//===- CodeExtractor.cpp - Pull code region into a new function -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the interface to tear out a code region, such as an // individual loop or a parallel section, into a new function, replacing it with // a call to the new function. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/CodeExtractor.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BlockFrequencyInfoImpl.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include #include #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; using ProfileCount = Function::ProfileCount; #define DEBUG_TYPE "code-extractor" // Provide a command-line option to aggregate function arguments into a struct // for functions produced by the code extractor. This is useful when converting // extracted functions to pthread-based code, as only one argument (void*) can // be passed in to pthread_create(). static cl::opt AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, cl::desc("Aggregate arguments to code-extracted functions")); /// Test whether a block is valid for extraction. static bool isBlockValidForExtraction(const BasicBlock &BB, const SetVector &Result, bool AllowVarArgs, bool AllowAlloca) { // taking the address of a basic block moved to another function is illegal if (BB.hasAddressTaken()) return false; // don't hoist code that uses another basicblock address, as it's likely to // lead to unexpected behavior, like cross-function jumps SmallPtrSet Visited; SmallVector ToVisit; for (Instruction const &Inst : BB) ToVisit.push_back(&Inst); while (!ToVisit.empty()) { User const *Curr = ToVisit.pop_back_val(); if (!Visited.insert(Curr).second) continue; if (isa(Curr)) return false; // even a reference to self is likely to be not compatible if (isa(Curr) && cast(Curr)->getParent() != &BB) continue; for (auto const &U : Curr->operands()) { if (auto *UU = dyn_cast(U)) ToVisit.push_back(UU); } } // If explicitly requested, allow vastart and alloca. For invoke instructions // verify that extraction is valid. for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { if (isa(I)) { if (!AllowAlloca) return false; continue; } if (const auto *II = dyn_cast(I)) { // Unwind destination (either a landingpad, catchswitch, or cleanuppad) // must be a part of the subgraph which is being extracted. if (auto *UBB = II->getUnwindDest()) if (!Result.count(UBB)) return false; continue; } // All catch handlers of a catchswitch instruction as well as the unwind // destination must be in the subgraph. if (const auto *CSI = dyn_cast(I)) { if (auto *UBB = CSI->getUnwindDest()) if (!Result.count(UBB)) return false; for (auto *HBB : CSI->handlers()) if (!Result.count(const_cast(HBB))) return false; continue; } // Make sure that entire catch handler is within subgraph. It is sufficient // to check that catch return's block is in the list. if (const auto *CPI = dyn_cast(I)) { for (const auto *U : CPI->users()) if (const auto *CRI = dyn_cast(U)) if (!Result.count(const_cast(CRI->getParent()))) return false; continue; } // And do similar checks for cleanup handler - the entire handler must be // in subgraph which is going to be extracted. For cleanup return should // additionally check that the unwind destination is also in the subgraph. if (const auto *CPI = dyn_cast(I)) { for (const auto *U : CPI->users()) if (const auto *CRI = dyn_cast(U)) if (!Result.count(const_cast(CRI->getParent()))) return false; continue; } if (const auto *CRI = dyn_cast(I)) { if (auto *UBB = CRI->getUnwindDest()) if (!Result.count(UBB)) return false; continue; } if (const CallInst *CI = dyn_cast(I)) { if (const Function *F = CI->getCalledFunction()) { auto IID = F->getIntrinsicID(); if (IID == Intrinsic::vastart) { if (AllowVarArgs) continue; else return false; } // Currently, we miscompile outlined copies of eh_typid_for. There are // proposals for fixing this in llvm.org/PR39545. if (IID == Intrinsic::eh_typeid_for) return false; } } } return true; } /// Build a set of blocks to extract if the input blocks are viable. static SetVector buildExtractionBlockSet(ArrayRef BBs, DominatorTree *DT, bool AllowVarArgs, bool AllowAlloca) { assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); SetVector Result; // Loop over the blocks, adding them to our set-vector, and aborting with an // empty set if we encounter invalid blocks. for (BasicBlock *BB : BBs) { // If this block is dead, don't process it. if (DT && !DT->isReachableFromEntry(BB)) continue; if (!Result.insert(BB)) llvm_unreachable("Repeated basic blocks in extraction input"); } LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() << '\n'); for (auto *BB : Result) { if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) return {}; // Make sure that the first block is not a landing pad. if (BB == Result.front()) { if (BB->isEHPad()) { LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); return {}; } continue; } // All blocks other than the first must not have predecessors outside of // the subgraph which is being extracted. for (auto *PBB : predecessors(BB)) if (!Result.count(PBB)) { LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " "outside the region except for the first block!\n" << "Problematic source BB: " << BB->getName() << "\n" << "Problematic destination BB: " << PBB->getName() << "\n"); return {}; } } return Result; } CodeExtractor::CodeExtractor(ArrayRef BBs, DominatorTree *DT, bool AggregateArgs, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, AssumptionCache *AC, bool AllowVarArgs, bool AllowAlloca, BasicBlock *AllocationBlock, std::string Suffix) : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), BPI(BPI), AC(AC), AllocationBlock(AllocationBlock), AllowVarArgs(AllowVarArgs), Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), Suffix(Suffix) {} CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, AssumptionCache *AC, std::string Suffix) : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false), Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, /* AllowVarArgs */ false, /* AllowAlloca */ false)), Suffix(Suffix) {} /// definedInRegion - Return true if the specified value is defined in the /// extracted region. static bool definedInRegion(const SetVector &Blocks, Value *V) { if (Instruction *I = dyn_cast(V)) if (Blocks.count(I->getParent())) return true; return false; } /// definedInCaller - Return true if the specified value is defined in the /// function being code extracted, but not in the region being extracted. /// These values must be passed in as live-ins to the function. static bool definedInCaller(const SetVector &Blocks, Value *V) { if (isa(V)) return true; if (Instruction *I = dyn_cast(V)) if (!Blocks.count(I->getParent())) return true; return false; } static BasicBlock *getCommonExitBlock(const SetVector &Blocks) { BasicBlock *CommonExitBlock = nullptr; auto hasNonCommonExitSucc = [&](BasicBlock *Block) { for (auto *Succ : successors(Block)) { // Internal edges, ok. if (Blocks.count(Succ)) continue; if (!CommonExitBlock) { CommonExitBlock = Succ; continue; } if (CommonExitBlock != Succ) return true; } return false; }; if (any_of(Blocks, hasNonCommonExitSucc)) return nullptr; return CommonExitBlock; } CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { for (BasicBlock &BB : F) { for (Instruction &II : BB.instructionsWithoutDebug()) if (auto *AI = dyn_cast(&II)) Allocas.push_back(AI); findSideEffectInfoForBlock(BB); } } void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { for (Instruction &II : BB.instructionsWithoutDebug()) { unsigned Opcode = II.getOpcode(); Value *MemAddr = nullptr; switch (Opcode) { case Instruction::Store: case Instruction::Load: { if (Opcode == Instruction::Store) { StoreInst *SI = cast(&II); MemAddr = SI->getPointerOperand(); } else { LoadInst *LI = cast(&II); MemAddr = LI->getPointerOperand(); } // Global variable can not be aliased with locals. if (isa(MemAddr)) break; Value *Base = MemAddr->stripInBoundsConstantOffsets(); if (!isa(Base)) { SideEffectingBlocks.insert(&BB); return; } BaseMemAddrs[&BB].insert(Base); break; } default: { IntrinsicInst *IntrInst = dyn_cast(&II); if (IntrInst) { if (IntrInst->isLifetimeStartOrEnd()) break; SideEffectingBlocks.insert(&BB); return; } // Treat all the other cases conservatively if it has side effects. if (II.mayHaveSideEffects()) { SideEffectingBlocks.insert(&BB); return; } } } } } bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( BasicBlock &BB, AllocaInst *Addr) const { if (SideEffectingBlocks.count(&BB)) return true; auto It = BaseMemAddrs.find(&BB); if (It != BaseMemAddrs.end()) return It->second.count(Addr); return false; } bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { AllocaInst *AI = cast(Addr->stripInBoundsConstantOffsets()); Function *Func = (*Blocks.begin())->getParent(); for (BasicBlock &BB : *Func) { if (Blocks.count(&BB)) continue; if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) return false; } return true; } BasicBlock * CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { BasicBlock *SinglePredFromOutlineRegion = nullptr; assert(!Blocks.count(CommonExitBlock) && "Expect a block outside the region!"); for (auto *Pred : predecessors(CommonExitBlock)) { if (!Blocks.count(Pred)) continue; if (!SinglePredFromOutlineRegion) { SinglePredFromOutlineRegion = Pred; } else if (SinglePredFromOutlineRegion != Pred) { SinglePredFromOutlineRegion = nullptr; break; } } if (SinglePredFromOutlineRegion) return SinglePredFromOutlineRegion; #ifndef NDEBUG auto getFirstPHI = [](BasicBlock *BB) { BasicBlock::iterator I = BB->begin(); PHINode *FirstPhi = nullptr; while (I != BB->end()) { PHINode *Phi = dyn_cast(I); if (!Phi) break; if (!FirstPhi) { FirstPhi = Phi; break; } } return FirstPhi; }; // If there are any phi nodes, the single pred either exists or has already // be created before code extraction. assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); #endif BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( CommonExitBlock->getFirstNonPHI()->getIterator()); for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(CommonExitBlock))) { if (Blocks.count(Pred)) continue; Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); } // Now add the old exit block to the outline region. Blocks.insert(CommonExitBlock); OldTargets.push_back(NewExitBlock); return CommonExitBlock; } // Find the pair of life time markers for address 'Addr' that are either // defined inside the outline region or can legally be shrinkwrapped into the // outline region. If there are not other untracked uses of the address, return // the pair of markers if found; otherwise return a pair of nullptr. CodeExtractor::LifetimeMarkerInfo CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, Instruction *Addr, BasicBlock *ExitBlock) const { LifetimeMarkerInfo Info; for (User *U : Addr->users()) { IntrinsicInst *IntrInst = dyn_cast(U); if (IntrInst) { // We don't model addresses with multiple start/end markers, but the // markers do not need to be in the region. if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { if (Info.LifeStart) return {}; Info.LifeStart = IntrInst; continue; } if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { if (Info.LifeEnd) return {}; Info.LifeEnd = IntrInst; continue; } // At this point, permit debug uses outside of the region. // This is fixed in a later call to fixupDebugInfoPostExtraction(). if (isa(IntrInst)) continue; } // Find untracked uses of the address, bail. if (!definedInRegion(Blocks, U)) return {}; } if (!Info.LifeStart || !Info.LifeEnd) return {}; Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); // Do legality check. if ((Info.SinkLifeStart || Info.HoistLifeEnd) && !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) return {}; // Check to see if we have a place to do hoisting, if not, bail. if (Info.HoistLifeEnd && !ExitBlock) return {}; return Info; } void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, ValueSet &SinkCands, ValueSet &HoistCands, BasicBlock *&ExitBlock) const { Function *Func = (*Blocks.begin())->getParent(); ExitBlock = getCommonExitBlock(Blocks); auto moveOrIgnoreLifetimeMarkers = [&](const LifetimeMarkerInfo &LMI) -> bool { if (!LMI.LifeStart) return false; if (LMI.SinkLifeStart) { LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart << "\n"); SinkCands.insert(LMI.LifeStart); } if (LMI.HoistLifeEnd) { LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); HoistCands.insert(LMI.LifeEnd); } return true; }; // Look up allocas in the original function in CodeExtractorAnalysisCache, as // this is much faster than walking all the instructions. for (AllocaInst *AI : CEAC.getAllocas()) { BasicBlock *BB = AI->getParent(); if (Blocks.count(BB)) continue; // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, // check whether it is actually still in the original function. Function *AIFunc = BB->getParent(); if (AIFunc != Func) continue; LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); if (Moved) { LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); SinkCands.insert(AI); continue; } // Find bitcasts in the outlined region that have lifetime marker users // outside that region. Replace the lifetime marker use with an // outside region bitcast to avoid unnecessary alloca/reload instructions // and extra lifetime markers. SmallVector LifetimeBitcastUsers; for (User *U : AI->users()) { if (!definedInRegion(Blocks, U)) continue; if (U->stripInBoundsConstantOffsets() != AI) continue; Instruction *Bitcast = cast(U); for (User *BU : Bitcast->users()) { IntrinsicInst *IntrInst = dyn_cast(BU); if (!IntrInst) continue; if (!IntrInst->isLifetimeStartOrEnd()) continue; if (definedInRegion(Blocks, IntrInst)) continue; LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" << *Bitcast << " in out-of-region lifetime marker " << *IntrInst << "\n"); LifetimeBitcastUsers.push_back(IntrInst); } } for (Instruction *I : LifetimeBitcastUsers) { Module *M = AIFunc->getParent(); LLVMContext &Ctx = M->getContext(); auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); CastInst *CastI = CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); I->replaceUsesOfWith(I->getOperand(1), CastI); } // Follow any bitcasts. SmallVector Bitcasts; SmallVector BitcastLifetimeInfo; for (User *U : AI->users()) { if (U->stripInBoundsConstantOffsets() == AI) { Instruction *Bitcast = cast(U); LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); if (LMI.LifeStart) { Bitcasts.push_back(Bitcast); BitcastLifetimeInfo.push_back(LMI); continue; } } // Found unknown use of AI. if (!definedInRegion(Blocks, U)) { Bitcasts.clear(); break; } } // Either no bitcasts reference the alloca or there are unknown uses. if (Bitcasts.empty()) continue; LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); SinkCands.insert(AI); for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { Instruction *BitcastAddr = Bitcasts[I]; const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; assert(LMI.LifeStart && "Unsafe to sink bitcast without lifetime markers"); moveOrIgnoreLifetimeMarkers(LMI); if (!definedInRegion(Blocks, BitcastAddr)) { LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr << "\n"); SinkCands.insert(BitcastAddr); } } } } bool CodeExtractor::isEligible() const { if (Blocks.empty()) return false; BasicBlock *Header = *Blocks.begin(); Function *F = Header->getParent(); // For functions with varargs, check that varargs handling is only done in the // outlined function, i.e vastart and vaend are only used in outlined blocks. if (AllowVarArgs && F->getFunctionType()->isVarArg()) { auto containsVarArgIntrinsic = [](const Instruction &I) { if (const CallInst *CI = dyn_cast(&I)) if (const Function *Callee = CI->getCalledFunction()) return Callee->getIntrinsicID() == Intrinsic::vastart || Callee->getIntrinsicID() == Intrinsic::vaend; return false; }; for (auto &BB : *F) { if (Blocks.count(&BB)) continue; if (llvm::any_of(BB, containsVarArgIntrinsic)) return false; } } return true; } void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, const ValueSet &SinkCands) const { for (BasicBlock *BB : Blocks) { // If a used value is defined outside the region, it's an input. If an // instruction is used outside the region, it's an output. for (Instruction &II : *BB) { for (auto &OI : II.operands()) { Value *V = OI; if (!SinkCands.count(V) && definedInCaller(Blocks, V)) Inputs.insert(V); } for (User *U : II.users()) if (!definedInRegion(Blocks, U)) { Outputs.insert(&II); break; } } } } /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside /// of the region, we need to split the entry block of the region so that the /// PHI node is easier to deal with. void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { unsigned NumPredsFromRegion = 0; unsigned NumPredsOutsideRegion = 0; if (Header != &Header->getParent()->getEntryBlock()) { PHINode *PN = dyn_cast(Header->begin()); if (!PN) return; // No PHI nodes. // If the header node contains any PHI nodes, check to see if there is more // than one entry from outside the region. If so, we need to sever the // header block into two. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (Blocks.count(PN->getIncomingBlock(i))) ++NumPredsFromRegion; else ++NumPredsOutsideRegion; // If there is one (or fewer) predecessor from outside the region, we don't // need to do anything special. if (NumPredsOutsideRegion <= 1) return; } // Otherwise, we need to split the header block into two pieces: one // containing PHI nodes merging values from outside of the region, and a // second that contains all of the code for the block and merges back any // incoming values from inside of the region. BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); // We only want to code extract the second block now, and it becomes the new // header of the region. BasicBlock *OldPred = Header; Blocks.remove(OldPred); Blocks.insert(NewBB); Header = NewBB; // Okay, now we need to adjust the PHI nodes and any branches from within the // region to go to the new header block instead of the old header block. if (NumPredsFromRegion) { PHINode *PN = cast(OldPred->begin()); // Loop over all of the predecessors of OldPred that are in the region, // changing them to branch to NewBB instead. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (Blocks.count(PN->getIncomingBlock(i))) { Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); TI->replaceUsesOfWith(OldPred, NewBB); } // Okay, everything within the region is now branching to the right block, we // just have to update the PHI nodes now, inserting PHI nodes into NewBB. BasicBlock::iterator AfterPHIs; for (AfterPHIs = OldPred->begin(); isa(AfterPHIs); ++AfterPHIs) { PHINode *PN = cast(AfterPHIs); // Create a new PHI node in the new region, which has an incoming value // from OldPred of PN. PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, PN->getName() + ".ce", &NewBB->front()); PN->replaceAllUsesWith(NewPN); NewPN->addIncoming(PN, OldPred); // Loop over all of the incoming value in PN, moving them to NewPN if they // are from the extracted region. for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { if (Blocks.count(PN->getIncomingBlock(i))) { NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); PN->removeIncomingValue(i); --i; } } } } } /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from /// outlined region, we split these PHIs on two: one with inputs from region /// and other with remaining incoming blocks; then first PHIs are placed in /// outlined region. void CodeExtractor::severSplitPHINodesOfExits( const SmallPtrSetImpl &Exits) { for (BasicBlock *ExitBB : Exits) { BasicBlock *NewBB = nullptr; for (PHINode &PN : ExitBB->phis()) { // Find all incoming values from the outlining region. SmallVector IncomingVals; for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) if (Blocks.count(PN.getIncomingBlock(i))) IncomingVals.push_back(i); // Do not process PHI if there is one (or fewer) predecessor from region. // If PHI has exactly one predecessor from region, only this one incoming // will be replaced on codeRepl block, so it should be safe to skip PHI. if (IncomingVals.size() <= 1) continue; // Create block for new PHIs and add it to the list of outlined if it // wasn't done before. if (!NewBB) { NewBB = BasicBlock::Create(ExitBB->getContext(), ExitBB->getName() + ".split", ExitBB->getParent(), ExitBB); SmallVector Preds(predecessors(ExitBB)); for (BasicBlock *PredBB : Preds) if (Blocks.count(PredBB)) PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); BranchInst::Create(ExitBB, NewBB); Blocks.insert(NewBB); } // Split this PHI. PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(), PN.getName() + ".ce", NewBB->getFirstNonPHI()); for (unsigned i : IncomingVals) NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); for (unsigned i : reverse(IncomingVals)) PN.removeIncomingValue(i, false); PN.addIncoming(NewPN, NewBB); } } } void CodeExtractor::splitReturnBlocks() { for (BasicBlock *Block : Blocks) if (ReturnInst *RI = dyn_cast(Block->getTerminator())) { BasicBlock *New = Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); if (DT) { // Old dominates New. New node dominates all other nodes dominated // by Old. DomTreeNode *OldNode = DT->getNode(Block); SmallVector Children(OldNode->begin(), OldNode->end()); DomTreeNode *NewNode = DT->addNewBlock(New, Block); for (DomTreeNode *I : Children) DT->changeImmediateDominator(I, NewNode); } } } /// constructFunction - make a function based on inputs and outputs, as follows: /// f(in0, ..., inN, out0, ..., outN) Function *CodeExtractor::constructFunction(const ValueSet &inputs, const ValueSet &outputs, BasicBlock *header, BasicBlock *newRootNode, BasicBlock *newHeader, Function *oldFunction, Module *M) { LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); // This function returns unsigned, outputs will go back by reference. switch (NumExitBlocks) { case 0: case 1: RetTy = Type::getVoidTy(header->getContext()); break; case 2: RetTy = Type::getInt1Ty(header->getContext()); break; default: RetTy = Type::getInt16Ty(header->getContext()); break; } std::vector ParamTy; std::vector AggParamTy; ValueSet StructValues; // Add the types of the input values to the function's argument list for (Value *value : inputs) { LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { AggParamTy.push_back(value->getType()); StructValues.insert(value); } else ParamTy.push_back(value->getType()); } // Add the types of the output values to the function's argument list. for (Value *output : outputs) { LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { AggParamTy.push_back(output->getType()); StructValues.insert(output); } else ParamTy.push_back(PointerType::getUnqual(output->getType())); } assert( (ParamTy.size() + AggParamTy.size()) == (inputs.size() + outputs.size()) && "Number of scalar and aggregate params does not match inputs, outputs"); assert((StructValues.empty() || AggregateArgs) && "Expeced StructValues only with AggregateArgs set"); // Concatenate scalar and aggregate params in ParamTy. size_t NumScalarParams = ParamTy.size(); StructType *StructTy = nullptr; if (AggregateArgs && !AggParamTy.empty()) { StructTy = StructType::get(M->getContext(), AggParamTy); ParamTy.push_back(PointerType::getUnqual(StructTy)); } LLVM_DEBUG({ dbgs() << "Function type: " << *RetTy << " f("; for (Type *i : ParamTy) dbgs() << *i << ", "; dbgs() << ")\n"; }); FunctionType *funcType = FunctionType::get( RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); std::string SuffixToUse = Suffix.empty() ? (header->getName().empty() ? "extracted" : header->getName().str()) : Suffix; // Create the new function Function *newFunction = Function::Create( funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), oldFunction->getName() + "." + SuffixToUse, M); // Inherit all of the target dependent attributes and white-listed // target independent attributes. // (e.g. If the extracted region contains a call to an x86.sse // instruction we need to make sure that the extracted region has the // "target-features" attribute allowing it to be lowered. // FIXME: This should be changed to check to see if a specific // attribute can not be inherited. for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { if (Attr.isStringAttribute()) { if (Attr.getKindAsString() == "thunk") continue; } else switch (Attr.getKindAsEnum()) { // Those attributes cannot be propagated safely. Explicitly list them // here so we get a warning if new attributes are added. case Attribute::AllocSize: case Attribute::ArgMemOnly: case Attribute::Builtin: case Attribute::Convergent: case Attribute::InaccessibleMemOnly: case Attribute::InaccessibleMemOrArgMemOnly: case Attribute::JumpTable: case Attribute::Naked: case Attribute::NoBuiltin: case Attribute::NoMerge: case Attribute::NoReturn: case Attribute::NoSync: case Attribute::ReadNone: case Attribute::ReadOnly: case Attribute::ReturnsTwice: case Attribute::Speculatable: case Attribute::StackAlignment: case Attribute::WillReturn: case Attribute::WriteOnly: case Attribute::AllocKind: case Attribute::PresplitCoroutine: continue; // Those attributes should be safe to propagate to the extracted function. case Attribute::AlwaysInline: case Attribute::Cold: case Attribute::DisableSanitizerInstrumentation: case Attribute::FnRetThunkExtern: case Attribute::Hot: case Attribute::NoRecurse: case Attribute::InlineHint: case Attribute::MinSize: case Attribute::NoCallback: case Attribute::NoDuplicate: case Attribute::NoFree: case Attribute::NoImplicitFloat: case Attribute::NoInline: case Attribute::NonLazyBind: case Attribute::NoRedZone: case Attribute::NoUnwind: case Attribute::NoSanitizeBounds: case Attribute::NoSanitizeCoverage: case Attribute::NullPointerIsValid: case Attribute::OptForFuzzing: case Attribute::OptimizeNone: case Attribute::OptimizeForSize: case Attribute::SafeStack: case Attribute::ShadowCallStack: case Attribute::SanitizeAddress: case Attribute::SanitizeMemory: case Attribute::SanitizeThread: case Attribute::SanitizeHWAddress: case Attribute::SanitizeMemTag: case Attribute::SpeculativeLoadHardening: case Attribute::StackProtect: case Attribute::StackProtectReq: case Attribute::StackProtectStrong: case Attribute::StrictFP: case Attribute::UWTable: case Attribute::VScaleRange: case Attribute::NoCfCheck: case Attribute::MustProgress: case Attribute::NoProfile: break; // These attributes cannot be applied to functions. case Attribute::Alignment: case Attribute::AllocatedPointer: case Attribute::AllocAlign: case Attribute::ByVal: case Attribute::Dereferenceable: case Attribute::DereferenceableOrNull: case Attribute::ElementType: case Attribute::InAlloca: case Attribute::InReg: case Attribute::Nest: case Attribute::NoAlias: case Attribute::NoCapture: case Attribute::NoUndef: case Attribute::NonNull: case Attribute::Preallocated: case Attribute::Returned: case Attribute::SExt: case Attribute::StructRet: case Attribute::SwiftError: case Attribute::SwiftSelf: case Attribute::SwiftAsync: case Attribute::ZExt: case Attribute::ImmArg: case Attribute::ByRef: // These are not really attributes. case Attribute::None: case Attribute::EndAttrKinds: case Attribute::EmptyKey: case Attribute::TombstoneKey: llvm_unreachable("Not a function attribute"); } newFunction->addFnAttr(Attr); } newFunction->getBasicBlockList().push_back(newRootNode); // Create scalar and aggregate iterators to name all of the arguments we // inserted. Function::arg_iterator ScalarAI = newFunction->arg_begin(); Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); // Rewrite all users of the inputs in the extracted region to use the // arguments (or appropriate addressing into struct) instead. for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { Value *RewriteVal; if (AggregateArgs && StructValues.contains(inputs[i])) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); Instruction *TI = newFunction->begin()->getTerminator(); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, "loadgep_" + inputs[i]->getName(), TI); ++aggIdx; } else RewriteVal = &*ScalarAI++; std::vector Users(inputs[i]->user_begin(), inputs[i]->user_end()); for (User *use : Users) if (Instruction *inst = dyn_cast(use)) if (Blocks.count(inst->getParent())) inst->replaceUsesOfWith(inputs[i], RewriteVal); } // Set names for input and output arguments. if (NumScalarParams) { ScalarAI = newFunction->arg_begin(); for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) if (!StructValues.contains(inputs[i])) ScalarAI->setName(inputs[i]->getName()); for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) if (!StructValues.contains(outputs[i])) ScalarAI->setName(outputs[i]->getName() + ".out"); } // Rewrite branches to basic blocks outside of the loop to new dummy blocks // within the new function. This must be done before we lose track of which // blocks were originally in the code region. std::vector Users(header->user_begin(), header->user_end()); for (auto &U : Users) // The BasicBlock which contains the branch is not in the region // modify the branch target to a new block if (Instruction *I = dyn_cast(U)) if (I->isTerminator() && I->getFunction() == oldFunction && !Blocks.count(I->getParent())) I->replaceUsesOfWith(header, newHeader); return newFunction; } /// Erase lifetime.start markers which reference inputs to the extraction /// region, and insert the referenced memory into \p LifetimesStart. /// /// The extraction region is defined by a set of blocks (\p Blocks), and a set /// of allocas which will be moved from the caller function into the extracted /// function (\p SunkAllocas). static void eraseLifetimeMarkersOnInputs(const SetVector &Blocks, const SetVector &SunkAllocas, SetVector &LifetimesStart) { for (BasicBlock *BB : Blocks) { for (Instruction &I : llvm::make_early_inc_range(*BB)) { auto *II = dyn_cast(&I); if (!II || !II->isLifetimeStartOrEnd()) continue; // Get the memory operand of the lifetime marker. If the underlying // object is a sunk alloca, or is otherwise defined in the extraction // region, the lifetime marker must not be erased. Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) continue; if (II->getIntrinsicID() == Intrinsic::lifetime_start) LifetimesStart.insert(Mem); II->eraseFromParent(); } } } /// Insert lifetime start/end markers surrounding the call to the new function /// for objects defined in the caller. static void insertLifetimeMarkersSurroundingCall( Module *M, ArrayRef LifetimesStart, ArrayRef LifetimesEnd, CallInst *TheCall) { LLVMContext &Ctx = M->getContext(); auto Int8PtrTy = Type::getInt8PtrTy(Ctx); auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); Instruction *Term = TheCall->getParent()->getTerminator(); // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts // needed to satisfy this requirement so they may be reused. DenseMap Bitcasts; // Emit lifetime markers for the pointers given in \p Objects. Insert the // markers before the call if \p InsertBefore, and after the call otherwise. auto insertMarkers = [&](Function *MarkerFunc, ArrayRef Objects, bool InsertBefore) { for (Value *Mem : Objects) { assert((!isa(Mem) || cast(Mem)->getFunction() == TheCall->getFunction()) && "Input memory not defined in original function"); Value *&MemAsI8Ptr = Bitcasts[Mem]; if (!MemAsI8Ptr) { if (Mem->getType() == Int8PtrTy) MemAsI8Ptr = Mem; else MemAsI8Ptr = CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); } auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); if (InsertBefore) Marker->insertBefore(TheCall); else Marker->insertBefore(Term); } }; if (!LifetimesStart.empty()) { auto StartFn = llvm::Intrinsic::getDeclaration( M, llvm::Intrinsic::lifetime_start, Int8PtrTy); insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); } if (!LifetimesEnd.empty()) { auto EndFn = llvm::Intrinsic::getDeclaration( M, llvm::Intrinsic::lifetime_end, Int8PtrTy); insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); } } /// emitCallAndSwitchStatement - This method sets up the caller side by adding /// the call instruction, splitting any PHI nodes in the header block as /// necessary. CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, ValueSet &inputs, ValueSet &outputs) { // Emit a call to the new function, passing in: *pointer to struct (if // aggregating parameters), or plan inputs and allocated memory for outputs std::vector params, ReloadOutputs, Reloads; ValueSet StructValues; Module *M = newFunction->getParent(); LLVMContext &Context = M->getContext(); const DataLayout &DL = M->getDataLayout(); CallInst *call = nullptr; // Add inputs as params, or to be filled into the struct unsigned ScalarInputArgNo = 0; SmallVector SwiftErrorArgs; for (Value *input : inputs) { if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) StructValues.insert(input); else { params.push_back(input); if (input->isSwiftError()) SwiftErrorArgs.push_back(ScalarInputArgNo); } ++ScalarInputArgNo; } // Create allocas for the outputs unsigned ScalarOutputArgNo = 0; for (Value *output : outputs) { if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { StructValues.insert(output); } else { AllocaInst *alloca = new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), nullptr, output->getName() + ".loc", &codeReplacer->getParent()->front().front()); ReloadOutputs.push_back(alloca); params.push_back(alloca); ++ScalarOutputArgNo; } } StructType *StructArgTy = nullptr; AllocaInst *Struct = nullptr; unsigned NumAggregatedInputs = 0; if (AggregateArgs && !StructValues.empty()) { std::vector ArgTypes; for (Value *V : StructValues) ArgTypes.push_back(V->getType()); // Allocate a struct at the beginning of this function StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); Struct = new AllocaInst( StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", AllocationBlock ? &*AllocationBlock->getFirstInsertionPt() : &codeReplacer->getParent()->front().front()); params.push_back(Struct); // Store aggregated inputs in the struct. for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { if (inputs.contains(StructValues[i])) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); codeReplacer->getInstList().push_back(GEP); new StoreInst(StructValues[i], GEP, codeReplacer); NumAggregatedInputs++; } } } // Emit the call to the function call = CallInst::Create(newFunction, params, NumExitBlocks > 1 ? "targetBlock" : ""); // Add debug location to the new call, if the original function has debug // info. In that case, the terminator of the entry block of the extracted // function contains the first debug location of the extracted function, // set in extractCodeRegion. if (codeReplacer->getParent()->getSubprogram()) { if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) call->setDebugLoc(DL); } codeReplacer->getInstList().push_back(call); // Set swifterror parameter attributes. for (unsigned SwiftErrArgNo : SwiftErrorArgs) { call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); } // Reload