//===- CodeLayout.cpp - Implementation of code layout algorithms ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The file implements "cache-aware" layout algorithms of basic blocks and // functions in a binary. // // The algorithm tries to find a layout of nodes (basic blocks) of a given CFG // optimizing jump locality and thus processor I-cache utilization. This is // achieved via increasing the number of fall-through jumps and co-locating // frequently executed nodes together. The name follows the underlying // optimization problem, Extended-TSP, which is a generalization of classical // (maximum) Traveling Salesmen Problem. // // The algorithm is a greedy heuristic that works with chains (ordered lists) // of basic blocks. Initially all chains are isolated basic blocks. On every // iteration, we pick a pair of chains whose merging yields the biggest increase // in the ExtTSP score, which models how i-cache "friendly" a specific chain is. // A pair of chains giving the maximum gain is merged into a new chain. The // procedure stops when there is only one chain left, or when merging does not // increase ExtTSP. In the latter case, the remaining chains are sorted by // density in the decreasing order. // // An important aspect is the way two chains are merged. Unlike earlier // algorithms (e.g., based on the approach of Pettis-Hansen), two // chains, X and Y, are first split into three, X1, X2, and Y. Then we // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. // This improves the quality of the final result (the search space is larger) // while keeping the implementation sufficiently fast. // // Reference: // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, // IEEE Transactions on Computers, 2020 // https://arxiv.org/abs/1809.04676 // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/CodeLayout.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; using namespace llvm::codelayout; #define DEBUG_TYPE "code-layout" namespace llvm { cl::opt EnableExtTspBlockPlacement( "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false), cl::desc("Enable machine block placement based on the ext-tsp model, " "optimizing I-cache utilization.")); cl::opt ApplyExtTspWithoutProfile( "ext-tsp-apply-without-profile", cl::desc("Whether to apply ext-tsp placement for instances w/o profile"), cl::init(true), cl::Hidden); } // namespace llvm // Algorithm-specific params for Ext-TSP. The values are tuned for the best // performance of large-scale front-end bound binaries. static cl::opt ForwardWeightCond( "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of conditional forward jumps for ExtTSP value")); static cl::opt ForwardWeightUncond( "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of unconditional forward jumps for ExtTSP value")); static cl::opt BackwardWeightCond( "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of conditional backward jumps for ExtTSP value")); static cl::opt BackwardWeightUncond( "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of unconditional backward jumps for ExtTSP value")); static cl::opt FallthroughWeightCond( "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0), cl::desc("The weight of conditional fallthrough jumps for ExtTSP value")); static cl::opt FallthroughWeightUncond( "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05), cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value")); static cl::opt ForwardDistance( "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024), cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP")); static cl::opt BackwardDistance( "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640), cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP")); // The maximum size of a chain created by the algorithm. The size is bounded // so that the algorithm can efficiently process extremely large instances. static cl::opt MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(512), cl::desc("The maximum size of a chain to create")); // The maximum size of a chain for splitting. Larger values of the threshold // may yield better quality at the cost of worsen run-time. static cl::opt ChainSplitThreshold( "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128), cl::desc("The maximum size of a chain to apply splitting")); // The maximum ratio between densities of two chains for merging. static cl::opt MaxMergeDensityRatio( "ext-tsp-max-merge-density-ratio", cl::ReallyHidden, cl::init(100), cl::desc("The maximum ratio between densities of two chains for merging")); // Algorithm-specific options for CDSort. static cl::opt CacheEntries("cdsort-cache-entries", cl::ReallyHidden, cl::desc("The size of the cache")); static cl::opt CacheSize("cdsort-cache-size", cl::ReallyHidden, cl::desc("The size of a line in the cache")); static cl::opt CDMaxChainSize("cdsort-max-chain-size", cl::ReallyHidden, cl::desc("The maximum size of a chain to create")); static cl::opt DistancePower( "cdsort-distance-power", cl::ReallyHidden, cl::desc("The power exponent for the distance-based locality")); static cl::opt FrequencyScale( "cdsort-frequency-scale", cl::ReallyHidden, cl::desc("The scale factor for the frequency-based locality")); namespace { // Epsilon for comparison of doubles. constexpr double EPS = 1e-8; // Compute the Ext-TSP score for a given jump. double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count, double Weight) { if (JumpDist > JumpMaxDist) return 0; double Prob = 1.0 - static_cast(JumpDist) / JumpMaxDist; return Weight * Prob * Count; } // Compute the Ext-TSP score for a jump between a given pair of blocks, // using their sizes, (estimated) addresses and the jump execution count. double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, uint64_t Count, bool IsConditional) { // Fallthrough