using BlockIter = std::vector::const_iterator; /// A wrapper around three chains of blocks; it is used to avoid extra /// instantiation of the vectors. class MergedChain { public: MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(), BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(), BlockIter End3 = BlockIter()) : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), End3(End3) {} template void forEach(const F &Func) const { for (auto It = Begin1; It != End1; It++) Func(*It); for (auto It = Begin2; It != End2; It++) Func(*It); for (auto It = Begin3; It != End3; It++) Func(*It); } std::vector getBlocks() const { std::vector Result; Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) + std::distance(Begin3, End3)); Result.insert(Result.end(), Begin1, End1); Result.insert(Result.end(), Begin2, End2); Result.insert(Result.end(), Begin3, End3); return Result; } const Block *getFirstBlock() const { return *Begin1; } private: BlockIter Begin1; BlockIter End1; BlockIter Begin2; BlockIter End2; BlockIter Begin3; BlockIter End3; }; /// The implementation of the ExtTSP algorithm. class ExtTSPImpl { using EdgeT = std::pair; using EdgeCountMap = std::vector>; public: ExtTSPImpl(size_t NumNodes, const std::vector &NodeSizes, const std::vector &NodeCounts, const EdgeCountMap &EdgeCounts) : NumNodes(NumNodes) { initialize(NodeSizes, NodeCounts, EdgeCounts); } /// Run the algorithm and return an optimized ordering of blocks. void run(std::vector &Result) { // Pass 1: Merge blocks with their mutually forced successors mergeForcedPairs(); // Pass 2: Merge pairs of chains while improving the ExtTSP objective mergeChainPairs(); // Pass 3: Merge cold blocks to reduce code size mergeColdChains(); // Collect blocks from all chains concatChains(Result); } private: /// Initialize the algorithm's data structures. void initialize(const std::vector &NodeSizes, const std::vector &NodeCounts, const EdgeCountMap &EdgeCounts) { // Initialize blocks AllBlocks.reserve(NumNodes); for (uint64_t Node = 0; Node < NumNodes; Node++) { uint64_t Size = std::max(NodeSizes[Node], 1ULL); uint64_t ExecutionCount = NodeCounts[Node]; // The execution count of the entry block is set to at least 1 if (Node == 0 && ExecutionCount == 0) ExecutionCount = 1; AllBlocks.emplace_back(Node, Size, ExecutionCount); } // Initialize jumps between blocks SuccNodes.resize(NumNodes); PredNodes.resize(NumNodes); std::vector OutDegree(NumNodes, 0); AllJumps.reserve(EdgeCounts.size()); for (auto It : EdgeCounts) { auto Pred = It.first.first; auto Succ = It.first.second; OutDegree[Pred]++; // Ignore self-edges if (Pred == Succ) continue; SuccNodes[Pred].push_back(Succ); PredNodes[Succ].push_back(Pred); auto ExecutionCount = It.second; if (ExecutionCount > 0) { auto &Block = AllBlocks[Pred]; auto &SuccBlock = AllBlocks[Succ]; AllJumps.emplace_back(&Block, &SuccBlock, ExecutionCount); SuccBlock.InJumps.push_back(&AllJumps.back()); Block.OutJumps.push_back(&AllJumps.back()); } } for (auto &Jump : AllJumps) { assert(OutDegree[Jump.Source->Index] > 0); Jump.IsConditional = OutDegree[Jump.Source->Index] > 1; } // Initialize chains AllChains.reserve(NumNodes); HotChains.reserve(NumNodes); for (Block &Block : AllBlocks) { AllChains.emplace_back(Block.Index, &Block); Block.CurChain = &AllChains.back(); if (Block.ExecutionCount > 0) { HotChains.push_back(&AllChains.back()); } } // Initialize chain edges AllEdges.reserve(AllJumps.size()); for (Block &Block : AllBlocks) { for (auto &Jump : Block.OutJumps) { auto SuccBlock = Jump->Target; ChainEdge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain); // this edge is already present in the graph if (CurEdge != nullptr) { assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr); CurEdge->appendJump(Jump); continue; } // this is a new edge AllEdges.emplace_back(Jump); Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back()); SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back()); } } } /// For a pair of blocks, A and B, block B is the forced successor of A, /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps /// to B are from A. Such blocks should be adjacent in the optimal ordering; /// the method finds and merges such pairs of blocks. void mergeForcedPairs() { // Find fallthroughs based on edge weights for (auto &Block : AllBlocks) { if (SuccNodes[Block.Index].size() == 1 && PredNodes[SuccNodes[Block.Index][0]].size() == 1 && SuccNodes[Block.Index][0] != 0) { size_t SuccIndex = SuccNodes[Block.Index][0]; Block.ForcedSucc = &AllBlocks[SuccIndex]; AllBlocks[SuccIndex].ForcedPred = &Block; } } // There might be 'cycles' in the forced dependencies, since profile // data isn't 100% accurate. Typically this is observed in loops, when the // loop edges are the hottest successors for the basic blocks of the loop. // Break the cycles by choosing the block with the smallest index as the // head. This helps to keep the original order of the loops, which likely // have already been rotated in the optimized manner. for (auto &Block : AllBlocks) { if (Block.ForcedSucc == nullptr || Block.ForcedPred == nullptr) continue; auto SuccBlock = Block.ForcedSucc; while (SuccBlock != nullptr && SuccBlock != &Block) { SuccBlock = SuccBlock->ForcedSucc; } if (SuccBlock == nullptr) continue; // Break the cycle AllBlocks[Block.ForcedPred->Index].ForcedSucc = nullptr; Block.ForcedPred = nullptr; } // Merge blocks with their fallthrough successors for (auto &Block : AllBlocks) { if (Block.ForcedPred == nullptr && Block.ForcedSucc != nullptr) { auto CurBlock = &Block; while (CurBlock->ForcedSucc != nullptr) { const auto NextBlock = CurBlock->ForcedSucc; mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y); CurBlock = NextBlock; } } } } /// Merge pairs of chains while improving the ExtTSP objective. void mergeChainPairs() { /// Deterministically compare pairs of chains auto compareChainPairs = [](const Chain *A1, const Chain *B1, const Chain *A2, const Chain *B2) { if (A1 != A2) return A1->id() < A2->id(); return B1->id() < B2->id(); }; while (HotChains.size() > 1) { Chain *BestChainPred = nullptr; Chain *BestChainSucc = nullptr; auto BestGain = MergeGainTy(); // Iterate over all pairs of chains for (Chain *ChainPred : HotChains) { // Get candidates for merging with the current chain for (auto EdgeIter : ChainPred->edges()) { Chain *ChainSucc = EdgeIter.first; class ChainEdge *ChainEdge = EdgeIter.second; // Ignore loop edges if (ChainPred == ChainSucc) continue; // Stop early if the combined chain violates the maximum allowed size if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize) continue; // Compute the gain of merging the two chains MergeGainTy CurGain = getBestMergeGain(ChainPred, ChainSucc, ChainEdge); if (CurGain.score() <= EPS) continue; if (BestGain < CurGain || (std::abs(CurGain.score() - BestGain.score()) < EPS && compareChainPairs(ChainPred, ChainSucc, BestChainPred, BestChainSucc))) { BestGain = CurGain; BestChainPred = ChainPred; BestChainSucc = ChainSucc; } } } // Stop merging when there is no improvement if (BestGain.score() <= EPS) break; // Merge the best pair of chains mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(), BestGain.mergeType()); } } /// Merge remaining blocks into chains w/o taking jump counts into /// consideration. This allows to maintain the original block order in the /// absense of profile data void mergeColdChains() { for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) { // Iterating in reverse order to make sure original fallthrough jumps are // merged first; this might be beneficial for code size. size_t NumSuccs = SuccNodes[SrcBB].size(); for (size_t Idx = 0; Idx < NumSuccs; Idx++) { auto DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1]; auto SrcChain = AllBlocks[SrcBB].CurChain; auto DstChain = AllBlocks[DstBB].CurChain; if (SrcChain != DstChain && !DstChain->isEntry() && SrcChain->blocks().back()->Index == SrcBB && DstChain->blocks().front()->Index == DstBB && SrcChain->isCold() == DstChain->isCold()) { mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y); } } } } /// Compute the Ext-TSP score for a given block order and a list of jumps. double extTSPScore(const MergedChain &MergedBlocks, const std::vector &Jumps) const { if (Jumps.empty()) return 0.0; uint64_t CurAddr = 0; MergedBlocks.forEach([&](const Block *BB) { BB->EstimatedAddr = CurAddr; CurAddr += BB->Size; }); double Score = 0; for (auto &Jump : Jumps) { const Block *SrcBlock = Jump->Source; const Block *DstBlock = Jump->Target; Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size, DstBlock->EstimatedAddr, Jump->ExecutionCount, Jump->IsConditional); } return Score; } /// Compute the gain of merging two chains. /// /// The function considers all possible ways of merging two chains and /// computes the one having the largest increase in ExtTSP objective. The /// result is a pair with the first element being the gain and the second /// element being the corresponding merging type. MergeGainTy