//===- CodeExtractor.cpp - Pull code region into a new function -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the interface to tear out a code region, such as an // individual loop or a parallel section, into a new function, replacing it with // a call to the new function. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/CodeExtractor.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BlockFrequencyInfoImpl.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; using ProfileCount = Function::ProfileCount; #define DEBUG_TYPE "code-extractor" // Provide a command-line option to aggregate function arguments into a struct // for functions produced by the code extractor. This is useful when converting // extracted functions to pthread-based code, as only one argument (void*) can // be passed in to pthread_create(). static cl::opt AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, cl::desc("Aggregate arguments to code-extracted functions")); /// Test whether a block is valid for extraction. static bool isBlockValidForExtraction(const BasicBlock &BB, const SetVector &Result, bool AllowVarArgs, bool AllowAlloca) { // taking the address of a basic block moved to another function is illegal if (BB.hasAddressTaken()) return false; // don't hoist code that uses another basicblock address, as it's likely to // lead to unexpected behavior, like cross-function jumps SmallPtrSet Visited; SmallVector ToVisit; for (Instruction const &Inst : BB) ToVisit.push_back(&Inst); while (!ToVisit.empty()) { User const *Curr = ToVisit.pop_back_val(); if (!Visited.insert(Curr).second) continue; if (isa(Curr)) return false; // even a reference to self is likely to be not compatible if (isa(Curr) && cast(Curr)->getParent() != &BB) continue; for (auto const &U : Curr->operands()) { if (auto *UU = dyn_cast(U)) ToVisit.push_back(UU); } } // If explicitly requested, allow vastart and alloca. For invoke instructions // verify that extraction is valid. for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { if (isa(I)) { if (!AllowAlloca) return false; continue; } if (const auto *II = dyn_cast(I)) { // Unwind destination (either a landingpad, catchswitch, or cleanuppad) // must be a part of the subgraph which is being extracted. if (auto *UBB = II->getUnwindDest()) if (!Result.count(UBB)) return false; continue; } // All catch handlers of a catchswitch instruction as well as the unwind // destination must be in the subgraph. if (const auto *CSI = dyn_cast(I)) { if (auto *UBB = CSI->getUnwindDest()) if (!Result.count(UBB)) return false; for (auto *HBB : CSI->handlers()) if (!Result.count(const_cast(HBB))) return false; continue; } // Make sure that entire catch handler is within subgraph. It is sufficient // to check that catch return's block is in the list. if (const auto *CPI = dyn_cast(I)) { for (const auto *U : CPI->users()) if (const auto *CRI = dyn_cast(U)) if (!Result.count(const_cast(CRI->getParent()))) return false; continue; } // And do similar checks for cleanup handler - the entire handler must be // in subgraph which is going to be extracted. For cleanup return should // additionally check that the unwind destination is also in the subgraph. if (const auto *CPI = dyn_cast(I)) { for (const auto *U : CPI->users()) if (const auto *CRI = dyn_cast(U)) if (!Result.count(const_cast(CRI->getParent()))) return false; continue; } if (const auto *CRI = dyn_cast(I)) { if (auto *UBB = CRI->getUnwindDest()) if (!Result.count(UBB)) return false; continue; } if (const CallInst *CI = dyn_cast(I)) { if (const Function *F = CI->getCalledFunction()) { auto IID = F->getIntrinsicID(); if (IID == Intrinsic::vastart) { if (AllowVarArgs) continue; else return false; } // Currently, we miscompile outlined copies of eh_typid_for. There are // proposals for fixing this in llvm.org/PR39545. if (IID == Intrinsic::eh_typeid_for) return false; } } } return true; } /// Build a set of blocks to extract if the input blocks are viable. static SetVector buildExtractionBlockSet(ArrayRef BBs, DominatorTree *DT, bool AllowVarArgs, bool AllowAlloca) { assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); SetVector Result; // Loop over the blocks, adding them to our set-vector, and aborting with an // empty set if we encounter invalid blocks. for (BasicBlock *BB : BBs) { // If this block is dead, don't process it. if (DT && !DT->isReachableFromEntry(BB)) continue; if (!Result.insert(BB)) llvm_unreachable("Repeated basic blocks in extraction input"); } LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() << '\n'); for (auto *BB : Result) { if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) return {}; // Make sure that the first block is not a landing pad. if (BB == Result.front()) { if (BB->isEHPad()) { LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); return {}; } continue; } // All blocks other than the first must not have predecessors outside of // the subgraph which is being extracted. for (auto *PBB : predecessors(BB)) if (!Result.count(PBB)) { LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " "outside the region except for the first block!