if (SrcAddr + SrcSize == DstAddr) { return jumpExtTSPScore(0, 1, Count, IsConditional ? FallthroughWeightCond : FallthroughWeightUncond); } // Forward if (SrcAddr + SrcSize < DstAddr) { const uint64_t Dist = DstAddr - (SrcAddr + SrcSize); return jumpExtTSPScore(Dist, ForwardDistance, Count, IsConditional ? ForwardWeightCond : ForwardWeightUncond); } // Backward const uint64_t Dist = SrcAddr + SrcSize - DstAddr; return jumpExtTSPScore(Dist, BackwardDistance, Count, IsConditional ? BackwardWeightCond : BackwardWeightUncond); } /// A type of merging two chains, X and Y. The former chain is split into /// X1 and X2 and then concatenated with Y in the order specified by the type. enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y }; /// The gain of merging two chains, that is, the Ext-TSP score of the merge /// together with the corresponding merge 'type' and 'offset'. struct MergeGainT { explicit MergeGainT() = default; explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType) : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} double score() const { return Score; } size_t mergeOffset() const { return MergeOffset; } MergeTypeT mergeType() const { return MergeType; } void setMergeType(MergeTypeT Ty) { MergeType = Ty; } // Returns 'true' iff Other is preferred over this. bool operator<(const MergeGainT &Other) const { return (Other.Score > EPS && Other.Score > Score + EPS); } // Update the current gain if Other is preferred over this. void updateIfLessThan(const MergeGainT &Other) { if (*this < Other) *this = Other; } private: double Score{-1.0}; size_t MergeOffset{0}; MergeTypeT MergeType{MergeTypeT::X_Y}; }; struct JumpT; struct ChainT; struct ChainEdge; /// A node in the graph, typically corresponding to a basic block in the CFG or /// a function in the call graph. struct NodeT { NodeT(const NodeT &) = delete; NodeT(NodeT &&) = default; NodeT &operator=(const NodeT &) = delete; NodeT &operator=(NodeT &&) = default; explicit NodeT(size_t Index, uint64_t Size, uint64_t Count) : Index(Index), Size(Size), ExecutionCount(Count) {} bool isEntry() const { return Index == 0; } // Check if Other is a successor of the node. bool isSuccessor(const NodeT *Other) const; // The total execution count of outgoing jumps. uint64_t outCount() const; // The total execution count of incoming jumps. uint64_t inCount() const; // The original index of the node in graph. size_t Index{0}; // The index of the node in the current chain. size_t CurIndex{0}; // The size of the node in the binary. uint64_t Size{0}; // The execution count of the node in the profile data. uint64_t ExecutionCount{0}; // The current chain of the node. ChainT *CurChain{nullptr}; // The offset of the node in the current chain. mutable uint64_t EstimatedAddr{0}; // Forced successor of the node in the graph. NodeT *ForcedSucc{nullptr}; // Forced predecessor of the node in the graph. NodeT *ForcedPred{nullptr}; // Outgoing jumps from the node. std::vector OutJumps; // Incoming jumps to the node. std::vector InJumps; }; /// An arc in the graph, typically corresponding to a jump between two nodes. struct JumpT { JumpT(const JumpT &) = delete; JumpT(JumpT &&) = default; JumpT &operator=(const JumpT &) = delete; JumpT &operator=(JumpT &&) = default; explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount) : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {} // Source node of the jump. NodeT *Source; // Target node of the jump. NodeT *Target; // Execution count of the arc in the profile data. uint64_t ExecutionCount{0}; // Whether the jump corresponds to a conditional branch. bool IsConditional{false}; // The offset of the jump from the source node. uint64_t Offset{0}; }; /// A chain (ordered sequence) of nodes in the graph. struct ChainT { ChainT(const ChainT &) = delete; ChainT(ChainT &&) = default; ChainT &operator=(const ChainT &) = delete; ChainT &operator=(ChainT &&) = default; explicit ChainT(uint64_t Id, NodeT *Node) : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size), Nodes(1, Node) {} size_t numBlocks() const { return Nodes.size(); } double density() const { return ExecutionCount / Size; } bool isEntry() const { return Nodes[0]->Index == 0; } bool isCold() const { for (NodeT *Node : Nodes) { if (Node->ExecutionCount > 0) return false; } return true; } ChainEdge *getEdge(ChainT *Other) const { for (const auto &[Chain, ChainEdge] : Edges) { if (Chain == Other) return ChainEdge; } return nullptr; } void removeEdge(ChainT *Other) { auto It = Edges.begin(); while (It != Edges.end()) { if (It->first == Other) { Edges.erase(It); return; } It++; } } void addEdge(ChainT *Other, ChainEdge *Edge) { Edges.push_back(std::make_pair(Other, Edge)); } void merge(ChainT *Other, std::vector MergedBlocks) { Nodes = std::move(MergedBlocks); // Update the chain's data. ExecutionCount += Other->ExecutionCount; Size += Other->Size; Id = Nodes[0]->Index; // Update the node's data. for (size_t Idx = 0; Idx < Nodes.size(); Idx++) { Nodes[Idx]->CurChain = this; Nodes[Idx]->CurIndex = Idx; } } void mergeEdges(ChainT *Other); void clear() { Nodes.clear(); Nodes.shrink_to_fit(); Edges.clear(); Edges.shrink_to_fit(); } // Unique chain identifier. uint64_t Id; // Cached ext-tsp score for the chain. double Score{0}; // The total execution count of the chain. Since the execution count of // a basic block is uint64_t, using doubles here to avoid overflow. double ExecutionCount{0}; // The total size of the chain. uint64_t Size{0}; // Nodes of the chain. std::vector Nodes; // Adjacent chains and corresponding edges (lists of jumps). std::vector> Edges; }; /// An edge in the graph representing jumps between two chains. /// When nodes are merged into chains, the edges are combined too so that /// there is always at most