//===- AddDiscriminators.cpp - Insert DWARF path discriminators -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file adds DWARF discriminators to the IR. Path discriminators are // used to decide what CFG path was taken inside sub-graphs whose instructions // share the same line and column number information. // // The main user of this is the sample profiler. Instruction samples are // mapped to line number information. Since a single line may be spread // out over several basic blocks, discriminators add more precise location // for the samples. // // For example, // // 1 #define ASSERT(P) // 2 if (!(P)) // 3 abort() // ... // 100 while (true) { // 101 ASSERT (sum < 0); // 102 ... // 130 } // // when converted to IR, this snippet looks something like: // // while.body: ; preds = %entry, %if.end // %0 = load i32* %sum, align 4, !dbg !15 // %cmp = icmp slt i32 %0, 0, !dbg !15 // br i1 %cmp, label %if.end, label %if.then, !dbg !15 // // if.then: ; preds = %while.body // call void @abort(), !dbg !15 // br label %if.end, !dbg !15 // // Notice that all the instructions in blocks 'while.body' and 'if.then' // have exactly the same debug information. When this program is sampled // at runtime, the profiler will assume that all these instructions are // equally frequent. This, in turn, will consider the edge while.body->if.then // to be frequently taken (which is incorrect). // // By adding a discriminator value to the instructions in block 'if.then', // we can distinguish instructions at line 101 with discriminator 0 from // the instructions at line 101 with discriminator 1. // // For more details about DWARF discriminators, please visit // http://wiki.dwarfstd.org/index.php?title=Path_Discriminators // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/AddDiscriminators.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PassManager.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" #include using namespace llvm; using namespace sampleprofutil; #define DEBUG_TYPE "add-discriminators" // Command line option to disable discriminator generation even in the // presence of debug information. This is only needed when debugging // debug info generation issues. static cl::opt NoDiscriminators( "no-discriminators", cl::init(false), cl::desc("Disable generation of discriminator information.")); namespace { // The legacy pass of AddDiscriminators. struct AddDiscriminatorsLegacyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid AddDiscriminatorsLegacyPass() : FunctionPass(ID) { initializeAddDiscriminatorsLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; }; } // end anonymous namespace char AddDiscriminatorsLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(AddDiscriminatorsLegacyPass, "add-discriminators", "Add DWARF path discriminators", false, false) INITIALIZE_PASS_END(AddDiscriminatorsLegacyPass, "add-discriminators", "Add DWARF path discriminators", false, false) // Create the legacy AddDiscriminatorsPass. FunctionPass *llvm::createAddDiscriminatorsPass() { return new AddDiscriminatorsLegacyPass(); } static bool shouldHaveDiscriminator(const Instruction *I) { return !isa(I) || isa(I); } /// Assign DWARF discriminators. /// /// To assign discriminators, we examine the boundaries of every /// basic block and its successors. Suppose there is a basic block B1 /// with successor B2. The last instruction I1 in B1 and the first /// instruction I2 in B2 are located at the same file and line number. /// This situation is illustrated in the following code snippet: /// /// if (i < 10) x = i; /// /// entry: /// br i1 %cmp, label %if.then, label %if.end, !dbg !10 /// if.then: /// %1 = load i32* %i.addr, align 4, !dbg !10 /// store i32 %1, i32* %x, align 4, !dbg !10 /// br label %if.end, !dbg !10 /// if.end: /// ret void, !dbg !12 /// /// Notice how the branch instruction in block 'entry' and all the /// instructions in block 'if.then' have the exact same debug location /// information (!dbg !10). /// /// To distinguish instructions in block 'entry' from instructions in /// block 'if.then', we generate a new lexical block for all the /// instruction in block 'if.then' that share the same file and line /// location with the last instruction of block 'entry'. /// /// This new lexical block will have the same location information as /// the previous one, but with a new DWARF discriminator value. /// /// One of the main uses of this discriminator value is in runtime /// sample profilers. It allows the profiler to distinguish instructions /// at location !dbg !10 that execute on different basic blocks. This is /// important because