//===- CallPromotionUtils.cpp - Utilities for call promotion ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements utilities useful for promoting indirect call sites to // direct call sites. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/CallPromotionUtils.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/TypeMetadataUtils.h" #include "llvm/IR/AttributeMask.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; #define DEBUG_TYPE "call-promotion-utils" /// Fix-up phi nodes in an invoke instruction's normal destination. /// /// After versioning an invoke instruction, values coming from the original /// block will now be coming from the "merge" block. For example, in the code /// below: /// /// then_bb: /// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst /// /// else_bb: /// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst /// /// merge_bb: /// %t2 = phi i32 [ %t0, %then_bb ], [ %t1, %else_bb ] /// br %normal_dst /// /// normal_dst: /// %t3 = phi i32 [ %x, %orig_bb ], ... /// /// "orig_bb" is no longer a predecessor of "normal_dst", so the phi nodes in /// "normal_dst" must be fixed to refer to "merge_bb": /// /// normal_dst: /// %t3 = phi i32 [ %x, %merge_bb ], ... /// static void fixupPHINodeForNormalDest(InvokeInst *Invoke, BasicBlock *OrigBlock, BasicBlock *MergeBlock) { for (PHINode &Phi : Invoke->getNormalDest()->phis()) { int Idx = Phi.getBasicBlockIndex(OrigBlock); if (Idx == -1) continue; Phi.setIncomingBlock(Idx, MergeBlock); } } /// Fix-up phi nodes in an invoke instruction's unwind destination. /// /// After versioning an invoke instruction, values coming from the original /// block will now be coming from either the "then" block or the "else" block. /// For example, in the code below: /// /// then_bb: /// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst /// /// else_bb: /// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst /// /// unwind_dst: /// %t3 = phi i32 [ %x, %orig_bb ], ... /// /// "orig_bb" is no longer a predecessor of "unwind_dst", so the phi nodes in /// "unwind_dst" must be fixed to refer to "then_bb" and "else_bb": /// /// unwind_dst: /// %t3 = phi i32 [ %x, %then_bb ], [ %x, %else_bb ], ... /// static void fixupPHINodeForUnwindDest(InvokeInst *Invoke, BasicBlock *OrigBlock, BasicBlock *ThenBlock, BasicBlock *ElseBlock) { for (PHINode &Phi : Invoke->getUnwindDest()->phis()) { int Idx = Phi.getBasicBlockIndex(OrigBlock); if (Idx == -1) continue; auto *V = Phi.getIncomingValue(Idx); Phi.setIncomingBlock(Idx, ThenBlock); Phi.addIncoming(V, ElseBlock); } } /// Create a phi node for the returned value of a call or invoke instruction. /// /// After versioning a call or invoke instruction that returns a value, we have /// to merge the value of the original and new instructions. We do this by /// creating a phi node and replacing uses of the original instruction with this /// phi node. /// /// For example, if \p OrigInst is defined in "else_bb" and \p NewInst is /// defined in "then_bb", we create the following phi node: /// /// ; Uses of the original instruction are replaced by uses of the phi node. /// %t0 = phi i32 [ %orig_inst, %else_bb ], [ %new_inst, %then_bb ], /// static void createRetPHINode(Instruction *OrigInst, Instruction *NewInst, BasicBlock *MergeBlock, IRBuilder<> &Builder) { if (OrigInst->getType()->isVoidTy() || OrigInst->use_empty()) return; Builder.SetInsertPoint(MergeBlock, MergeBlock->begin()); PHINode *Phi = Builder.CreatePHI(OrigInst->getType(), 0); SmallVector UsersToUpdate(OrigInst->users()); for (User *U : UsersToUpdate) U->replaceUsesOfWith(OrigInst, Phi); Phi->addIncoming(OrigInst, OrigInst->getParent()); Phi->addIncoming(NewInst, NewInst->getParent()); } /// Cast a call or invoke instruction to the given type. /// /// When promoting a call site, the return type of the call site might not match /// that of the callee. If this is the case, we have to cast the returned value /// to the correct type. The location of the cast depends on if we have a call /// or invoke instruction. /// /// For example, if the call instruction below requires a bitcast after /// promotion: /// /// orig_bb: /// %t0 = call i32 @func() /// ... /// /// The