one edge between a pair of chains. struct ChainEdge { ChainEdge(const ChainEdge &) = delete; ChainEdge(ChainEdge &&) = default; ChainEdge &operator=(const ChainEdge &) = delete; ChainEdge &operator=(ChainEdge &&) = delete; explicit ChainEdge(JumpT *Jump) : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain), Jumps(1, Jump) {} ChainT *srcChain() const { return SrcChain; } ChainT *dstChain() const { return DstChain; } bool isSelfEdge() const { return SrcChain == DstChain; } const std::vector &jumps() const { return Jumps; } void appendJump(JumpT *Jump) { Jumps.push_back(Jump); } void moveJumps(ChainEdge *Other) { Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end()); Other->Jumps.clear(); Other->Jumps.shrink_to_fit(); } void changeEndpoint(ChainT *From, ChainT *To) { if (From == SrcChain) SrcChain = To; if (From == DstChain) DstChain = To; } bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const { return Src == SrcChain ? CacheValidForward : CacheValidBackward; } MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const { return Src == SrcChain ? CachedGainForward : CachedGainBackward; } void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) { if (Src == SrcChain) { CachedGainForward = MergeGain; CacheValidForward = true; } else { CachedGainBackward = MergeGain; CacheValidBackward = true; } } void invalidateCache() { CacheValidForward = false; CacheValidBackward = false; } void setMergeGain(MergeGainT Gain) { CachedGain = Gain; } MergeGainT getMergeGain() const { return CachedGain; } double gain() const { return CachedGain.score(); } private: // Source chain. ChainT *SrcChain{nullptr}; // Destination chain. ChainT *DstChain{nullptr}; // Original jumps in the binary with corresponding execution counts. std::vector Jumps; // Cached gain value for merging the pair of chains. MergeGainT CachedGain; // Cached gain values for merging the pair of chains. Since the gain of // merging (Src, Dst) and (Dst, Src) might be different, we store both values // here and a flag indicating which of the options results in a higher gain. // Cached gain values. MergeGainT CachedGainForward; MergeGainT CachedGainBackward; // Whether the cached value must be recomputed. bool CacheValidForward{false}; bool CacheValidBackward{false}; }; bool NodeT::isSuccessor(const NodeT *Other) const { for (JumpT *Jump : OutJumps) if (Jump->Target == Other) return true; return false; } uint64_t NodeT::outCount() const { uint64_t Count = 0; for (JumpT *Jump : OutJumps) Count += Jump->ExecutionCount; return Count; } uint64_t NodeT::inCount() const { uint64_t Count = 0; for (JumpT *Jump : InJumps) Count += Jump->ExecutionCount; return Count; } void ChainT::mergeEdges(ChainT *Other) { // Update edges adjacent to chain Other. for (const auto &[DstChain, DstEdge] : Other->Edges) { ChainT *TargetChain = DstChain == Other ? this : DstChain; ChainEdge *CurEdge = getEdge(TargetChain); if (CurEdge == nullptr) { DstEdge->changeEndpoint(Other, this); this->addEdge(TargetChain, DstEdge); if (DstChain != this && DstChain != Other) DstChain->addEdge(this, DstEdge); } else { CurEdge->moveJumps(DstEdge); } // Cleanup leftover edge. if (DstChain != Other) DstChain->removeEdge(Other); } } using NodeIter = std::vector::const_iterator; static std::vector EmptyList; /// A wrapper around three concatenated vectors (chains) of nodes; it is used /// to avoid extra instantiation of the vectors. struct MergedNodesT { MergedNodesT(NodeIter Begin1, NodeIter End1, NodeIter Begin2 = EmptyList.begin(), NodeIter End2 = EmptyList.end(), NodeIter Begin3 = EmptyList.begin(), NodeIter End3 = EmptyList.end()) : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), End3(End3) {} template void forEach(const F &Func) const { for (auto It = Begin1; It != End1; It++) Func(*It); for (auto It = Begin2; It != End2; It++) Func(*It); for (auto It = Begin3; It != End3; It++) Func(*It); } std::vector getNodes() const { std::vector Result; Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) + std::distance(Begin3, End3)); Result.insert(Result.end(), Begin1, End1); Result.insert(Result.end(), Begin2, End2); Result.insert(Result.end(), Begin3, End3); return Result; } const NodeT *getFirstNode() const { return *Begin1; } private: NodeIter Begin1; NodeIter End1; NodeIter Begin2; NodeIter End2; NodeIter Begin3; NodeIter End3; }; /// A wrapper around two concatenated vectors (chains) of jumps. struct MergedJumpsT { MergedJumpsT(const std::vector *Jumps1, const std::vector *Jumps2 = nullptr) { assert(!Jumps1->empty() && "cannot merge empty jump list"); JumpArray[0] = Jumps1; JumpArray[1] = Jumps2; } template void forEach(const F &Func) const { for (auto Jumps : JumpArray) if (Jumps != nullptr) for (JumpT *Jump : *Jumps) Func(Jump); } private: std::array *, 2> JumpArray{nullptr, nullptr}; }; /// Merge two chains of nodes respecting a given 'type' and 'offset'. /// /// If MergeType == 0, then the result is a concatenation of two chains. /// Otherwise, the first chain is cut into two sub-chains at the offset, /// and merged using all possible ways of concatenating three chains. MergedNodesT mergeNodes(const std::vector &X, const std::vector &Y, size_t MergeOffset, MergeTypeT MergeType) { // Split the first chain, X, into X1 and X2. NodeIter BeginX1 = X.begin(); NodeIter EndX1 = X.begin() + MergeOffset; NodeIter BeginX2 = X.begin() + MergeOffset; NodeIter EndX2 = X.end(); NodeIter BeginY = Y.begin(); NodeIter EndY = Y.end(); // Construct a new chain from the three existing ones. switch (MergeType) { case MergeTypeT::X_Y: return MergedNodesT(BeginX1, EndX2, BeginY, EndY); case MergeTypeT::Y_X: return MergedNodesT(BeginY, EndY, BeginX1, EndX2); case MergeTypeT::X1_Y_X2: return MergedNodesT(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); case