\n" << "Problematic source BB: " << BB->getName() << "\n" << "Problematic destination BB: " << PBB->getName() << "\n"); return {}; } } return Result; } CodeExtractor::CodeExtractor(ArrayRef BBs, DominatorTree *DT, bool AggregateArgs, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, AssumptionCache *AC, bool AllowVarArgs, bool AllowAlloca, std::string Suffix) : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), Suffix(Suffix) {} CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, AssumptionCache *AC, std::string Suffix) : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), BPI(BPI), AC(AC), AllowVarArgs(false), Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, /* AllowVarArgs */ false, /* AllowAlloca */ false)), Suffix(Suffix) {} /// definedInRegion - Return true if the specified value is defined in the /// extracted region. static bool definedInRegion(const SetVector &Blocks, Value *V) { if (Instruction *I = dyn_cast(V)) if (Blocks.count(I->getParent())) return true; return false; } /// definedInCaller - Return true if the specified value is defined in the /// function being code extracted, but not in the region being extracted. /// These values must be passed in as live-ins to the function. static bool definedInCaller(const SetVector &Blocks, Value *V) { if (isa(V)) return true; if (Instruction *I = dyn_cast(V)) if (!Blocks.count(I->getParent())) return true; return false; } static BasicBlock *getCommonExitBlock(const SetVector &Blocks) { BasicBlock *CommonExitBlock = nullptr; auto hasNonCommonExitSucc = [&](BasicBlock *Block) { for (auto *Succ : successors(Block)) { // Internal edges, ok. if (Blocks.count(Succ)) continue; if (!CommonExitBlock) { CommonExitBlock = Succ; continue; } if (CommonExitBlock == Succ) continue; return true; } return false; }; if (any_of(Blocks, hasNonCommonExitSucc)) return nullptr; return CommonExitBlock; } bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( Instruction *Addr) const { AllocaInst *AI = cast(Addr->stripInBoundsConstantOffsets()); Function *Func = (*Blocks.begin())->getParent(); for (BasicBlock &BB : *Func) { if (Blocks.count(&BB)) continue; for (Instruction &II : BB) { if (isa(II)) continue; unsigned Opcode = II.getOpcode(); Value *MemAddr = nullptr; switch (Opcode) { case Instruction::Store: case Instruction::Load: { if (Opcode == Instruction::Store) { StoreInst *SI = cast(&II); MemAddr = SI->getPointerOperand(); } else { LoadInst *LI = cast(&II); MemAddr = LI->getPointerOperand(); } // Global variable can not be aliased with locals. if (dyn_cast(MemAddr)) break; Value *Base = MemAddr->stripInBoundsConstantOffsets(); if (!isa(Base) || Base == AI) return false; break; } default: { IntrinsicInst *IntrInst = dyn_cast(&II); if (IntrInst) { if (IntrInst->isLifetimeStartOrEnd()) break; return false; } // Treat all the other cases conservatively if it has side effects. if (II.mayHaveSideEffects()) return false; } } } } return true; } BasicBlock * CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { BasicBlock *SinglePredFromOutlineRegion = nullptr; assert(!Blocks.count(CommonExitBlock) && "Expect a block outside the region!"); for (auto *Pred : predecessors(CommonExitBlock)) { if (!Blocks.count(Pred)) continue; if (!SinglePredFromOutlineRegion) { SinglePredFromOutlineRegion = Pred; } else if (SinglePredFromOutlineRegion != Pred) { SinglePredFromOutlineRegion = nullptr; break; } } if (SinglePredFromOutlineRegion) return SinglePredFromOutlineRegion; #ifndef NDEBUG auto getFirstPHI = [](BasicBlock *BB) { BasicBlock::iterator I = BB->begin(); PHINode *FirstPhi = nullptr; while (I != BB->end()) { PHINode *Phi = dyn_cast(I); if (!Phi) break; if (!FirstPhi) { FirstPhi = Phi; break; } } return FirstPhi; }; // If there are any phi nodes, the single pred either exists or has already // be created before code extraction. assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); #endif BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( CommonExitBlock->getFirstNonPHI()->getIterator()); for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); PI != PE;) { BasicBlock *Pred = *PI++; if (Blocks.count(Pred)) continue; Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); } // Now add the old exit block to the outline region. Blocks.insert(CommonExitBlock); return CommonExitBlock; } // Find the pair of life time markers for address 'Addr' that are either // defined inside the outline region or can legally be shrinkwrapped into the // outline region. If there are not other untracked uses of the address, return // the pair of markers if found; otherwise return a pair of nullptr. CodeExtractor::LifetimeMarkerInfo CodeExtractor::getLifetimeMarkers(Instruction *Addr, BasicBlock *ExitBlock) const { LifetimeMarkerInfo Info; for (User *U : Addr->users()) { IntrinsicInst *IntrInst = dyn_cast(U); if (IntrInst) { if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { // Do not handle the case where Addr has multiple start markers. if (Info.LifeStart) return {}; Info.LifeStart = IntrInst; } if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { if (Info.LifeEnd) return {}; Info.LifeEnd = IntrInst; } continue; } // Find untracked uses of the address, bail. if (!definedInRegion(Blocks, U)) return {}; } if (!Info.LifeStart || !Info.LifeEnd) return {}; Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); // Do legality check. if ((Info.SinkLifeStart || Info.HoistLifeEnd) && !isLegalToShrinkwrapLifetimeMarkers(Addr)) return {}; // Check to see if we have a place to do hoisting, if not, bail. if (Info.HoistLifeEnd && !ExitBlock) return {}; return Info; } void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, BasicBlock *&ExitBlock) const { Function *Func = (*Blocks.begin())->getParent(); ExitBlock = getCommonExitBlock(Blocks); auto moveOrIgnoreLifetimeMarkers = [&](const LifetimeMarkerInfo &LMI) -> bool { if (!LMI.LifeStart) return false; if (LMI.SinkLifeStart) { LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart << "\n"); SinkCands.insert(LMI.LifeStart); } if (LMI.HoistLifeEnd) { LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); HoistCands.insert(LMI.LifeEnd); } return true; }; for (BasicBlock &BB : *Func) { if (Blocks.count(&BB)) continue; for (Instruction &II : BB) { auto *AI = dyn_cast(&II); if (!AI) continue; LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(AI, ExitBlock); bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); if (Moved) { LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); SinkCands.insert(AI); continue; } // Follow any bitcasts. SmallVector Bitcasts; SmallVector BitcastLifetimeInfo; for (User *U : AI->users()) { if (U->stripInBoundsConstantOffsets() == AI) { Instruction *Bitcast = cast(U); LifetimeMarkerInfo LMI = getLifetimeMarkers(Bitcast, ExitBlock); if (LMI.LifeStart) { Bitcasts.push_back(Bitcast); BitcastLifetimeInfo.push_back(LMI); continue; } } // Found unknown use of AI. if (!definedInRegion(Blocks, U)) { Bitcasts.clear(); break; } } // Either no bitcasts reference the alloca or there are unknown uses. if (Bitcasts.empty()) continue; LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); SinkCands.insert(AI); for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { Instruction *BitcastAddr = Bitcasts[I]; const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; assert(LMI.LifeStart && "Unsafe to sink bitcast without lifetime markers"); moveOrIgnoreLifetimeMarkers(LMI); if (!definedInRegion(Blocks, BitcastAddr)) { LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr << "\n"); SinkCands.insert(BitcastAddr); } } } } } void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, const ValueSet &SinkCands) const { for (BasicBlock *BB : Blocks) { // If a used value is defined outside the region, it's an input. If an // instruction is used outside the region, it's an output. for (Instruction &II : *BB) { for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; ++OI) { Value *V = *OI; if (!SinkCands.count(V) && definedInCaller(Blocks, V)) Inputs.insert(V); } for (User *U : II.users()) if (!definedInRegion(Blocks, U)) { Outputs.insert(&II); break; } } } } /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside /// of the region, we need to split the entry block of the region so that the /// PHI node is easier to deal with. void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { unsigned NumPredsFromRegion = 0; unsigned NumPredsOutsideRegion = 0; if (Header != &Header->getParent()->getEntryBlock()) { PHINode *PN = dyn_cast(Header->begin()); if (!PN) return; // No PHI nodes. // If the header node contains any PHI nodes, check to see if there is more // than one entry from outside the region. If so, we need to sever the // header block into two. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (Blocks.count(PN->getIncomingBlock(i))) ++NumPredsFromRegion; else ++NumPredsOutsideRegion; // If there is one (or fewer) predecessor from outside the region, we don't // need to do anything special. if (NumPredsOutsideRegion <= 1) return; } // Otherwise, we need to split the header block into two pieces: one // containing PHI nodes merging values from outside of the region, and a // second that contains all of the code for the block and merges back any // incoming values from inside of the region. BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); // We only want to code extract the second block now, and it becomes the new // header of the region. BasicBlock *OldPred = Header; Blocks.remove(OldPred); Blocks.insert(NewBB); Header = NewBB; // Okay, now we need to adjust the PHI nodes and any branches from within the // region to go to the new header block instead of the old header block. if (NumPredsFromRegion) { PHINode *PN = cast(OldPred->begin()); // Loop over all of the predecessors of OldPred that are in the region, // changing them to branch to NewBB instead. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (Blocks.count(PN->getIncomingBlock(i))) { Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); TI->replaceUsesOfWith(OldPred, NewBB); } // Okay, everything within the region is now branching to the right block, we // just have to update the PHI nodes now, inserting PHI nodes into NewBB. BasicBlock::iterator AfterPHIs; for (AfterPHIs = OldPred->begin(); isa(AfterPHIs); ++AfterPHIs) { PHINode *PN = cast(AfterPHIs); // Create a new PHI node in the new region, which has an incoming value // from OldPred of PN. PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, PN->getName() + ".ce", &NewBB->front()); PN->replaceAllUsesWith(NewPN); NewPN->addIncoming(PN, OldPred); // Loop over all of the incoming value in PN, moving them to NewPN if they // are from the extracted region. for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { if (Blocks.count(PN->getIncomingBlock(i))) { NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); PN->removeIncomingValue(i); --i; } } } } } /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from /// outlined region, we split these PHIs on two: one with inputs from region /// and other with remaining incoming blocks; then first PHIs are placed in /// outlined region. void CodeExtractor::severSplitPHINodesOfExits( const SmallPtrSetImpl &Exits) { for (BasicBlock *ExitBB : Exits) { BasicBlock *NewBB = nullptr; for (PHINode &PN : ExitBB->phis()) { // Find all incoming values from the outlining region. SmallVector IncomingVals; for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) if (Blocks.count(PN.getIncomingBlock(i))) IncomingVals.push_back(i); // Do not process PHI if there is one (or fewer) predecessor from region. // If PHI has exactly one predecessor from region, only this one incoming // will be replaced on codeRepl block, so it should be safe to skip PHI. if (IncomingVals.size() <= 1) continue; // Create block for new PHIs and add it to the list of outlined if it // wasn't done before. if (!NewBB) { NewBB = BasicBlock::Create(ExitBB->getContext(), ExitBB->getName() + ".split", ExitBB->getParent(), ExitBB); SmallVector Preds(pred_begin(ExitBB), pred_end(ExitBB)); for (BasicBlock *PredBB : Preds) if (Blocks.count(PredBB)) PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); BranchInst::Create(ExitBB, NewBB); Blocks.insert(NewBB); } // Split this PHI. PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(), PN.getName() + ".ce", NewBB->getFirstNonPHI()); for (unsigned i : IncomingVals) NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); for (unsigned i : reverse(IncomingVals)) PN.removeIncomingValue(i, false); PN.addIncoming(NewPN, NewBB); } } } void CodeExtractor::splitReturnBlocks() { for (BasicBlock *Block : Blocks) if (ReturnInst *RI = dyn_cast(Block->getTerminator())) { BasicBlock *New = Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); if (DT) { // Old dominates New. New node dominates all other nodes dominated // by Old. DomTreeNode *OldNode = DT->getNode(Block); SmallVector Children(OldNode->begin(), OldNode->end()); DomTreeNode *NewNode = DT->addNewBlock(New, Block); for (DomTreeNode *I : Children) DT->changeImmediateDominator(I, NewNode); } } } /// constructFunction - make a function based on inputs and outputs, as follows: /// f(in0, ..., inN, out0, ..., outN) Function *CodeExtractor::constructFunction(const ValueSet &inputs, const ValueSet &outputs, BasicBlock *header, BasicBlock *newRootNode, BasicBlock *newHeader, Function *oldFunction, Module *M) { LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); // This function returns unsigned, outputs will go back by reference. switch (NumExitBlocks) { case 0: case 1: RetTy = Type::getVoidTy(header->getContext()); break; case 2: RetTy = Type::getInt1Ty(header->getContext()); break; default: RetTy = Type::getInt16Ty(header->getContext()); break; } std::vector paramTy; // Add the types of the input values to the function's argument list for (Value *value : inputs) { LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); paramTy.push_back(value->getType()); } // Add the types of the output values to the function's argument list. for (Value *output : outputs) { LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); if (AggregateArgs) paramTy.push_back(output->getType()); else paramTy.push_back(PointerType::getUnqual(output->getType())); } LLVM_DEBUG({ dbgs() << "Function type: " << *RetTy << " f("; for (Type *i : paramTy) dbgs() << *i << ", "; dbgs() << ")\n"; }); StructType *StructTy; if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { StructTy = StructType::get(M->getContext(), paramTy); paramTy.clear(); paramTy.push_back(PointerType::getUnqual(StructTy)); } FunctionType *funcType = FunctionType::get(RetTy, paramTy, AllowVarArgs && oldFunction->isVarArg()); std::string SuffixToUse = Suffix.empty() ? (header->getName().empty() ? "extracted" : header->getName().str()) : Suffix; // Create the new function Function *newFunction = Function::Create( funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), oldFunction->getName() + "." + SuffixToUse, M); // If the old function is no-throw, so is the new one. if (oldFunction->doesNotThrow()) newFunction->setDoesNotThrow(); // Inherit the uwtable attribute if we need to. if (oldFunction->hasUWTable()) newFunction->setHasUWTable(); // Inherit all of the target dependent attributes and white-listed // target independent attributes. // (e.g. If the extracted region contains a call to an x86.sse // instruction we need to make sure that the extracted region has the // "target-features" attribute allowing it to be lowered. // FIXME: This should be changed to check to see if a specific // attribute can not be inherited. for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { if (Attr.isStringAttribute()) { if (Attr.getKindAsString() == "thunk") continue; } else switch (Attr.getKindAsEnum()) { // Those attributes cannot be propagated safely. Explicitly list them // here so we get a warning if new attributes are added. This list also // includes non-function attributes. case Attribute::Alignment: case Attribute::AllocSize: case Attribute::ArgMemOnly: case Attribute::Builtin: case Attribute::ByVal: case Attribute::Convergent: case Attribute::Dereferenceable: case Attribute::DereferenceableOrNull: case Attribute::InAlloca: case Attribute::InReg: case Attribute::InaccessibleMemOnly: case Attribute::InaccessibleMemOrArgMemOnly: case Attribute::JumpTable: case Attribute::Naked: case Attribute::Nest: case Attribute::NoAlias: case Attribute::NoBuiltin: case Attribute::NoCapture: case Attribute::NoReturn: case Attribute::NoSync: case Attribute::None: case Attribute::NonNull: case Attribute::ReadNone: case Attribute::ReadOnly: case Attribute::Returned: case Attribute::ReturnsTwice: case Attribute::SExt: case Attribute::Speculatable: case Attribute::StackAlignment: case Attribute::StructRet: case Attribute::SwiftError: case Attribute::SwiftSelf: case Attribute::WillReturn: case Attribute::WriteOnly: case Attribute::ZExt: case Attribute::ImmArg: case Attribute::EndAttrKinds: continue; // Those attributes should be safe to propagate to the extracted function. case Attribute::AlwaysInline: case Attribute::Cold: case Attribute::NoRecurse: case Attribute::InlineHint: case Attribute::MinSize: case Attribute::NoDuplicate: case Attribute::NoFree: case Attribute::NoImplicitFloat: case Attribute::NoInline: case Attribute::NonLazyBind: case Attribute::NoRedZone: case Attribute::NoUnwind: case Attribute::OptForFuzzing: case Attribute::OptimizeNone: case Attribute::OptimizeForSize: case Attribute::SafeStack: case Attribute::ShadowCallStack: case Attribute::SanitizeAddress: case Attribute::SanitizeMemory: case Attribute::SanitizeThread: case Attribute::SanitizeHWAddress: case Attribute::SanitizeMemTag: case Attribute::SpeculativeLoadHardening: case