bitcast is placed after the call instruction: /// /// orig_bb: /// ; Uses of the original return value are replaced by uses of the bitcast. /// %t0 = call i32 @func() /// %t1 = bitcast i32 %t0 to ... /// ... /// /// A similar transformation is performed for invoke instructions. However, /// since invokes are terminating, a new block is created for the bitcast. For /// example, if the invoke instruction below requires a bitcast after promotion: /// /// orig_bb: /// %t0 = invoke i32 @func() to label %normal_dst unwind label %unwind_dst /// /// The edge between the original block and the invoke's normal destination is /// split, and the bitcast is placed there: /// /// orig_bb: /// %t0 = invoke i32 @func() to label %split_bb unwind label %unwind_dst /// /// split_bb: /// ; Uses of the original return value are replaced by uses of the bitcast. /// %t1 = bitcast i32 %t0 to ... /// br label %normal_dst /// static void createRetBitCast(CallBase &CB, Type *RetTy, CastInst **RetBitCast) { // Save the users of the calling instruction. These uses will be changed to // use the bitcast after we create it. SmallVector UsersToUpdate(CB.users()); // Determine an appropriate location to create the bitcast for the return // value. The location depends on if we have a call or invoke instruction. Instruction *InsertBefore = nullptr; if (auto *Invoke = dyn_cast(&CB)) InsertBefore = &SplitEdge(Invoke->getParent(), Invoke->getNormalDest())->front(); else InsertBefore = &*std::next(CB.getIterator()); // Bitcast the return value to the correct type. auto *Cast = CastInst::CreateBitOrPointerCast(&CB, RetTy, "", InsertBefore); if (RetBitCast) *RetBitCast = Cast; // Replace all the original uses of the calling instruction with the bitcast. for (User *U : UsersToUpdate) U->replaceUsesOfWith(&CB, Cast); } /// Predicate and clone the given call site. /// /// This function creates an if-then-else structure at the location of the call /// site. The "if" condition compares the call site's called value to the given /// callee. The original call site is moved into the "else" block, and a clone /// of the call site is placed in the "then" block. The cloned instruction is /// returned. /// /// For example, the call instruction below: /// /// orig_bb: /// %t0 = call i32 %ptr() /// ... /// /// Is replace by the following: /// /// orig_bb: /// %cond = icmp eq i32 ()* %ptr, @func /// br i1 %cond, %then_bb, %else_bb /// /// then_bb: /// ; The clone of the original call instruction is placed in the "then" /// ; block. It is not yet promoted. /// %t1 = call i32 %ptr() /// br merge_bb /// /// else_bb: /// ; The original call instruction is moved to the "else" block. /// %t0 = call i32 %ptr() /// br merge_bb /// /// merge_bb: /// ; Uses of the original call instruction are replaced by uses of the phi /// ; node. /// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ] /// ... /// /// A similar transformation is performed for invoke instructions. However, /// since invokes are terminating, more work is required. For example, the /// invoke instruction below: /// /// orig_bb: /// %t0 = invoke %ptr() to label %normal_dst unwind label %unwind_dst /// /// Is replace by the following: /// /// orig_bb: /// %cond = icmp eq i32 ()* %ptr, @func /// br i1 %cond, %then_bb, %else_bb /// /// then_bb: /// ; The clone of the original invoke instruction is placed in the "then" /// ; block, and its normal destination is set to the "merge" block. It is /// ; not yet promoted. /// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst /// /// else_bb: /// ; The original invoke instruction is moved into the "else" block, and /// ; its normal destination is set to the "merge" block. /// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst /// /// merge_bb: /// ; Uses of the original invoke instruction are replaced by uses of the /// ; phi node, and the merge block branches to the normal destination. /// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ] /// br %normal_dst /// /// An indirect musttail call is processed slightly differently in that: /// 1. No merge block needed for the orginal and the cloned callsite, since /// either one ends the flow. No phi node is needed