MergeTypeT::Y_X2_X1: return MergedNodesT(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); case MergeTypeT::X2_X1_Y: return MergedNodesT(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); } llvm_unreachable("unexpected chain merge type"); } /// The implementation of the ExtTSP algorithm. class ExtTSPImpl { public: ExtTSPImpl(ArrayRef NodeSizes, ArrayRef NodeCounts, ArrayRef EdgeCounts) : NumNodes(NodeSizes.size()) { initialize(NodeSizes, NodeCounts, EdgeCounts); } /// Run the algorithm and return an optimized ordering of nodes. std::vector run() { // Pass 1: Merge nodes with their mutually forced successors mergeForcedPairs(); // Pass 2: Merge pairs of chains while improving the ExtTSP objective mergeChainPairs(); // Pass 3: Merge cold nodes to reduce code size mergeColdChains(); // Collect nodes from all chains return concatChains(); } private: /// Initialize the algorithm's data structures. void initialize(const ArrayRef &NodeSizes, const ArrayRef &NodeCounts, const ArrayRef &EdgeCounts) { // Initialize nodes. AllNodes.reserve(NumNodes); for (uint64_t Idx = 0; Idx < NumNodes; Idx++) { uint64_t Size = std::max(NodeSizes[Idx], 1ULL); uint64_t ExecutionCount = NodeCounts[Idx]; // The execution count of the entry node is set to at least one. if (Idx == 0 && ExecutionCount == 0) ExecutionCount = 1; AllNodes.emplace_back(Idx, Size, ExecutionCount); } // Initialize jumps between the nodes. SuccNodes.resize(NumNodes); PredNodes.resize(NumNodes); std::vector OutDegree(NumNodes, 0); AllJumps.reserve(EdgeCounts.size()); for (auto Edge : EdgeCounts) { ++OutDegree[Edge.src]; // Ignore self-edges. if (Edge.src == Edge.dst) continue; SuccNodes[Edge.src].push_back(Edge.dst); PredNodes[Edge.dst].push_back(Edge.src); if (Edge.count > 0) { NodeT &PredNode = AllNodes[Edge.src]; NodeT &SuccNode = AllNodes[Edge.dst]; AllJumps.emplace_back(&PredNode, &SuccNode, Edge.count); SuccNode.InJumps.push_back(&AllJumps.back()); PredNode.OutJumps.push_back(&AllJumps.back()); // Adjust execution counts. PredNode.ExecutionCount = std::max(PredNode.ExecutionCount, Edge.count); SuccNode.ExecutionCount = std::max(SuccNode.ExecutionCount, Edge.count); } } for (JumpT &Jump : AllJumps) { assert(OutDegree[Jump.Source->Index] > 0 && "incorrectly computed out-degree of the block"); Jump.IsConditional = OutDegree[Jump.Source->Index] > 1; } // Initialize chains. AllChains.reserve(NumNodes); HotChains.reserve(NumNodes); for (NodeT &Node : AllNodes) { // Create a chain. AllChains.emplace_back(Node.Index, &Node); Node.CurChain = &AllChains.back(); if (Node.ExecutionCount > 0) HotChains.push_back(&AllChains.back()); } // Initialize chain edges. AllEdges.reserve(AllJumps.size()); for (NodeT &PredNode : AllNodes) { for (JumpT *Jump : PredNode.OutJumps) { assert(Jump->ExecutionCount > 0 && "incorrectly initialized jump"); NodeT *SuccNode = Jump->Target; ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain); // This edge is already present in the graph. if (CurEdge != nullptr) { assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr); CurEdge->appendJump(Jump); continue; } // This is a new edge. AllEdges.emplace_back(Jump); PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back()); SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back()); } } } /// For a pair of nodes, A and B, node B is the forced successor of A, /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps /// to B are from A. Such nodes should be adjacent in the optimal ordering; /// the method finds and merges such pairs of nodes. void mergeForcedPairs() { // Find forced pairs of blocks. for (NodeT &Node : AllNodes) { if (SuccNodes[Node.Index].size() == 1 && PredNodes[SuccNodes[Node.Index][0]].size() == 1 && SuccNodes[Node.Index][0] != 0) { size_t SuccIndex = SuccNodes[Node.Index][0]; Node.ForcedSucc = &AllNodes[SuccIndex]; AllNodes[SuccIndex].ForcedPred = &Node; } } // There might be 'cycles' in the forced dependencies, since profile // data isn't 100% accurate. Typically this is observed in loops, when the // loop edges are the hottest successors for the basic blocks of the loop. // Break the cycles by choosing the node with the smallest index as the // head. This helps to keep the original order of the loops, which likely // have already been rotated in the optimized manner. for (NodeT &Node : AllNodes) { if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr) continue; NodeT *SuccNode = Node.ForcedSucc; while (SuccNode != nullptr && SuccNode != &Node) { SuccNode = SuccNode->ForcedSucc; } if (SuccNode == nullptr) continue; // Break the cycle. AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr; Node.ForcedPred = nullptr; } // Merge nodes with their fallthrough successors. for (NodeT &Node : AllNodes) { if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) { const NodeT *CurBlock = &Node; while (CurBlock->ForcedSucc != nullptr) { const NodeT *NextBlock = CurBlock->ForcedSucc; mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y); CurBlock = NextBlock; } } } } /// Merge pairs of chains while improving the ExtTSP objective. void mergeChainPairs() { /// Deterministically compare pairs of chains. auto compareChainPairs = [](const ChainT *A1, const ChainT *B1, const ChainT *A2, const ChainT *B2) { return std::make_tuple(A1->Id, B1->Id) < std::make_tuple(A2->Id, B2->Id); }; while (HotChains.size() > 1) { ChainT *BestChainPred = nullptr; ChainT *BestChainSucc = nullptr; MergeGainT BestGain; // Iterate over all pairs of chains. for (ChainT *ChainPred : HotChains) { // Get candidates for merging with the current chain. for (const auto &[ChainSucc, Edge] : ChainPred->Edges) { // Ignore loop edges. if (Edge->isSelfEdge()) continue; // Skip the merge if the combined chain violates the maximum specified // size. if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize) continue; // Don't merge the chains if they have vastly different densities. // Skip the merge if the ratio between the densities exceeds // MaxMergeDensityRatio. Smaller values of the option result in fewer // merges, and hence, more chains. const double ChainPredDensity = ChainPred->density(); const double ChainSuccDensity = ChainSucc->density(); assert(ChainPredDensity > 0.0 && ChainSuccDensity > 0.0 && "incorrectly computed chain densities"); auto [MinDensity, MaxDensity] = std::minmax(ChainPredDensity, ChainSuccDensity); const double Ratio = MaxDensity / MinDensity; if (Ratio > MaxMergeDensityRatio) continue; // Compute the gain of merging the two chains. MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge); if (CurGain.score() <= EPS) continue; if (BestGain < CurGain || (std::abs(CurGain.score() - BestGain.score()) < EPS && compareChainPairs(ChainPred, ChainSucc, BestChainPred, BestChainSucc))) { BestGain = CurGain; BestChainPred = ChainPred; BestChainSucc = ChainSucc; } } } // Stop merging when there is no improvement. if (BestGain.score() <= EPS) break; // Merge the best pair of chains. mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(), BestGain.mergeType()); } } /// Merge remaining nodes into chains w/o taking jump counts into /// consideration. This allows to maintain the original node order in the /// absence of profile data. void mergeColdChains() { for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) { // Iterating in reverse order to make sure original fallthrough jumps are // merged first; this might be beneficial for code size. size_t NumSuccs = SuccNodes[SrcBB].size(); for (size_t Idx = 0; Idx < NumSuccs; Idx++) { size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1]; ChainT *SrcChain = AllNodes[SrcBB].CurChain; ChainT *DstChain = AllNodes[DstBB].CurChain; if (SrcChain != DstChain && !DstChain->isEntry() && SrcChain->Nodes.back()->Index == SrcBB && DstChain->Nodes.front()->Index == DstBB && SrcChain->isCold() == DstChain->isCold()) { mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y); } } } } /// Compute the Ext-TSP score for a given node order and a list of jumps. double extTSPScore(const MergedNodesT &Nodes, const MergedJumpsT &Jumps) const { uint64_t CurAddr = 0; Nodes.forEach([&](const NodeT *Node) { Node->EstimatedAddr = CurAddr; CurAddr += Node->Size; }); double Score = 0; Jumps.forEach([&](const JumpT *Jump) { const NodeT *SrcBlock = Jump->Source; const NodeT *DstBlock = Jump->Target; Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size, DstBlock->EstimatedAddr, Jump->ExecutionCount, Jump->IsConditional); }); return Score; } /// Compute the gain of merging two chains. /// /// The function considers all possible ways of merging two chains and /// computes the one having the largest increase in ExtTSP objective. The /// result is a pair with the first element being the gain and the second /// element being the corresponding merging type. MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc, ChainEdge *Edge) const { if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) return Edge->getCachedMergeGain(ChainPred, ChainSucc); assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps"); // Precompute jumps between ChainPred and ChainSucc. ChainEdge *EdgePP = ChainPred->getEdge(ChainPred); MergedJumpsT Jumps(&Edge->jumps(), EdgePP ? &EdgePP->jumps() : nullptr); // This object holds the best chosen gain of merging two chains. MergeGainT Gain = MergeGainT(); /// Given a merge offset and a list of merge types, try to merge two chains /// and update Gain with a better alternative. auto tryChainMerging = [&](size_t Offset, const std::vector &MergeTypes) { // Skip merging corresponding to concatenation w/o splitting. if (Offset == 0 || Offset == ChainPred->Nodes.size()) return; // Skip merging if it breaks Forced successors. NodeT *Node = ChainPred->Nodes[Offset - 1]; if (Node->ForcedSucc != nullptr) return; // Apply the merge, compute the corresponding gain, and update the best // value, if the merge is beneficial. for (const MergeTypeT &MergeType : MergeTypes) { Gain.updateIfLessThan( computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType)); } }; // Try to concatenate two chains w/o splitting. Gain.updateIfLessThan( computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y)); // Attach (a part of) ChainPred before the first node of ChainSucc. for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) { const NodeT *SrcBlock = Jump->Source; if (SrcBlock->CurChain != ChainPred) continue; size_t Offset = SrcBlock->CurIndex + 1; tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y}); } // Attach (a part of) ChainPred after the last node of ChainSucc. for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) { const NodeT *DstBlock = Jump->Target; if (DstBlock->CurChain != ChainPred) continue; size_t Offset = DstBlock->CurIndex; tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1}); } // Try to break ChainPred in various ways and concatenate with ChainSucc. if (ChainPred->Nodes.size() <= ChainSplitThreshold) { for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) { // Do not split the chain along a fall-through jump. One of the two // loops above may still "break" such a jump whenever it results in a // new fall-through. const NodeT *BB = ChainPred->Nodes[Offset - 1]; const NodeT *BB2 = ChainPred->Nodes[Offset]; if (BB->isSuccessor(BB2)) continue; // In practice, applying X2_Y_X1 merging almost never provides benefits; // thus, we exclude it from consideration to reduce the search space. tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1, MergeTypeT::X2_X1_Y}); } } Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain); return Gain; } /// Compute the score