while the predicate 'if (x < 10)' may have been /// executed millions of times, the assignment 'x = i' may have only /// executed a handful of times (meaning that the entry->if.then edge is /// seldom taken). /// /// If we did not have discriminator information, the profiler would /// assign the same weight to both blocks 'entry' and 'if.then', which /// in turn will make it conclude that the entry->if.then edge is very /// hot. /// /// To decide where to create new discriminator values, this function /// traverses the CFG and examines instruction at basic block boundaries. /// If the last instruction I1 of a block B1 is at the same file and line /// location as instruction I2 of successor B2, then it creates a new /// lexical block for I2 and all the instruction in B2 that share the same /// file and line location as I2. This new lexical block will have a /// different discriminator number than I1. static bool addDiscriminators(Function &F) { // If the function has debug information, but the user has disabled // discriminators, do nothing. // Simlarly, if the function has no debug info, do nothing. if (NoDiscriminators || !F.getSubprogram()) return false; // Create FSDiscriminatorVariable if flow sensitive discriminators are used. if (EnableFSDiscriminator) createFSDiscriminatorVariable(F.getParent()); bool Changed = false; using Location = std::pair; using BBSet = DenseSet; using LocationBBMap = DenseMap; using LocationDiscriminatorMap = DenseMap; using LocationSet = DenseSet; LocationBBMap LBM; LocationDiscriminatorMap LDM; // Traverse all instructions in the function. If the source line location // of the instruction appears in other basic block, assign a new // discriminator for this instruction. for (BasicBlock &B : F) { for (auto &I : B) { // Not all intrinsic calls should have a discriminator. // We want to avoid a non-deterministic assignment of discriminators at // different debug levels. We still allow discriminators on memory // intrinsic calls because those can be early expanded by SROA into // pairs of loads and stores, and the expanded load/store instructions // should have a valid discriminator. if (!shouldHaveDiscriminator(&I)) continue; const DILocation *DIL = I.getDebugLoc(); if (!DIL) continue; Location L = std::make_pair(DIL->getFilename(), DIL->getLine()); auto &BBMap = LBM[L]; auto R = BBMap.insert(&B); if (BBMap.size() == 1) continue; // If we could insert more than one block with the same line+file, a // discriminator is needed to distinguish both instructions. // Only the lowest 7 bits are used to represent a discriminator to fit // it in 1 byte ULEB128 representation. unsigned Discriminator = R.second ? ++LDM[L] : LDM[L]; auto NewDIL = DIL->cloneWithBaseDiscriminator(Discriminator); if (!NewDIL) { LLVM_DEBUG(dbgs() << "Could not encode discriminator: " << DIL->getFilename() << ":" << DIL->getLine() << ":" << DIL->getColumn() << ":" << Discriminator << " " << I << "\n"); } else { I.setDebugLoc(*NewDIL); LLVM_DEBUG(dbgs() << DIL->getFilename() << ":" << DIL->getLine() << ":" << DIL->getColumn() << ":" << Discriminator << " " << I << "\n"); } Changed = true; } } // Traverse all instructions and assign new discriminators to call // instructions with the same lineno that are in the same basic block. // Sample base profile needs to distinguish different function calls within // a same source line for correct profile annotation. for (BasicBlock &B : F) { LocationSet CallLocations; for (auto &I : B) { // We bypass intrinsic calls for the following two reasons: // 1) We want to avoid a non-deterministic assignment of // discriminators. // 2) We want to minimize the number of base discriminators used. if (!isa(I) && (!isa(I) || isa(I))) continue; DILocation *CurrentDIL = I.getDebugLoc(); if (!CurrentDIL) continue; Location L = std::make_pair(CurrentDIL->getFilename(), CurrentDIL->getLine()); if (!CallLocations.insert(L).second) { unsigned Discriminator = ++LDM[L]; auto NewDIL = CurrentDIL->cloneWithBaseDiscriminator(Discriminator); if (!NewDIL) { LLVM_DEBUG(dbgs() << "Could not encode discriminator: " << CurrentDIL->getFilename() << ":" << CurrentDIL->getLine() << ":" << CurrentDIL->getColumn() << ":" << Discriminator << " " << I << "\n"); } else { I.setDebugLoc(*NewDIL); Changed = true; } } } } return Changed; } bool AddDiscriminatorsLegacyPass::runOnFunction(Function &F) { return addDiscriminators(F); } PreservedAnalyses AddDiscriminatorsPass::run(Function &F, FunctionAnalysisManager &AM) { if (!addDiscriminators(F)) return PreservedAnalyses::all(); // FIXME: should be all() return PreservedAnalyses::none(); }