either. /// 2. The return statement following the original call site is duplicated too /// and placed immediately after the cloned call site per the IR convention. /// /// For example, the musttail call instruction below: /// /// orig_bb: /// %t0 = musttail call i32 %ptr() /// ... /// /// Is replaced by the following: /// /// cond_bb: /// %cond = icmp eq i32 ()* %ptr, @func /// br i1 %cond, %then_bb, %orig_bb /// /// then_bb: /// ; The clone of the original call instruction is placed in the "then" /// ; block. It is not yet promoted. /// %t1 = musttail call i32 %ptr() /// ret %t1 /// /// orig_bb: /// ; The original call instruction stays in its original block. /// %t0 = musttail call i32 %ptr() /// ret %t0 CallBase &llvm::versionCallSite(CallBase &CB, Value *Callee, MDNode *BranchWeights) { IRBuilder<> Builder(&CB); CallBase *OrigInst = &CB; BasicBlock *OrigBlock = OrigInst->getParent(); // Create the compare. The called value and callee must have the same type to // be compared. if (CB.getCalledOperand()->getType() != Callee->getType()) Callee = Builder.CreateBitCast(Callee, CB.getCalledOperand()->getType()); auto *Cond = Builder.CreateICmpEQ(CB.getCalledOperand(), Callee); if (OrigInst->isMustTailCall()) { // Create an if-then structure. The original instruction stays in its block, // and a clone of the original instruction is placed in the "then" block. Instruction *ThenTerm = SplitBlockAndInsertIfThen(Cond, &CB, false, BranchWeights); BasicBlock *ThenBlock = ThenTerm->getParent(); ThenBlock->setName("if.true.direct_targ"); CallBase *NewInst = cast(OrigInst->clone()); NewInst->insertBefore(ThenTerm); // Place a clone of the optional bitcast after the new call site. Value *NewRetVal = NewInst; auto Next = OrigInst->getNextNode(); if (auto *BitCast = dyn_cast_or_null(Next)) { assert(BitCast->getOperand(0) == OrigInst && "bitcast following musttail call must use the call"); auto NewBitCast = BitCast->clone(); NewBitCast->replaceUsesOfWith(OrigInst, NewInst); NewBitCast->insertBefore(ThenTerm); NewRetVal = NewBitCast; Next = BitCast->getNextNode(); } // Place a clone of the return instruction after the new call site. ReturnInst *Ret = dyn_cast_or_null(Next); assert(Ret && "musttail call must precede a ret with an optional bitcast"); auto NewRet = Ret->clone(); if (Ret->getReturnValue()) NewRet->replaceUsesOfWith(Ret->getReturnValue(), NewRetVal); NewRet->insertBefore(ThenTerm); // A return instructions is terminating, so we don't need the terminator // instruction just created. ThenTerm->eraseFromParent(); return *NewInst; } // Create an if-then-else structure. The original instruction is moved into // the "else" block, and a clone of the original instruction is placed in the // "then" block. Instruction *ThenTerm = nullptr; Instruction *ElseTerm = nullptr; SplitBlockAndInsertIfThenElse(Cond, &CB, &ThenTerm, &ElseTerm, BranchWeights); BasicBlock *ThenBlock = ThenTerm->getParent(); BasicBlock *ElseBlock = ElseTerm->getParent(); BasicBlock *MergeBlock = OrigInst->getParent(); ThenBlock->setName("if.true.direct_targ"); ElseBlock->setName("if.false.orig_indirect"); MergeBlock->setName("if.end.icp"); CallBase *NewInst = cast(OrigInst->clone()); OrigInst->moveBefore(ElseTerm); NewInst->insertBefore(ThenTerm); // If the original call site is an invoke instruction, we have extra work to // do since invoke instructions are terminating. We have to fix-up phi nodes // in the invoke's normal and unwind destinations. if (auto *OrigInvoke = dyn_cast(OrigInst)) { auto *NewInvoke = cast(NewInst); // Invoke instructions are terminating, so we don't need the terminator // instructions that were just created. ThenTerm->eraseFromParent(); ElseTerm->eraseFromParent(); // Branch from the "merge" block to the original normal destination. Builder.SetInsertPoint(MergeBlock); Builder.CreateBr(OrigInvoke->getNormalDest()); // Fix-up phi nodes in the original invoke's normal and unwind destinations. fixupPHINodeForNormalDest(OrigInvoke, OrigBlock, MergeBlock); fixupPHINodeForUnwindDest(OrigInvoke, MergeBlock, ThenBlock, ElseBlock); // Now set the normal destinations of the invoke instructions to be the // "merge" block. OrigInvoke->setNormalDest(MergeBlock); NewInvoke->setNormalDest(MergeBlock); } // Create a phi node for the returned value of the call site. createRetPHINode(OrigInst, NewInst, MergeBlock, Builder); return *NewInst; } bool llvm::isLegalToPromote(const CallBase &CB, Function *Callee, const char **FailureReason) { assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted"); auto &DL = Callee->getParent()->getDataLayout(); // Check the return type. The callee's return value type must be bitcast // compatible with the call site's type. Type *CallRetTy = CB.getType(); Type *FuncRetTy = Callee->getReturnType(); if (CallRetTy != FuncRetTy) if (!CastInst::isBitOrNoopPointerCastable(FuncRetTy, CallRetTy, DL)) { if (FailureReason) *FailureReason = "Return type mismatch"; return false; } // The number of formal arguments of the callee. unsigned NumParams = Callee->getFunctionType()->getNumParams(); // The number of actual arguments in the call. unsigned NumArgs = CB.arg_size(); // Check the number of arguments. The callee and call site must agree on the // number of arguments. if (NumArgs != NumParams && !Callee->isVarArg()) { if (FailureReason) *FailureReason = "The number of arguments mismatch"; return false; } // Check the argument types. The callee's formal argument types must be // bitcast compatible with the corresponding actual argument types of the call // site. unsigned I = 0; for (; I < NumParams; ++I) { // Make sure that the callee and call agree on byval/inalloca. The types do // not have to match. if (Callee->hasParamAttribute(I, Attribute::ByVal) != CB.getAttributes().hasParamAttr(I, Attribute::ByVal)) { if (FailureReason) *FailureReason = "byval mismatch"; return false; } if (Callee->hasParamAttribute(I, Attribute::InAlloca) != CB.getAttributes().hasParamAttr(I, Attribute::InAlloca)) { if (FailureReason) *FailureReason = "inalloca mismatch"; return false; } Type *FormalTy = Callee->getFunctionType()->getFunctionParamType(I); Type *ActualTy = CB.getArgOperand(I)->getType(); if (FormalTy == ActualTy) continue; if (!CastInst::isBitOrNoopPointerCastable(ActualTy, FormalTy, DL)) { if (FailureReason) *FailureReason = "Argument type mismatch"; return false; } // MustTail call needs stricter type match. See // Verifier::verifyMustTailCall(). if (CB.isMustTailCall()) { PointerType *PF = dyn_cast(FormalTy); PointerType *PA = dyn_cast(ActualTy); if (!PF || !PA || PF->getAddressSpace() != PA->getAddressSpace()) { if (FailureReason) *FailureReason = "Musttail call Argument type mismatch"; return false; } } } for (; I < NumArgs; I++) { // Vararg functions can have more arguments than parameters. assert(Callee->isVarArg()); if (CB.paramHasAttr(I, Attribute::StructRet)) { if (FailureReason) *FailureReason = "SRet arg to vararg function"; return false; } } return true; } CallBase &llvm::promoteCall(CallBase &CB, Function *Callee, CastInst **RetBitCast) { assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted"); // Set the called function of the call site to be the given callee (but don't // change the type). CB.setCalledOperand(Callee); // Since the call site will no longer be direct, we must clear metadata that // is only appropriate for indirect calls. This includes !prof and !callees // metadata. CB.setMetadata(LLVMContext::MD_prof, nullptr); CB.setMetadata(LLVMContext::MD_callees, nullptr); // If the function type of the call site matches that of the callee, no // additional work is required. if (CB.getFunctionType() == Callee->getFunctionType()) return CB; // Save the return types of the call site and callee. Type *CallSiteRetTy = CB.getType(); Type *CalleeRetTy = Callee->getReturnType(); // Change the function type of the call site the match that of the callee. CB.mutateFunctionType(Callee->getFunctionType()); // Inspect the arguments of the call site. If an argument's type doesn't // match the corresponding formal argument's type in the callee, bitcast it // to the correct type. auto CalleeType = Callee->getFunctionType(); auto CalleeParamNum = CalleeType->getNumParams(); LLVMContext &Ctx = Callee->getContext(); const AttributeList &CallerPAL = CB.getAttributes(); // The new list of argument attributes. SmallVector NewArgAttrs; bool