gain of merging two chains, respecting a given /// merge 'type' and 'offset'. /// /// The two chains are not modified in the method. MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc, const MergedJumpsT &Jumps, size_t MergeOffset, MergeTypeT MergeType) const { MergedNodesT MergedNodes = mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType); // Do not allow a merge that does not preserve the original entry point. if ((ChainPred->isEntry() || ChainSucc->isEntry()) && !MergedNodes.getFirstNode()->isEntry()) return MergeGainT(); // The gain for the new chain. double NewScore = extTSPScore(MergedNodes, Jumps); double CurScore = ChainPred->Score; return MergeGainT(NewScore - CurScore, MergeOffset, MergeType); } /// Merge chain From into chain Into, update the list of active chains, /// adjacency information, and the corresponding cached values. void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset, MergeTypeT MergeType) { assert(Into != From && "a chain cannot be merged with itself"); // Merge the nodes. MergedNodesT MergedNodes = mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType); Into->merge(From, MergedNodes.getNodes()); // Merge the edges. Into->mergeEdges(From); From->clear(); // Update cached ext-tsp score for the new chain. ChainEdge *SelfEdge = Into->getEdge(Into); if (SelfEdge != nullptr) { MergedNodes = MergedNodesT(Into->Nodes.begin(), Into->Nodes.end()); MergedJumpsT MergedJumps(&SelfEdge->jumps()); Into->Score = extTSPScore(MergedNodes, MergedJumps); } // Remove the chain from the list of active chains. llvm::erase(HotChains, From); // Invalidate caches. for (auto EdgeIt : Into->Edges) EdgeIt.second->invalidateCache(); } /// Concatenate all chains into the final order. std::vector concatChains() { // Collect non-empty chains. std::vector SortedChains; for (ChainT &Chain : AllChains) { if (!Chain.Nodes.empty()) SortedChains.push_back(&Chain); } // Sorting chains by density in the decreasing order. std::sort(SortedChains.begin(), SortedChains.end(), [&](const ChainT *L, const ChainT *R) { // Place the entry point at the beginning of the order. if (L->isEntry() != R->isEntry()) return L->isEntry(); // Compare by density and break ties by chain identifiers. return std::make_tuple(-L->density(), L->Id) < std::make_tuple(-R->density(), R->Id); }); // Collect the nodes in the order specified by their chains. std::vector Order; Order.reserve(NumNodes); for (const ChainT *Chain : SortedChains) for (NodeT *Node : Chain->Nodes) Order.push_back(Node->Index); return Order; } private: /// The number of nodes in the graph. const size_t NumNodes; /// Successors of each node. std::vector> SuccNodes; /// Predecessors of each node. std::vector> PredNodes; /// All nodes (basic blocks) in the graph. std::vector AllNodes; /// All jumps between the nodes. std::vector AllJumps; /// All chains of nodes. std::vector AllChains; /// All edges between the chains. std::vector AllEdges; /// Active chains. The vector gets updated at runtime when chains are merged. std::vector HotChains; }; /// The implementation of the Cache-Directed Sort (CDSort) algorithm for /// ordering functions represented by a call graph. class CDSortImpl { public: CDSortImpl(const CDSortConfig &Config, ArrayRef NodeSizes, ArrayRef NodeCounts, ArrayRef EdgeCounts, ArrayRef EdgeOffsets) : Config(Config), NumNodes(NodeSizes.size()) { initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets); } /// Run the algorithm and return an ordered set of function clusters. std::vector run() { // Merge pairs of chains while improving the objective. mergeChainPairs(); // Collect nodes from all the chains. return concatChains(); } private: /// Initialize the algorithm's data structures. void initialize(const ArrayRef &NodeSizes, const ArrayRef &NodeCounts, const ArrayRef &EdgeCounts, const ArrayRef &EdgeOffsets) { // Initialize nodes. AllNodes.reserve(NumNodes); for (uint64_t Node = 0; Node < NumNodes; Node++) { uint64_t Size = std::max(NodeSizes[Node], 1ULL); uint64_t ExecutionCount = NodeCounts[Node]; AllNodes.emplace_back(Node, Size, ExecutionCount); TotalSamples += ExecutionCount; if (ExecutionCount > 0) TotalSize += Size; } // Initialize jumps between the nodes. SuccNodes.resize(NumNodes); PredNodes.resize(NumNodes); AllJumps.reserve(EdgeCounts.size()); for (size_t I = 0; I < EdgeCounts.size(); I++) { auto [Pred, Succ, Count] = EdgeCounts[I]; // Ignore recursive calls. if (Pred == Succ) continue; SuccNodes[Pred].push_back(Succ); PredNodes[Succ].push_back(Pred); if (Count > 0) { NodeT &PredNode = AllNodes[Pred]; NodeT &SuccNode = AllNodes[Succ]; AllJumps.emplace_back(&PredNode, &SuccNode, Count); AllJumps.back().Offset = EdgeOffsets[I]; SuccNode.InJumps.push_back(&AllJumps.back()); PredNode.OutJumps.push_back(&AllJumps.back()); // Adjust execution counts. PredNode.ExecutionCount = std::max(PredNode.ExecutionCount, Count); SuccNode.ExecutionCount = std::max(SuccNode.ExecutionCount, Count); } } // Initialize chains. AllChains.reserve(NumNodes); for (NodeT &Node : AllNodes) { // Adjust execution counts. Node.ExecutionCount = std::max(Node.ExecutionCount, Node.inCount()); Node.ExecutionCount = std::max(Node.ExecutionCount, Node.outCount()); // Create chain. AllChains.emplace_back(Node.Index, &Node); Node.CurChain = &AllChains.back(); } // Initialize chain edges. AllEdges.reserve(AllJumps.size()); for (NodeT &PredNode : AllNodes) { for (JumpT *Jump : PredNode.OutJumps) { NodeT *SuccNode = Jump->Target; ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain); // This edge is already present in the graph. if (CurEdge != nullptr) { assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr); CurEdge->appendJump(Jump); continue; } // This is a new