Attribute::StackProtect: case Attribute::StackProtectReq: case Attribute::StackProtectStrong: case Attribute::StrictFP: case Attribute::UWTable: case Attribute::NoCfCheck: break; } newFunction->addFnAttr(Attr); } newFunction->getBasicBlockList().push_back(newRootNode); // Create an iterator to name all of the arguments we inserted. Function::arg_iterator AI = newFunction->arg_begin(); // Rewrite all users of the inputs in the extracted region to use the // arguments (or appropriate addressing into struct) instead. for (unsigned i = 0, e = inputs.size(); i != e; ++i) { Value *RewriteVal; if (AggregateArgs) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); Instruction *TI = newFunction->begin()->getTerminator(); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, "loadgep_" + inputs[i]->getName(), TI); } else RewriteVal = &*AI++; std::vector Users(inputs[i]->user_begin(), inputs[i]->user_end()); for (User *use : Users) if (Instruction *inst = dyn_cast(use)) if (Blocks.count(inst->getParent())) inst->replaceUsesOfWith(inputs[i], RewriteVal); } // Set names for input and output arguments. if (!AggregateArgs) { AI = newFunction->arg_begin(); for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) AI->setName(inputs[i]->getName()); for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) AI->setName(outputs[i]->getName()+".out"); } // Rewrite branches to basic blocks outside of the loop to new dummy blocks // within the new function. This must be done before we lose track of which // blocks were originally in the code region. std::vector Users(header->user_begin(), header->user_end()); for (unsigned i = 0, e = Users.size(); i != e; ++i) // The BasicBlock which contains the branch is not in the region // modify the branch target to a new block if (Instruction *I = dyn_cast(Users[i])) if (I->isTerminator() && !Blocks.count(I->getParent()) && I->getParent()->getParent() == oldFunction) I->replaceUsesOfWith(header, newHeader); return newFunction; } /// Erase lifetime.start markers which reference inputs to the extraction /// region, and insert the referenced memory into \p LifetimesStart. /// /// The extraction region is defined by a set of blocks (\p Blocks), and a set /// of allocas which will be moved from the caller function into the extracted /// function (\p SunkAllocas). static void eraseLifetimeMarkersOnInputs(const SetVector &Blocks, const SetVector &SunkAllocas, SetVector &LifetimesStart) { for (BasicBlock *BB : Blocks) { for (auto It = BB->begin(), End = BB->end(); It != End;) { auto *II = dyn_cast(&*It); ++It; if (!II || !II->isLifetimeStartOrEnd()) continue; // Get the memory operand of the lifetime marker. If the underlying // object is a sunk alloca, or is otherwise defined in the extraction // region, the lifetime marker must not be erased. Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) continue; if (II->getIntrinsicID() == Intrinsic::lifetime_start) LifetimesStart.insert(Mem); II->eraseFromParent(); } } } /// Insert lifetime start/end markers surrounding the call to the new function /// for objects defined in the caller. static void insertLifetimeMarkersSurroundingCall( Module *M, ArrayRef LifetimesStart, ArrayRef LifetimesEnd, CallInst *TheCall) { LLVMContext &Ctx = M->getContext(); auto Int8PtrTy = Type::getInt8PtrTy(Ctx); auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); Instruction *Term = TheCall->getParent()->getTerminator(); // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts // needed to satisfy this requirement so they may be reused. DenseMap Bitcasts; // Emit lifetime markers for the pointers given in \p Objects. Insert the // markers before the call if \p InsertBefore, and after the call otherwise. auto insertMarkers = [&](Function *MarkerFunc, ArrayRef Objects, bool InsertBefore) { for (Value *Mem : Objects) { assert((!isa(Mem) || cast(Mem)->getFunction() == TheCall->getFunction()) && "Input memory not defined in original function"); Value *&MemAsI8Ptr = Bitcasts[Mem]; if (!MemAsI8Ptr) { if (Mem->getType() == Int8PtrTy) MemAsI8Ptr = Mem; else MemAsI8Ptr = CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); } auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); if (InsertBefore) Marker->insertBefore(TheCall); else Marker->insertBefore(Term); } }; if (!LifetimesStart.empty()) { auto StartFn = llvm::Intrinsic::getDeclaration( M, llvm::Intrinsic::lifetime_start, Int8PtrTy); insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); } if (!LifetimesEnd.empty()) { auto EndFn = llvm::Intrinsic::getDeclaration( M, llvm::Intrinsic::lifetime_end, Int8PtrTy); insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); } } /// emitCallAndSwitchStatement - This method sets up the caller side by adding /// the call instruction, splitting any PHI nodes in the header block as /// necessary. CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, ValueSet &inputs, ValueSet &outputs) { // Emit a call to the new function, passing in: *pointer to struct (if // aggregating parameters), or plan inputs and allocated memory for outputs std::vector params, StructValues, ReloadOutputs, Reloads; Module *M = newFunction->getParent(); LLVMContext &Context = M->getContext(); const DataLayout &DL = M->getDataLayout(); CallInst *call = nullptr; // Add inputs as params, or to be filled into the struct unsigned ArgNo = 0; SmallVector SwiftErrorArgs; for (Value *input : inputs) { if (AggregateArgs) StructValues.push_back(input); else { params.push_back(input); if (input->isSwiftError()) SwiftErrorArgs.push_back(ArgNo); } ++ArgNo; } // Create allocas for the outputs for (Value *output : outputs) { if (AggregateArgs) { StructValues.push_back(output); } else { AllocaInst *alloca = new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), nullptr, output->getName() + ".loc", &codeReplacer->getParent()->front().front()); ReloadOutputs.push_back(alloca); params.push_back(alloca); } } StructType *StructArgTy = nullptr; AllocaInst *Struct = nullptr; if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { std::vector ArgTypes; for (ValueSet::iterator v = StructValues.begin(), ve = StructValues.end(); v != ve; ++v) ArgTypes.push_back((*v)->getType()); // Allocate a struct at the beginning of this function StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", &codeReplacer->getParent()->front().front()); params.push_back(Struct); for (unsigned i = 0, e = inputs.size(); i != e; ++i) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); codeReplacer->getInstList().push_back(GEP); StoreInst *SI = new StoreInst(StructValues[i], GEP); codeReplacer->getInstList().push_back(SI); } } // Emit the call to the function call = CallInst::Create(newFunction, params, NumExitBlocks > 1 ? "targetBlock" : ""); // Add debug location to the new call, if the original function has debug // info. In that case, the terminator of the entry block of the extracted // function contains the first debug location of the extracted function, // set in extractCodeRegion. if (codeReplacer->getParent()->getSubprogram()) { if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) call->setDebugLoc(DL); } codeReplacer->getInstList().push_back(call); // Set swifterror parameter attributes. for (unsigned SwiftErrArgNo : SwiftErrorArgs) { call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); } Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); unsigned FirstOut = inputs.size(); if (!AggregateArgs) std::advance(OutputArgBegin, inputs.size()); // Reload the outputs passed in by reference. for (unsigned i = 0, e = outputs.size(); i != e; ++i) { Value *Output = nullptr; if (AggregateArgs) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); codeReplacer->getInstList().push_back(GEP); Output = GEP; } else { Output = ReloadOutputs[i]; } LoadInst *load = new LoadInst(outputs[i]->getType(), Output, outputs[i]->getName() + ".reload"); Reloads.push_back(load); codeReplacer->getInstList().push_back(load); std::vector Users(outputs[i]->user_begin(), outputs[i]->user_end()); for (unsigned u = 0, e = Users.size(); u != e; ++u) { Instruction *inst = cast(Users[u]); if (!Blocks.count(inst->getParent())) inst->replaceUsesOfWith(outputs[i], load); } } // Now we can emit a switch statement using the call as a value. SwitchInst *TheSwitch = SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), codeReplacer, 0, codeReplacer); // Since there may be multiple exits from the original region, make the new // function return an unsigned, switch on that number. This loop iterates // over all of the blocks in the extracted region, updating any terminator // instructions in the to-be-extracted region that branch to blocks that are // not in the region to be extracted. std::map ExitBlockMap; unsigned switchVal = 0; for (BasicBlock *Block : Blocks) { Instruction *TI = Block->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) if (!Blocks.count(TI->getSuccessor(i))) { BasicBlock *OldTarget = TI->getSuccessor(i); // add a new basic block which returns the appropriate value BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; if (!NewTarget) { // If we don't already have an exit stub for this non-extracted // destination, create one now! NewTarget = BasicBlock::Create(Context, OldTarget->getName() + ".exitStub", newFunction); unsigned SuccNum = switchVal++; Value *brVal = nullptr; switch (NumExitBlocks) { case 0: case 1: break; // No value needed. case 2: // Conditional branch, return a bool brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); break; default: brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); break; } ReturnInst::Create(Context, brVal, NewTarget); // Update the switch instruction. TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), SuccNum), OldTarget); } // rewrite the original branch instruction with this new target TI->setSuccessor(i, NewTarget); } } // Store the arguments right after the definition of output value. // This should be proceeded after creating exit stubs to be ensure that invoke // result restore will be placed in the outlined function. Function::arg_iterator OAI = OutputArgBegin; for (unsigned i = 0, e = outputs.size(); i != e; ++i) { auto *OutI = dyn_cast(outputs[i]); if (!OutI) continue; // Find proper insertion point. BasicBlock::iterator InsertPt; // In case OutI is an invoke, we insert the store at the beginning in the // 'normal destination' BB. Otherwise we insert the store right after OutI. if (auto *InvokeI = dyn_cast(OutI)) InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); else if (auto *Phi = dyn_cast(OutI)) InsertPt = Phi->getParent()->getFirstInsertionPt(); else InsertPt = std::next(OutI->getIterator()); Instruction *InsertBefore = &*InsertPt; assert((InsertBefore->getFunction() == newFunction || Blocks.count(InsertBefore->getParent())) && "InsertPt should be in new function"); assert(OAI != newFunction->arg_end() && "Number of output arguments should match " "the amount of defined values"); if (AggregateArgs) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); GetElementPtrInst *GEP = GetElementPtrInst::Create( StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertBefore); new StoreInst(outputs[i], GEP, InsertBefore); // Since there should be only one struct argument aggregating // all the output values, we shouldn't increment OAI, which always // points to the struct argument, in this case. } else { new StoreInst(outputs[i], &*OAI, InsertBefore); ++OAI; } } // Now that we've done the deed, simplify the switch instruction. Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); switch (NumExitBlocks) { case 0: // There are no successors (the block containing the switch itself), which // means that previously this was the last part of the function, and hence // this should be rewritten as a `ret' // Check if the function should return a value if (OldFnRetTy->isVoidTy()) { ReturnInst::Create(Context, nullptr, TheSwitch); // Return void } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { // return what we have ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); } else { // Otherwise we must have code extracted an unwind or something, just // return whatever we want. ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy), TheSwitch); } TheSwitch->eraseFromParent(); break; case 1: // Only a single destination, change the switch into an unconditional // branch. BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); TheSwitch->eraseFromParent(); break; case 2: BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), call, TheSwitch); TheSwitch->eraseFromParent(); break; default: // Otherwise, make the default destination of the switch instruction be one // of the other successors. TheSwitch->setCondition(call); TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); // Remove redundant case TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); break; } // Insert lifetime markers around the reloads of any output values. The // allocas output values are stored in are only in-use in the codeRepl block. insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); return call; } void CodeExtractor::moveCodeToFunction(Function *newFunction) { Function *oldFunc = (*Blocks.begin())->getParent(); Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); for (BasicBlock *Block : Blocks) { // Delete the basic block from the old function, and the list of blocks oldBlocks.remove(Block); // Insert this basic block into the new function newBlocks.push_back(Block); // Remove @llvm.assume calls that were moved to the new function from the // old function's assumption cache. if (AC) for (auto &I : *Block) if (match(&I, m_Intrinsic())) AC->unregisterAssumption(cast(&I)); } } void CodeExtractor::calculateNewCallTerminatorWeights( BasicBlock *CodeReplacer, DenseMap &ExitWeights, BranchProbabilityInfo *BPI) { using Distribution = BlockFrequencyInfoImplBase::Distribution; using BlockNode = BlockFrequencyInfoImplBase::BlockNode; // Update the branch weights for the exit block. Instruction *TI = CodeReplacer->getTerminator(); SmallVector BranchWeights(TI->getNumSuccessors(), 0); // Block Frequency distribution with dummy node. Distribution BranchDist; // Add each of the frequencies of the successors. for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { BlockNode ExitNode(i); uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); if (ExitFreq != 0) BranchDist.addExit(ExitNode, ExitFreq); else BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); } // Check for no total weight. if (BranchDist.Total == 0) return; // Normalize the distribution so that they can fit in unsigned. BranchDist.normalize(); // Create normalized branch weights and set the metadata. for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { const auto &Weight = BranchDist.Weights[I]; // Get the weight and update the current BFI. BranchWeights[Weight.TargetNode.Index] = Weight.Amount; BranchProbability BP(Weight.Amount, BranchDist.Total); BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); } TI->setMetadata( LLVMContext::MD_prof, MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); } Function *CodeExtractor::extractCodeRegion() { if (!isEligible()) return nullptr; // Assumption: this is a single-entry code region, and the header is the first // block in the region. BasicBlock *header = *Blocks.begin(); Function *oldFunction = header->getParent(); // For functions with varargs, check that varargs handling is only done in the // outlined function, i.e vastart and vaend are only used in outlined blocks. if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) { auto containsVarArgIntrinsic = [](Instruction &I) { if (const CallInst *CI = dyn_cast(&I)) if (const Function *F = CI->getCalledFunction()) return F->getIntrinsicID() == Intrinsic::vastart || F->getIntrinsicID() == Intrinsic::vaend; return false; }; for (auto &BB : *oldFunction) { if (Blocks.count(&BB)) continue; if (llvm::any_of(BB, containsVarArgIntrinsic)) return nullptr; } } ValueSet inputs, outputs, SinkingCands, HoistingCands; BasicBlock *CommonExit = nullptr; // Calculate the entry frequency of the new function before we change the root // block. BlockFrequency EntryFreq; if (BFI) { assert(BPI && "Both BPI and BFI are required to preserve profile info"); for (BasicBlock *Pred : predecessors(header)) { if (Blocks.count(Pred)) continue; EntryFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); } } // If we have any return instructions in the region, split those blocks so // that the return is not in the region. splitReturnBlocks(); // Calculate the exit blocks for the extracted region and the total exit // weights for each of those blocks. DenseMap ExitWeights; SmallPtrSet ExitBlocks; for (BasicBlock *Block : Blocks) { for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; ++SI) { if (!Blocks.count(*SI)) { // Update the branch weight for this successor. if (BFI) { BlockFrequency &BF = ExitWeights[*SI]; BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); } ExitBlocks.insert(*SI); } } } NumExitBlocks = ExitBlocks.size(); // If we have to split PHI nodes of the entry or exit blocks, do so now. severSplitPHINodesOfEntry(header); severSplitPHINodesOfExits(ExitBlocks); // This