//===-- ASanStackFrameLayout.cpp - helper for AddressSanitizer ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Definition of ComputeASanStackFrameLayout (see ASanStackFrameLayout.h). // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/raw_ostream.h" #include namespace llvm { // We sort the stack variables by alignment (largest first) to minimize // unnecessary large gaps due to alignment. // It is tempting to also sort variables by size so that larger variables // have larger redzones at both ends. But reordering will make report analysis // harder, especially when temporary unnamed variables are present. // So, until we can provide more information (type, line number, etc) // for the stack variables we avoid reordering them too much. static inline bool CompareVars(const ASanStackVariableDescription &a, const ASanStackVariableDescription &b) { return a.Alignment > b.Alignment; } // We also force minimal alignment for all vars to kMinAlignment so that vars // with e.g. alignment 1 and alignment 16 do not get reordered by CompareVars. static const uint64_t kMinAlignment = 16; // We want to add a full redzone after every variable. // The larger the variable Size the larger is the redzone. // The resulting frame size is a multiple of Alignment. static uint64_t VarAndRedzoneSize(uint64_t Size, uint64_t Granularity, uint64_t Alignment) { uint64_t Res = 0; if (Size <= 4) Res = 16; else if (Size <= 16) Res = 32; else if (Size <= 128) Res = Size + 32; else if (Size <= 512) Res = Size + 64; else if (Size <= 4096) Res = Size + 128; else Res = Size + 256; return alignTo(std::max(Res, 2 * Granularity), Alignment); } ASanStackFrameLayout ComputeASanStackFrameLayout(SmallVectorImpl &Vars, uint64_t Granularity, uint64_t MinHeaderSize) { assert(Granularity >= 8 && Granularity <= 64 && (Granularity & (Granularity - 1)) == 0); assert(MinHeaderSize >= 16 && (MinHeaderSize & (MinHeaderSize - 1)) == 0 && MinHeaderSize >= Granularity); const size_t NumVars = Vars.size(); assert(NumVars > 0); for (size_t i = 0; i < NumVars; i++) Vars[i].Alignment = std::max(Vars[i].Alignment, kMinAlignment); llvm::stable_sort(Vars, CompareVars); ASanStackFrameLayout Layout; Layout.Granularity = Granularity; Layout.FrameAlignment = std::max(Granularity, Vars[0].Alignment); uint64_t Offset = std::max(std::max(MinHeaderSize, Granularity), Vars[0].Alignment); assert((Offset % Granularity) == 0); for (size_t i = 0; i < NumVars; i++) { bool IsLast = i == NumVars - 1; uint64_t Alignment = std::max(Granularity, Vars[i].Alignment); (void)Alignment; // Used only in asserts. uint64_t Size = Vars[i].Size; assert((Alignment & (Alignment - 1)) == 0); assert(Layout.FrameAlignment >= Alignment); assert((Offset % Alignment) == 0); assert(Size > 0); uint64_t NextAlignment = IsLast ? Granularity : std::max(Granularity, Vars[i + 1].Alignment); uint64_t SizeWithRedzone = VarAndRedzoneSize(Size, Granularity, NextAlignment); Vars[i].Offset = Offset; Offset += SizeWithRedzone; } if (Offset % MinHeaderSize) { Offset += MinHeaderSize - (Offset % MinHeaderSize); } Layout.FrameSize = Offset; assert((Layout.FrameSize % MinHeaderSize) == 0); return Layout; } SmallString<64> ComputeASanStackFrameDescription( const SmallVectorImpl &Vars) { SmallString<2048> StackDescriptionStorage; raw_svector_ostream StackDescription(StackDescriptionStorage); StackDescription << Vars.size(); for (const auto &Var : Vars) { std::string Name = Var.Name; if (Var.Line) { Name += ":"; Name += to_string(Var.Line); } StackDescription << " " << Var.Offset << " " << Var.Size << " " << Name.size() << " " << Name; } return StackDescription.str(); } SmallVector GetShadowBytes(const SmallVectorImpl &Vars, const ASanStackFrameLayout &Layout) { assert(Vars.size() > 0); SmallVector SB; SB.clear(); const uint64_t Granularity = Layout.Granularity; SB.resize(Vars[0].Offset / Granularity, kAsanStackLeftRedzoneMagic); for (const auto &Var : Vars) { SB.resize(Var.Offset / Granularity, kAsanStackMidRedzoneMagic); SB.resize(SB.size() + Var.Size / Granularity, 0); if (Var.Size % Granularity) SB.push_back(Var.Size % Granularity); } SB.resize(Layout.FrameSize / Granularity, kAsanStackRightRedzoneMagic); return SB; } SmallVector GetShadowBytesAfterScope( const SmallVectorImpl &Vars, const ASanStackFrameLayout &Layout) { SmallVector SB = GetShadowBytes(Vars, Layout); const uint64_t Granularity = Layout.Granularity; for (const auto &Var : Vars) { assert(Var.LifetimeSize <= Var.Size); const uint64_t LifetimeShadowSize = (Var.LifetimeSize + Granularity - 1) / Granularity; const uint64_t Offset = Var.Offset / Granularity; std::fill(SB.begin() + Offset, SB.begin() + Offset + LifetimeShadowSize, kAsanStackUseAfterScopeMagic); } return SB; } } // llvm namespace