edge. AllEdges.emplace_back(Jump); PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back()); SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back()); } } } /// Merge pairs of chains while there is an improvement in the objective. void mergeChainPairs() { // Create a priority queue containing all edges ordered by the merge gain. auto GainComparator = [](ChainEdge *L, ChainEdge *R) { return std::make_tuple(-L->gain(), L->srcChain()->Id, L->dstChain()->Id) < std::make_tuple(-R->gain(), R->srcChain()->Id, R->dstChain()->Id); }; std::set Queue(GainComparator); // Insert the edges into the queue. [[maybe_unused]] size_t NumActiveChains = 0; for (NodeT &Node : AllNodes) { if (Node.ExecutionCount == 0) continue; ++NumActiveChains; for (const auto &[_, Edge] : Node.CurChain->Edges) { // Ignore self-edges. if (Edge->isSelfEdge()) continue; // Ignore already processed edges. if (Edge->gain() != -1.0) continue; // Compute the gain of merging the two chains. MergeGainT Gain = getBestMergeGain(Edge); Edge->setMergeGain(Gain); if (Edge->gain() > EPS) Queue.insert(Edge); } } // Merge the chains while the gain of merging is positive. while (!Queue.empty()) { // Extract the best (top) edge for merging. ChainEdge *BestEdge = *Queue.begin(); Queue.erase(Queue.begin()); ChainT *BestSrcChain = BestEdge->srcChain(); ChainT *BestDstChain = BestEdge->dstChain(); // Remove outdated edges from the queue. for (const auto &[_, ChainEdge] : BestSrcChain->Edges) Queue.erase(ChainEdge); for (const auto &[_, ChainEdge] : BestDstChain->Edges) Queue.erase(ChainEdge); // Merge the best pair of chains. MergeGainT BestGain = BestEdge->getMergeGain(); mergeChains(BestSrcChain, BestDstChain, BestGain.mergeOffset(), BestGain.mergeType()); --NumActiveChains; // Insert newly created edges into the queue. for (const auto &[_, Edge] : BestSrcChain->Edges) { // Ignore loop edges. if (Edge->isSelfEdge()) continue; if (Edge->srcChain()->numBlocks() + Edge->dstChain()->numBlocks() > Config.MaxChainSize) continue; // Compute the gain of merging the two chains. MergeGainT Gain = getBestMergeGain(Edge); Edge->setMergeGain(Gain); if (Edge->gain() > EPS) Queue.insert(Edge); } } LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number" << " of chains from " << NumNodes << " to " << NumActiveChains << "\n"); } /// Compute the gain of merging two chains. /// /// The function considers all possible ways of merging two chains and /// computes the one having the largest increase in ExtTSP objective. The /// result is a pair with the first element being the gain and the second /// element being the corresponding merging type. MergeGainT getBestMergeGain(ChainEdge *Edge) const { assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps"); // Precompute jumps between ChainPred and ChainSucc. MergedJumpsT Jumps(&Edge->jumps()); ChainT *SrcChain = Edge->srcChain(); ChainT *DstChain = Edge->dstChain(); // This object holds the best currently chosen gain of merging two chains. MergeGainT Gain = MergeGainT(); /// Given a list of merge types, try to merge two chains and update Gain /// with a better alternative. auto tryChainMerging = [&](const std::vector &MergeTypes) { // Apply the merge, compute the corresponding gain, and update the best // value, if the merge is beneficial. for (const MergeTypeT &MergeType : MergeTypes) { MergeGainT NewGain = computeMergeGain(SrcChain, DstChain, Jumps, MergeType); // When forward and backward gains are the same, prioritize merging that // preserves the original order of the functions in the binary. if (std::abs(Gain.score() - NewGain.score()) < EPS) { if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) || (MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) { Gain = NewGain; } } else if (NewGain.score() > Gain.score() + EPS) { Gain = NewGain; } } }; // Try to concatenate two chains w/o splitting. tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X}); return Gain; } /// Compute the score gain of merging two chains, respecting a given type. /// /// The two chains are not modified in the method. MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc, const MergedJumpsT &Jumps, MergeTypeT MergeType) const { // This doesn't depend on the ordering of the nodes double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc); // Merge offset is always 0, as the chains are not split. size_t MergeOffset = 0; auto MergedBlocks = mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType); double DistGain = distBasedLocalityGain(MergedBlocks, Jumps); double GainScore = DistGain + Config.FrequencyScale * FreqGain; // Scale the result to increase the importance of merging short chains. if (GainScore >= 0.0) GainScore /= std::min(ChainPred->Size, ChainSucc->Size); return MergeGainT(GainScore, MergeOffset, MergeType); } /// Compute the change of the frequency locality after merging the chains. double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const { auto missProbability = [&](double ChainDensity) { double PageSamples = ChainDensity * Config.CacheSize; if (PageSamples >= TotalSamples) return 0.0; double P = PageSamples / TotalSamples; return pow(1.0 - P, static_cast(Config.CacheEntries)); }; // Cache misses on the chains before merging. double CurScore = ChainPred->ExecutionCount * missProbability(ChainPred->density()) + ChainSucc->ExecutionCount * missProbability(ChainSucc->density()); // Cache misses on the merged chain double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount; double MergedSize = ChainPred->Size + ChainSucc->Size; double MergedDensity = static_cast(MergedCounts) / MergedSize; double NewScore = MergedCounts * missProbability(MergedDensity); return CurScore - NewScore; } /// Compute the distance locality for a jump / call. double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const { uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr; double D = Dist == 0 ? 