takes place of the original loop BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), "codeRepl", oldFunction, header); // The new function needs a root node because other nodes can branch to the // head of the region, but the entry node of a function cannot have preds. BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), "newFuncRoot"); auto *BranchI = BranchInst::Create(header); // If the original function has debug info, we have to add a debug location // to the new branch instruction from the artificial entry block. // We use the debug location of the first instruction in the extracted // blocks, as there is no other equivalent line in the source code. if (oldFunction->getSubprogram()) { any_of(Blocks, [&BranchI](const BasicBlock *BB) { return any_of(*BB, [&BranchI](const Instruction &I) { if (!I.getDebugLoc()) return false; BranchI->setDebugLoc(I.getDebugLoc()); return true; }); }); } newFuncRoot->getInstList().push_back(BranchI); findAllocas(SinkingCands, HoistingCands, CommonExit); assert(HoistingCands.empty() || CommonExit); // Find inputs to, outputs from the code region. findInputsOutputs(inputs, outputs, SinkingCands); // Now sink all instructions which only have non-phi uses inside the region. // Group the allocas at the start of the block, so that any bitcast uses of // the allocas are well-defined. AllocaInst *FirstSunkAlloca = nullptr; for (auto *II : SinkingCands) { if (auto *AI = dyn_cast(II)) { AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); if (!FirstSunkAlloca) FirstSunkAlloca = AI; } } assert((SinkingCands.empty() || FirstSunkAlloca) && "Did not expect a sink candidate without any allocas"); for (auto *II : SinkingCands) { if (!isa(II)) { cast(II)->moveAfter(FirstSunkAlloca); } } if (!HoistingCands.empty()) { auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); Instruction *TI = HoistToBlock->getTerminator(); for (auto *II : HoistingCands) cast(II)->moveBefore(TI); } // Collect objects which are inputs to the extraction region and also // referenced by lifetime start markers within it. The effects of these // markers must be replicated in the calling function to prevent the stack // coloring pass from merging slots which store input objects. ValueSet LifetimesStart; eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); // Construct new function based on inputs/outputs & add allocas for all defs. Function *newFunction = constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, oldFunction, oldFunction->getParent()); // Update the entry count of the function. if (BFI) { auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); if (Count.hasValue()) newFunction->setEntryCount( ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); } CallInst *TheCall = emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); moveCodeToFunction(newFunction); // Replicate the effects of any lifetime start/end markers which referenced // input objects in the extraction region by placing markers around the call. insertLifetimeMarkersSurroundingCall( oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); // Propagate personality info to the new function if there is one. if (oldFunction->hasPersonalityFn()) newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); // Update the branch weights for the exit block. if (BFI && NumExitBlocks > 1) calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); // Loop over all of the PHI nodes in the header and exit blocks, and change // any references to the old incoming edge to be the new incoming edge. for (BasicBlock::iterator I = header->begin(); isa(I); ++I) { PHINode *PN = cast(I); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (!Blocks.count(PN->getIncomingBlock(i))) PN->setIncomingBlock(i, newFuncRoot); } for (BasicBlock *ExitBB : ExitBlocks) for (PHINode &PN : ExitBB->phis()) { Value *IncomingCodeReplacerVal = nullptr; for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { // Ignore incoming values from outside of the extracted region. if (!Blocks.count(PN.getIncomingBlock(i))) continue; // Ensure that there is only one incoming value from codeReplacer. if (!IncomingCodeReplacerVal) { PN.setIncomingBlock(i, codeReplacer); IncomingCodeReplacerVal = PN.getIncomingValue(i); } else assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && "PHI has two incompatbile incoming values from codeRepl"); } } // Erase debug info intrinsics. Variable updates within the new function are // invisible to debuggers. This could be improved by defining a DISubprogram // for the new function. for (BasicBlock &BB : *newFunction) { auto BlockIt = BB.begin(); // Remove debug info intrinsics from the new function. while (BlockIt != BB.end()) { Instruction *Inst = &*BlockIt; ++BlockIt; if (isa(Inst)) Inst->eraseFromParent(); } // Remove debug info intrinsics which refer to values in the new function // from the old function. SmallVector DbgUsers; for (Instruction &I : BB) findDbgUsers(DbgUsers, &I); for (DbgVariableIntrinsic *DVI : DbgUsers) DVI->eraseFromParent(); } // Mark the new function `noreturn` if applicable. Terminators which resume // exception propagation are treated as returning instructions. This is to // avoid inserting traps after calls to outlined functions which unwind. bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { const Instruction *Term = BB.getTerminator(); return isa(Term) || isa(Term); }); if (doesNotReturn) newFunction->setDoesNotReturn(); LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { newFunction->dump(); report_fatal_error("verification of newFunction failed!"); }); LLVM_DEBUG(if (verifyFunction(*oldFunction)) report_fatal_error("verification of oldFunction failed!")); return newFunction; }