the outputs passed in by reference, use the struct if output is in // the aggregate or reload from the scalar argument. for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, aggIdx = NumAggregatedInputs; i != e; ++i) { Value *Output = nullptr; if (AggregateArgs && StructValues.contains(outputs[i])) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); codeReplacer->getInstList().push_back(GEP); Output = GEP; ++aggIdx; } else { Output = ReloadOutputs[scalarIdx]; ++scalarIdx; } LoadInst *load = new LoadInst(outputs[i]->getType(), Output, outputs[i]->getName() + ".reload", codeReplacer); Reloads.push_back(load); std::vector Users(outputs[i]->user_begin(), outputs[i]->user_end()); for (unsigned u = 0, e = Users.size(); u != e; ++u) { Instruction *inst = cast(Users[u]); if (!Blocks.count(inst->getParent())) inst->replaceUsesOfWith(outputs[i], load); } } // Now we can emit a switch statement using the call as a value. SwitchInst *TheSwitch = SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), codeReplacer, 0, codeReplacer); // Since there may be multiple exits from the original region, make the new // function return an unsigned, switch on that number. This loop iterates // over all of the blocks in the extracted region, updating any terminator // instructions in the to-be-extracted region that branch to blocks that are // not in the region to be extracted. std::map ExitBlockMap; // Iterate over the previously collected targets, and create new blocks inside // the function to branch to. unsigned switchVal = 0; for (BasicBlock *OldTarget : OldTargets) { if (Blocks.count(OldTarget)) continue; BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; if (NewTarget) continue; // If we don't already have an exit stub for this non-extracted // destination, create one now! NewTarget = BasicBlock::Create(Context, OldTarget->getName() + ".exitStub", newFunction); unsigned SuccNum = switchVal++; Value *brVal = nullptr; assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); switch (NumExitBlocks) { case 0: case 1: break; // No value needed. case 2: // Conditional branch, return a bool brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); break; default: brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); break; } ReturnInst::Create(Context, brVal, NewTarget); // Update the switch instruction. TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), SuccNum), OldTarget); } for (BasicBlock *Block : Blocks) { Instruction *TI = Block->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { if (Blocks.count(TI->getSuccessor(i))) continue; BasicBlock *OldTarget = TI->getSuccessor(i); // add a new basic block which returns the appropriate value BasicBlock *NewTarget = ExitBlockMap[OldTarget]; assert(NewTarget && "Unknown target block!"); // rewrite the original branch instruction with this new target TI->setSuccessor(i, NewTarget); } } // Store the arguments right after the definition of output value. // This should be proceeded after creating exit stubs to be ensure that invoke // result restore will be placed in the outlined function. Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); std::advance(ScalarOutputArgBegin, ScalarInputArgNo); Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; ++i) { auto *OutI = dyn_cast(outputs[i]); if (!OutI) continue; // Find proper insertion point. BasicBlock::iterator InsertPt; // In case OutI is an invoke, we insert the store at the beginning in the // 'normal destination' BB. Otherwise we insert the store right after OutI. if (auto *InvokeI = dyn_cast(OutI)) InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); else if (auto *Phi = dyn_cast(OutI)) InsertPt = Phi->getParent()->getFirstInsertionPt(); else InsertPt = std::next(OutI->getIterator()); Instruction *InsertBefore = &*InsertPt; assert((InsertBefore->getFunction() == newFunction || Blocks.count(InsertBefore->getParent())) && "InsertPt should be in new function"); if (AggregateArgs && StructValues.contains(outputs[i])) { assert(AggOutputArgBegin != newFunction->arg_end() && "Number of aggregate output arguments should match " "the number of defined values"); Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), InsertBefore); new StoreInst(outputs[i], GEP, InsertBefore); ++aggIdx; // Since there should be only one struct argument aggregating // all the output values, we shouldn't increment AggOutputArgBegin, which // always points to the struct argument, in this case. } else { assert(ScalarOutputArgBegin != newFunction->arg_end() && "Number of scalar output arguments should match " "the number of defined values"); new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore); ++ScalarOutputArgBegin; } } // Now that we've done the deed, simplify the switch instruction. Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); switch (NumExitBlocks) { case 0: // There are no successors (the block containing the switch itself), which // means that previously this was the last part of the function, and hence // this should be rewritten as a `ret' // Check if the function should return a value if (OldFnRetTy->isVoidTy()) { ReturnInst::Create(Context, nullptr, TheSwitch); // Return void } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { // return what we have ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); } else { // Otherwise we must have code extracted an unwind or something, just // return whatever we want. ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy), TheSwitch); } TheSwitch->eraseFromParent(); break; case 1: // Only a single destination, change the switch into an unconditional // branch. BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); TheSwitch->eraseFromParent(); break; case 2: BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), call, TheSwitch); TheSwitch->eraseFromParent(); break; default: // Otherwise, make the default destination of the switch instruction be one // of the other successors. TheSwitch->setCondition(call); TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); // Remove redundant case TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); break; } // Insert lifetime markers around the reloads of any output values. The // allocas output values are stored in are only in-use in the codeRepl block. insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); return call; } void CodeExtractor::moveCodeToFunction(Function *newFunction) { Function *oldFunc = (*Blocks.begin())->getParent(); Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); auto newFuncIt = newFunction->front().getIterator(); for (BasicBlock *Block : Blocks) { // Delete the basic block from the old function, and the list of blocks oldBlocks.remove(Block); // Insert this basic block into the new function // Insert the original blocks after the entry block created // for the new function. The entry block may be followed // by a set of exit blocks at this point, but these exit // blocks better be placed at the end of the new