0.1 : static_cast(Dist); return static_cast(Count) * std::pow(D, -Config.DistancePower); } /// Compute the change of the distance locality after merging the chains. double distBasedLocalityGain(const MergedNodesT &Nodes, const MergedJumpsT &Jumps) const { uint64_t CurAddr = 0; Nodes.forEach([&](const NodeT *Node) { Node->EstimatedAddr = CurAddr; CurAddr += Node->Size; }); double CurScore = 0; double NewScore = 0; Jumps.forEach([&](const JumpT *Jump) { uint64_t SrcAddr = Jump->Source->EstimatedAddr + Jump->Offset; uint64_t DstAddr = Jump->Target->EstimatedAddr; NewScore += distScore(SrcAddr, DstAddr, Jump->ExecutionCount); CurScore += distScore(0, TotalSize, Jump->ExecutionCount); }); return NewScore - CurScore; } /// Merge chain From into chain Into, update the list of active chains, /// adjacency information, and the corresponding cached values. void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset, MergeTypeT MergeType) { assert(Into != From && "a chain cannot be merged with itself"); // Merge the nodes. MergedNodesT MergedNodes = mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType); Into->merge(From, MergedNodes.getNodes()); // Merge the edges. Into->mergeEdges(From); From->clear(); } /// Concatenate all chains into the final order. std::vector concatChains() { // Collect chains and calculate density stats for their sorting. std::vector SortedChains; DenseMap ChainDensity; for (ChainT &Chain : AllChains) { if (!Chain.Nodes.empty()) { SortedChains.push_back(&Chain); // Using doubles to avoid overflow of ExecutionCounts. double Size = 0; double ExecutionCount = 0; for (NodeT *Node : Chain.Nodes) { Size += static_cast(Node->Size); ExecutionCount += static_cast(Node->ExecutionCount); } assert(Size > 0 && "a chain of zero size"); ChainDensity[&Chain] = ExecutionCount / Size; } } // Sort chains by density in the decreasing order. std::sort(SortedChains.begin(), SortedChains.end(), [&](const ChainT *L, const ChainT *R) { const double DL = ChainDensity[L]; const double DR = ChainDensity[R]; // Compare by density and break ties by chain identifiers. return std::make_tuple(-DL, L->Id) < std::make_tuple(-DR, R->Id); }); // Collect the nodes in the order specified by their chains. std::vector Order; Order.reserve(NumNodes); for (const ChainT *Chain : SortedChains) for (NodeT *Node : Chain->Nodes) Order.push_back(Node->Index); return Order; } private: /// Config for the algorithm. const CDSortConfig Config; /// The number of nodes in the graph. const size_t NumNodes; /// Successors of each node. std::vector> SuccNodes; /// Predecessors of each node. std::vector> PredNodes; /// All nodes (functions) in the graph. std::vector AllNodes; /// All jumps (function calls) between the nodes. std::vector AllJumps; /// All chains of nodes. std::vector AllChains; /// All edges between the chains. std::vector AllEdges; /// The total number of samples in the graph. uint64_t TotalSamples{0}; /// The total size of the nodes in the graph. uint64_t TotalSize{0}; }; } // end of anonymous namespace std::vector codelayout::computeExtTspLayout(ArrayRef NodeSizes, ArrayRef NodeCounts, ArrayRef EdgeCounts) { // Verify correctness of the input data. assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input"); assert(NodeSizes.size() > 2 && "Incorrect input"); // Apply the reordering algorithm. ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts); std::vector Result = Alg.run(); // Verify correctness of the output. assert(Result.front() == 0 && "Original entry point is not preserved"); assert(Result.size() == NodeSizes.size() && "Incorrect size of layout"); return Result; } double codelayout::calcExtTspScore(ArrayRef Order, ArrayRef NodeSizes, ArrayRef NodeCounts, ArrayRef EdgeCounts) { // Estimate addresses of the blocks in memory. std::vector Addr(NodeSizes.size(), 0); for (size_t Idx = 1; Idx < Order.size(); Idx++) { Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]]; } std::vector OutDegree(NodeSizes.size(), 0); for (auto Edge : EdgeCounts) ++OutDegree[Edge.src]; // Increase the score for each jump. double Score = 0; for (auto Edge : EdgeCounts) { bool IsConditional = OutDegree[Edge.src] > 1; Score += ::extTSPScore(Addr[Edge.src], NodeSizes[Edge.src], Addr[Edge.dst], Edge.count, IsConditional); } return Score; } double codelayout::calcExtTspScore(ArrayRef NodeSizes, ArrayRef NodeCounts, ArrayRef EdgeCounts) { std::vector Order(NodeSizes.size()); for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) { Order[Idx] = Idx; } return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts); } std::vector codelayout::computeCacheDirectedLayout( const CDSortConfig &Config, ArrayRef FuncSizes, ArrayRef FuncCounts, ArrayRef CallCounts, ArrayRef CallOffsets) { // Verify correctness of the input data. assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input"); // Apply the reordering algorithm. CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets); std::vector Result = Alg.run(); assert(Result.size() == FuncSizes.size() && "Incorrect size of layout"); return Result; } std::vector codelayout::computeCacheDirectedLayout( ArrayRef FuncSizes, ArrayRef FuncCounts, ArrayRef CallCounts, ArrayRef CallOffsets) { CDSortConfig Config; // Populate the config from the command-line options. if (CacheEntries.getNumOccurrences() > 0) Config.CacheEntries = CacheEntries; if (CacheSize.getNumOccurrences() > 0) Config.CacheSize = CacheSize; if (CDMaxChainSize.getNumOccurrences() > 0) Config.MaxChainSize = CDMaxChainSize; if (DistancePower.getNumOccurrences() > 0) Config.DistancePower = DistancePower; if (FrequencyScale.getNumOccurrences() > 0) Config.FrequencyScale = FrequencyScale; return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets); }