AttributeChanged = false; for (unsigned ArgNo = 0; ArgNo < CalleeParamNum; ++ArgNo) { auto *Arg = CB.getArgOperand(ArgNo); Type *FormalTy = CalleeType->getParamType(ArgNo); Type *ActualTy = Arg->getType(); if (FormalTy != ActualTy) { auto *Cast = CastInst::CreateBitOrPointerCast(Arg, FormalTy, "", &CB); CB.setArgOperand(ArgNo, Cast); // Remove any incompatible attributes for the argument. AttrBuilder ArgAttrs(Ctx, CallerPAL.getParamAttrs(ArgNo)); ArgAttrs.remove(AttributeFuncs::typeIncompatible(FormalTy)); // We may have a different byval/inalloca type. if (ArgAttrs.getByValType()) ArgAttrs.addByValAttr(Callee->getParamByValType(ArgNo)); if (ArgAttrs.getInAllocaType()) ArgAttrs.addInAllocaAttr(Callee->getParamInAllocaType(ArgNo)); NewArgAttrs.push_back(AttributeSet::get(Ctx, ArgAttrs)); AttributeChanged = true; } else NewArgAttrs.push_back(CallerPAL.getParamAttrs(ArgNo)); } // If the return type of the call site doesn't match that of the callee, cast // the returned value to the appropriate type. // Remove any incompatible return value attribute. AttrBuilder RAttrs(Ctx, CallerPAL.getRetAttrs()); if (!CallSiteRetTy->isVoidTy() && CallSiteRetTy != CalleeRetTy) { createRetBitCast(CB, CallSiteRetTy, RetBitCast); RAttrs.remove(AttributeFuncs::typeIncompatible(CalleeRetTy)); AttributeChanged = true; } // Set the new callsite attribute. if (AttributeChanged) CB.setAttributes(AttributeList::get(Ctx, CallerPAL.getFnAttrs(), AttributeSet::get(Ctx, RAttrs), NewArgAttrs)); return CB; } CallBase &llvm::promoteCallWithIfThenElse(CallBase &CB, Function *Callee, MDNode *BranchWeights) { // Version the indirect call site. If the called value is equal to the given // callee, 'NewInst' will be executed, otherwise the original call site will // be executed. CallBase &NewInst = versionCallSite(CB, Callee, BranchWeights); // Promote 'NewInst' so that it directly calls the desired function. return promoteCall(NewInst, Callee); } bool llvm::tryPromoteCall(CallBase &CB) { assert(!CB.getCalledFunction()); Module *M = CB.getCaller()->getParent(); const DataLayout &DL = M->getDataLayout(); Value *Callee = CB.getCalledOperand(); LoadInst *VTableEntryLoad = dyn_cast(Callee); if (!VTableEntryLoad) return false; // Not a vtable entry load. Value *VTableEntryPtr = VTableEntryLoad->getPointerOperand(); APInt VTableOffset(DL.getTypeSizeInBits(VTableEntryPtr->getType()), 0); Value *VTableBasePtr = VTableEntryPtr->stripAndAccumulateConstantOffsets( DL, VTableOffset, /* AllowNonInbounds */ true); LoadInst *VTablePtrLoad = dyn_cast(VTableBasePtr); if (!VTablePtrLoad) return false; // Not a vtable load. Value *Object = VTablePtrLoad->getPointerOperand(); APInt ObjectOffset(DL.getTypeSizeInBits(Object->getType()), 0); Value *ObjectBase = Object->stripAndAccumulateConstantOffsets( DL, ObjectOffset, /* AllowNonInbounds */ true); if (!(isa(ObjectBase) && ObjectOffset == 0)) // Not an Alloca or the offset isn't zero. return false; // Look for the vtable pointer store into the object by the ctor. BasicBlock::iterator BBI(VTablePtrLoad); Value *VTablePtr = FindAvailableLoadedValue( VTablePtrLoad, VTablePtrLoad->getParent(), BBI, 0, nullptr, nullptr); if (!VTablePtr) return false; // No vtable found. APInt VTableOffsetGVBase(DL.getTypeSizeInBits(VTablePtr->getType()), 0); Value *VTableGVBase = VTablePtr->stripAndAccumulateConstantOffsets( DL, VTableOffsetGVBase, /* AllowNonInbounds */ true); GlobalVariable *GV = dyn_cast(VTableGVBase); if (!(GV && GV->isConstant() && GV->hasDefinitiveInitializer())) // Not in the form of a global constant variable with an initializer. return false; Constant *VTableGVInitializer = GV->getInitializer(); APInt VTableGVOffset = VTableOffsetGVBase + VTableOffset; if (!(VTableGVOffset.getActiveBits() <= 64)) return false; // Out of range. Constant *Ptr = getPointerAtOffset(VTableGVInitializer, VTableGVOffset.getZExtValue(), *M); if (!Ptr) return false; // No constant (function) pointer found. Function *DirectCallee = dyn_cast(Ptr->stripPointerCasts()); if (!DirectCallee) return false; // No function pointer found. if (!isLegalToPromote(CB, DirectCallee)) return false; // Success. promoteCall(CB, DirectCallee); return true; } #undef DEBUG_TYPE