function. newFuncIt = newBlocks.insertAfter(newFuncIt, Block); } } void CodeExtractor::calculateNewCallTerminatorWeights( BasicBlock *CodeReplacer, DenseMap &ExitWeights, BranchProbabilityInfo *BPI) { using Distribution = BlockFrequencyInfoImplBase::Distribution; using BlockNode = BlockFrequencyInfoImplBase::BlockNode; // Update the branch weights for the exit block. Instruction *TI = CodeReplacer->getTerminator(); SmallVector BranchWeights(TI->getNumSuccessors(), 0); // Block Frequency distribution with dummy node. Distribution BranchDist; SmallVector EdgeProbabilities( TI->getNumSuccessors(), BranchProbability::getUnknown()); // Add each of the frequencies of the successors. for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { BlockNode ExitNode(i); uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); if (ExitFreq != 0) BranchDist.addExit(ExitNode, ExitFreq); else EdgeProbabilities[i] = BranchProbability::getZero(); } // Check for no total weight. if (BranchDist.Total == 0) { BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); return; } // Normalize the distribution so that they can fit in unsigned. BranchDist.normalize(); // Create normalized branch weights and set the metadata. for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { const auto &Weight = BranchDist.Weights[I]; // Get the weight and update the current BFI. BranchWeights[Weight.TargetNode.Index] = Weight.Amount; BranchProbability BP(Weight.Amount, BranchDist.Total); EdgeProbabilities[Weight.TargetNode.Index] = BP; } BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); TI->setMetadata( LLVMContext::MD_prof, MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); } /// Erase debug info intrinsics which refer to values in \p F but aren't in /// \p F. static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { for (Instruction &I : instructions(F)) { SmallVector DbgUsers; findDbgUsers(DbgUsers, &I); for (DbgVariableIntrinsic *DVI : DbgUsers) if (DVI->getFunction() != &F) DVI->eraseFromParent(); } } /// Fix up the debug info in the old and new functions by pointing line /// locations and debug intrinsics to the new subprogram scope, and by deleting /// intrinsics which point to values outside of the new function. static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, CallInst &TheCall) { DISubprogram *OldSP = OldFunc.getSubprogram(); LLVMContext &Ctx = OldFunc.getContext(); if (!OldSP) { // Erase any debug info the new function contains. stripDebugInfo(NewFunc); // Make sure the old function doesn't contain any non-local metadata refs. eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); return; } // Create a subprogram for the new function. Leave out a description of the // function arguments, as the parameters don't correspond to anything at the // source level. assert(OldSP->getUnit() && "Missing compile unit for subprogram"); DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, OldSP->getUnit()); auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized | DISubprogram::SPFlagLocalToUnit; auto NewSP = DIB.createFunction( OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); NewFunc.setSubprogram(NewSP); // Debug intrinsics in the new function need to be updated in one of two // ways: // 1) They need to be deleted, because they describe a value in the old // function. // 2) They need to point to fresh metadata, e.g. because they currently // point to a variable in the wrong scope. SmallDenseMap RemappedMetadata; SmallVector DebugIntrinsicsToDelete; for (Instruction &I : instructions(NewFunc)) { auto *DII = dyn_cast(&I); if (!DII) continue; // Point the intrinsic to a fresh label within the new function. if (auto *DLI = dyn_cast(&I)) { DILabel *OldLabel = DLI->getLabel(); DINode *&NewLabel = RemappedMetadata[OldLabel]; if (!NewLabel) NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), OldLabel->getFile(), OldLabel->getLine()); DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); continue; } auto IsInvalidLocation = [&NewFunc](Value *Location) { // Location is invalid if it isn't a constant or an instruction, or is an // instruction but isn't in the new function. if (!Location || (!isa(Location) && !isa(Location))) return true; Instruction *LocationInst = dyn_cast(Location); return LocationInst && LocationInst->getFunction() != &NewFunc; }; auto *DVI = cast(DII); // If any of the used locations are invalid, delete the intrinsic. if (any_of(DVI->location_ops(), IsInvalidLocation)) { DebugIntrinsicsToDelete.push_back(DVI); continue; } // Point the intrinsic to a fresh variable within the new function. DILocalVariable *OldVar = DVI->getVariable(); DINode *&NewVar = RemappedMetadata[OldVar]; if (!NewVar) NewVar = DIB.createAutoVariable( NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, OldVar->getAlignInBits()); DVI->setVariable(cast(NewVar)); } for (auto *DII : DebugIntrinsicsToDelete) DII->eraseFromParent(); DIB.finalizeSubprogram(NewSP); // Fix up the scope information attached to the line locations in the new // function. for (Instruction &I : instructions(NewFunc)) { if (const DebugLoc &DL = I.getDebugLoc()) I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); // Loop info metadata may contain line locations. Fix them up. auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * { if (auto *Loc = dyn_cast_or_null(MD)) return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP, nullptr); return MD; }; updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); } if (!TheCall.getDebugLoc()) TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); } Function * CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { ValueSet Inputs, Outputs; return extractCodeRegion(CEAC, Inputs, Outputs); } Function * CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, ValueSet &inputs, ValueSet &outputs) { if (!isEligible()) return nullptr; // Assumption: this is a single-entry code region, and the header is the first // block in the region. BasicBlock *header = *Blocks.begin(); Function *oldFunction = header->getParent(); // Calculate the entry frequency of the new function before we change the root // block. BlockFrequency EntryFreq; if (BFI) { assert(BPI && "Both BPI and BFI are required to preserve profile info"); for (BasicBlock *Pred : predecessors(header)) { if (Blocks.count(Pred)) continue; EntryFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); } } // Remove @llvm.assume calls that will be moved to the new function from the // old function's assumption cache. for (BasicBlock *Block : Blocks) { for (Instruction &I : llvm::make_early_inc_range(*Block)) { if (auto *AI = dyn_cast(&I)) { if (AC) AC->unregisterAssumption(AI); AI->eraseFromParent(); } } } // If we have any return instructions in the region, split those blocks so // that the return is not in the region. splitReturnBlocks(); // Calculate the exit blocks for the extracted region and the total exit // weights for each of those blocks. DenseMap ExitWeights; SmallPtrSet ExitBlocks; for (BasicBlock *Block : Blocks) { for (BasicBlock *Succ : successors(Block)) { if (!Blocks.count(Succ)) { // Update the branch weight for this successor. if (BFI) { BlockFrequency &BF = ExitWeights[Succ]; BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); } ExitBlocks.insert(Succ); } } } NumExitBlocks = ExitBlocks.size(); for (BasicBlock *Block : Blocks) { Instruction *TI = Block->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { if (Blocks.count(TI->getSuccessor(i))) continue; BasicBlock *OldTarget = TI->getSuccessor(i); OldTargets.push_back(OldTarget); } } // If we have to split PHI nodes of the entry or exit blocks, do so now. severSplitPHINodesOfEntry(header); severSplitPHINodesOfExits(ExitBlocks); // This takes place of the original loop BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), "codeRepl", oldFunction, header); // The new function needs a root node because other nodes can branch to the // head of the region, but the entry node of a function cannot have preds. BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), "newFuncRoot"); auto *BranchI = BranchInst::Create(header); // If the original function has debug info, we have to add a debug location // to the new branch instruction from the artificial entry block. // We use the debug location of the first instruction in the extracted // blocks, as there is no other equivalent line in the source code. if (oldFunction->getSubprogram()) { any_of(Blocks, [&BranchI](const BasicBlock *BB) { return any_of(*BB, [&BranchI](const Instruction &I) { if (!I.getDebugLoc()) return false; BranchI->setDebugLoc(I.getDebugLoc()); return true; }); }); } newFuncRoot->getInstList().push_back(BranchI); ValueSet SinkingCands, HoistingCands; BasicBlock *CommonExit = nullptr; findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); assert(HoistingCands.empty() || CommonExit); // Find inputs to, outputs from the code region. findInputsOutputs(inputs, outputs, SinkingCands); // Now sink all instructions which only have non-phi uses inside the region. // Group the allocas at the start of the block, so that any bitcast uses of // the allocas are well-defined. AllocaInst *FirstSunkAlloca = nullptr; for (auto *II : SinkingCands) { if (auto *AI = dyn_cast(II)) { AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); if (!FirstSunkAlloca) FirstSunkAlloca = AI; } } assert((SinkingCands.empty() || FirstSunkAlloca) && "Did not expect a sink candidate without any allocas"); for (auto *II : SinkingCands) { if (!isa(II)) { cast(II)->moveAfter(FirstSunkAlloca); } } if (!HoistingCands.empty()) { auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); Instruction *TI = HoistToBlock->getTerminator(); for (auto *II : HoistingCands) cast(II)->moveBefore(TI); } // Collect objects which are inputs to the extraction region and also // referenced by lifetime start markers within it. The effects of these // markers must be replicated in the calling function to prevent the stack // coloring pass from merging slots which store input objects. ValueSet LifetimesStart; eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); // Construct new function based on inputs/outputs & add allocas for all defs. Function *newFunction = constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, oldFunction, oldFunction->getParent()); // Update the entry count of the function. if (BFI) { auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); if (Count) newFunction->setEntryCount( ProfileCount(Count.value(), Function::PCT_Real)); // FIXME BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); } CallInst *TheCall = emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); moveCodeToFunction(newFunction); // Replicate the effects of any lifetime start/end markers which referenced // input objects in the extraction region by placing markers around the call. insertLifetimeMarkersSurroundingCall( oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); // Propagate personality info to the new function if there is one. if (oldFunction->hasPersonalityFn()) newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); // Update the branch weights for the exit block. if (BFI && NumExitBlocks > 1) calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); // Loop over all of the PHI nodes in the header and exit blocks, and change // any references to the old incoming edge to be the new incoming edge. for (BasicBlock::iterator I = header->begin(); isa(I); ++I) { PHINode *PN = cast(I); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (!Blocks.count(PN->getIncomingBlock(i))) PN->setIncomingBlock(i, newFuncRoot); } for (BasicBlock *ExitBB : ExitBlocks) for (PHINode &PN : ExitBB->phis()) { Value *IncomingCodeReplacerVal = nullptr; for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { // Ignore incoming values from outside of the extracted region. if (!Blocks.count(PN.getIncomingBlock(i))) continue; // Ensure that there is only one incoming value from codeReplacer. if (!IncomingCodeReplacerVal) { PN.setIncomingBlock(i, codeReplacer); IncomingCodeReplacerVal = PN.getIncomingValue(i); } else assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && "PHI has two incompatbile incoming values from codeRepl"); } } fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); // Mark the new function `noreturn` if applicable. Terminators which resume // exception propagation are treated as returning instructions. This is to // avoid inserting traps after calls to outlined functions which unwind. bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { const Instruction *Term = BB.getTerminator(); return isa(Term) || isa(Term); }); if (doesNotReturn) newFunction->setDoesNotReturn(); LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { newFunction->dump(); report_fatal_error("verification of newFunction failed!"); }); LLVM_DEBUG(if (verifyFunction(*oldFunction)) report_fatal_error("verification of oldFunction failed!")); LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) report_fatal_error("Stale Asumption cache for old Function!")); return newFunction; } bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, const Function &NewFunc, AssumptionCache *AC) { for (auto AssumeVH : AC->assumptions()) { auto *I = dyn_cast_or_null(AssumeVH); if (!I) continue; // There shouldn't be any llvm.assume intrinsics in the new function. if (I->getFunction() != &OldFunc) return true; // There shouldn't be any stale affected values in the assumption cache // that were previously in the old function, but that have now been moved // to the new function. for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { auto *AffectedCI = dyn_cast_or_null(AffectedValVH); if (!AffectedCI) continue; if (AffectedCI->getFunction() != &OldFunc) return true; auto *AssumedInst = cast(AffectedCI->getOperand(0)); if (AssumedInst->getFunction() != &OldFunc) return true; } } return false; } void CodeExtractor::excludeArgFromAggregate(Value *Arg) { ExcludeArgsFromAggregate.insert(Arg); }