getBestMergeGain(Chain *ChainPred, Chain *ChainSucc, ChainEdge *Edge) const { if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) { return Edge->getCachedMergeGain(ChainPred, ChainSucc); } // Precompute jumps between ChainPred and ChainSucc auto Jumps = Edge->jumps(); ChainEdge *EdgePP = ChainPred->getEdge(ChainPred); if (EdgePP != nullptr) { Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end()); } assert(!Jumps.empty() && "trying to merge chains w/o jumps"); // The object holds the best currently chosen gain of merging the two chains MergeGainTy Gain = MergeGainTy(); /// Given a merge offset and a list of merge types, try to merge two chains /// and update Gain with a better alternative auto tryChainMerging = [&](size_t Offset, const std::vector &MergeTypes) { // Skip merging corresponding to concatenation w/o splitting if (Offset == 0 || Offset == ChainPred->blocks().size()) return; // Skip merging if it breaks Forced successors auto BB = ChainPred->blocks()[Offset - 1]; if (BB->ForcedSucc != nullptr) return; // Apply the merge, compute the corresponding gain, and update the best // value, if the merge is beneficial for (const auto &MergeType : MergeTypes) { Gain.updateIfLessThan( computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType)); } }; // Try to concatenate two chains w/o splitting Gain.updateIfLessThan( computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y)); if (EnableChainSplitAlongJumps) { // Attach (a part of) ChainPred before the first block of ChainSucc for (auto &Jump : ChainSucc->blocks().front()->InJumps) { const auto SrcBlock = Jump->Source; if (SrcBlock->CurChain != ChainPred) continue; size_t Offset = SrcBlock->CurIndex + 1; tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::X2_X1_Y}); } // Attach (a part of) ChainPred after the last block of ChainSucc for (auto &Jump : ChainSucc->blocks().back()->OutJumps) { const auto DstBlock = Jump->Source; if (DstBlock->CurChain != ChainPred) continue; size_t Offset = DstBlock->CurIndex; tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1}); } } // Try to break ChainPred in various ways and concatenate with ChainSucc if (ChainPred->blocks().size() <= ChainSplitThreshold) { for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) { // Try to split the chain in different ways. In practice, applying // X2_Y_X1 merging is almost never provides benefits; thus, we exclude // it from consideration to reduce the search space tryChainMerging(Offset, {MergeTypeTy::X1_Y_X2, MergeTypeTy::Y_X2_X1, MergeTypeTy::X2_X1_Y}); } } Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain); return Gain; } /// Compute the score gain of merging two chains, respecting a given /// merge 'type' and 'offset'. /// /// The two chains are not modified in the method. MergeGainTy computeMergeGain(const Chain *ChainPred, const Chain *ChainSucc, const std::vector &Jumps, size_t MergeOffset, MergeTypeTy MergeType) const { auto MergedBlocks = mergeBlocks(ChainPred->blocks(), ChainSucc->blocks(), MergeOffset, MergeType); // Do not allow a merge that does not preserve the original entry block if ((ChainPred->isEntry() || ChainSucc->isEntry()) && !MergedBlocks.getFirstBlock()->isEntry()) return MergeGainTy(); // The gain for the new chain auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->score(); return MergeGainTy(NewGainScore, MergeOffset, MergeType); } /// Merge two chains of blocks respecting a given merge 'type' and 'offset'. /// /// If MergeType == 0, then the result is a concatenation of two chains. /// Otherwise, the first chain is cut into two sub-chains at the offset, /// and merged using all possible ways of concatenating three chains. MergedChain mergeBlocks(const std::vector &X, const std::vector &Y, size_t MergeOffset, MergeTypeTy MergeType) const { // Split the first chain, X, into X1 and X2 BlockIter BeginX1 = X.begin(); BlockIter EndX1 = X.begin() + MergeOffset; BlockIter BeginX2 = X.begin() + MergeOffset; BlockIter EndX2 = X.end(); BlockIter BeginY = Y.begin(); BlockIter EndY = Y.end(); // Construct a new chain from the three existing ones switch (MergeType) { case MergeTypeTy::X_Y: return MergedChain(BeginX1, EndX2, BeginY, EndY); case MergeTypeTy::X1_Y_X2: return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); case MergeTypeTy::Y_X2_X1: return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); case MergeTypeTy::X2_X1_Y: return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); } llvm_unreachable("unexpected chain merge type"); } /// Merge chain From into chain Into, update the list of active chains, /// adjacency information, and the corresponding cached values. void mergeChains(Chain *Into, Chain *From, size_t MergeOffset, MergeTypeTy MergeType) { assert(Into != From && "a chain cannot be merged with itself"); // Merge the blocks MergedChain MergedBlocks = mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType); Into->merge(From, MergedBlocks.getBlocks()); Into->mergeEdges(From); From->clear(); // Update cached ext-tsp score for the new chain ChainEdge *SelfEdge = Into->getEdge(Into); if (SelfEdge != nullptr) { MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end()); Into->setScore(extTSPScore(MergedBlocks, SelfEdge->jumps())); } // Remove chain From from the list of active chains llvm::erase_value(HotChains, From); // Invalidate caches for (auto EdgeIter : Into->edges()) { EdgeIter.second->invalidateCache(); } } /// Concatenate all chains into a final order of blocks. void concatChains(std::vector &Order) { // Collect chains and calculate some stats for their sorting std::vector SortedChains; DenseMap ChainDensity; for (auto &Chain : AllChains) { if (!Chain.blocks().empty()) { SortedChains.push_back(&Chain); // Using doubles to avoid overflow of ExecutionCount double Size = 0; double ExecutionCount = 0; for (auto *Block : Chain.blocks()) { Size += static_cast(Block->Size); ExecutionCount += static_cast(Block->ExecutionCount); } assert(Size > 0 && "a chain of zero size"); ChainDensity[&Chain] = ExecutionCount / Size; } } // Sorting chains by density in the decreasing order std::stable_sort(SortedChains.begin(), SortedChains.end(), [&](const Chain *C1, const Chain *C2) { // Make sure the original entry block is at the // beginning of the order if (C1->isEntry() != C2->isEntry()) { return C1->isEntry(); } const double D1 = ChainDensity[C1]; const double D2 = ChainDensity[C2]; // Compare by density and break ties by chain identifiers return (D1 != D2) ? (D1 > D2) : (C1->id() < C2->id()); }); // Collect the blocks in the order specified by their chains Order.reserve(NumNodes); for (Chain *Chain : SortedChains) { for (Block *Block : Chain->blocks()) { Order.push_back(Block->Index); } } } private: /// The number of nodes in the graph. const size_t NumNodes; /// Successors of each node. std::vector> SuccNodes; /// Predecessors of each node. std::vector> PredNodes; /// All basic blocks. std::vector AllBlocks; /// All jumps between blocks. std::vector AllJumps; /// All chains of basic blocks. std::vector AllChains; /// All edges between chains. std::vector AllEdges; /// Active chains. The vector gets updated at runtime when chains are merged. std::vector HotChains; }; } // end of anonymous namespace std::vector llvm::applyExtTspLayout( const std::vector &NodeSizes, const std::vector &NodeCounts, const std::vector> &EdgeCounts) { size_t NumNodes = NodeSizes.size(); // Verify correctness of the input data. assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input"); assert(NumNodes > 2 && "Incorrect input"); // Apply the reordering algorithm. auto Alg = ExtTSPImpl(NumNodes, NodeSizes, NodeCounts, EdgeCounts); std::vector Result; Alg.run(Result); // Verify correctness of the output. assert(Result.front() == 0 && "Original entry point is not preserved"); assert(Result.size() == NumNodes && "Incorrect size of reordered layout"); return Result; } double llvm::calcExtTspScore( const std::vector &Order, const std::vector &NodeSizes, const std::vector &NodeCounts, const std::vector> &EdgeCounts) { // Estimate addresses of the blocks in memory std::vector Addr(NodeSizes.size(), 0); for (size_t Idx = 1; Idx < Order.size(); Idx++) { Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]]; } std::vector OutDegree(NodeSizes.size(), 0); for (auto It : EdgeCounts) { auto Pred = It.first.first; OutDegree[Pred]++; } // Increase the score for each jump double Score = 0; for (auto It : EdgeCounts) { auto Pred = It.first.first; auto Succ = It.first.second; uint64_t Count = It.second; bool IsConditional = OutDegree[Pred] > 1; Score += ::extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count, IsConditional); } return Score; } double llvm::calcExtTspScore( const std::vector &NodeSizes, const std::vector &NodeCounts, const std::vector> &EdgeCounts) { std::vector Order(NodeSizes.size()); for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) { Order[Idx] = Idx; } return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts); }