//===-- Sink.cpp - Code Sinking -------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass moves instructions into successor blocks, when possible, so that // they aren't executed on paths where their results aren't needed. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/Sink.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; #define DEBUG_TYPE "sink" STATISTIC(NumSunk, "Number of instructions sunk"); STATISTIC(NumSinkIter, "Number of sinking iterations"); /// AllUsesDominatedByBlock - Return true if all uses of the specified value /// occur in blocks dominated by the specified block. static bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB, DominatorTree &DT) { // Ignoring debug uses is necessary so debug info doesn't affect the code. // This may leave a referencing dbg_value in the original block, before // the definition of the vreg. Dwarf generator handles this although the // user might not get the right info at runtime. for (Use &U : Inst->uses()) { // Determine the block of the use. Instruction *UseInst = cast(U.getUser()); BasicBlock *UseBlock = UseInst->getParent(); if (PHINode *PN = dyn_cast(UseInst)) { // PHI nodes use the operand in the predecessor block, not the block with // the PHI. unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); UseBlock = PN->getIncomingBlock(Num); } // Check that it dominates. if (!DT.dominates(BB, UseBlock)) return false; } return true; } static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA, SmallPtrSetImpl &Stores) { if (Inst->mayWriteToMemory()) { Stores.insert(Inst); return false; } if (LoadInst *L = dyn_cast(Inst)) { MemoryLocation Loc = MemoryLocation::get(L); for (Instruction *S : Stores) if (isModSet(AA.getModRefInfo(S, Loc))) return false; } if (Inst->isTerminator() || isa(Inst) || Inst->isEHPad() || Inst->mayThrow()) return false; if (auto *Call = dyn_cast(Inst)) { // Convergent operations cannot be made control-dependent on additional // values. if (Call->hasFnAttr(Attribute::Convergent)) return false; for (Instruction *S : Stores) if (isModSet(AA.getModRefInfo(S, Call))) return false; } return true; } /// IsAcceptableTarget - Return true if it is possible to sink the instruction /// in the specified basic block. static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo, DominatorTree &DT, LoopInfo &LI) { assert(Inst && "Instruction to be sunk is null"); assert(SuccToSinkTo && "Candidate sink target is null"); // It is not possible to sink an instruction into its own block. This can // happen with loops. if (Inst->getParent() == SuccToSinkTo) return false; // It's never legal to sink an instruction into a block which terminates in an // EH-pad. if (SuccToSinkTo->getTerminator()->isExceptionalTerminator()) return false; // If the block has multiple predecessors, this would introduce computation // on different code paths. We could split the critical edge, but for now we // just punt. // FIXME: Split critical edges if not backedges. if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { // We cannot sink a load across a critical edge - there may be stores in // other code paths. if (Inst->mayReadFromMemory()) return false; // We don't want to sink across a critical edge if we don't dominate the // successor. We could be introducing calculations to new code paths. if (!DT.dominates(Inst->getParent(), SuccToSinkTo)) return false; // Don't sink instructions into a loop. Loop *succ = LI.getLoopFor(SuccToSinkTo); Loop *cur = LI.getLoopFor(Inst->getParent()); if (succ != nullptr && succ != cur) return false; } // Finally, check that all the uses of the instruction are actually // dominated by the candidate return AllUsesDominatedByBlock(Inst, SuccToSinkTo, DT); } /// SinkInstruction - Determine whether it is safe to sink the specified machine /// instruction out of its current block into a successor. static bool SinkInstruction(Instruction *Inst, SmallPtrSetImpl &Stores, DominatorTree &DT, LoopInfo &LI, AAResults &AA) { // Don't sink static alloca instructions. CodeGen assumes allocas outside the // entry block are dynamically sized stack objects. if (AllocaInst *AI = dyn_cast(Inst)) if (AI->isStaticAlloca()) return false; // Check if it's safe to move the instruction. if (!isSafeToMove(Inst, AA, Stores)) return false; // FIXME: This should include support for sinking instructions within the // block they are currently in to shorten the live ranges. We often get // instructions sunk into the top of a large block, but it would be better to // also sink them down before their first use in the block. This xform has to // be careful not to *increase* register pressure though, e.g. sinking // "x = y + z" down if it kills y and z would increase the live ranges of y // and z and only shrink the live range of x. // SuccToSinkTo - This is the successor to sink this instruction to, once we // decide. BasicBlock *SuccToSinkTo = nullptr; // Instructions can only be sunk if all their uses are in blocks // dominated by one of the successors. // Look at all the dominated blocks and see if we can sink it in one. DomTreeNode *DTN = DT.getNode(Inst->getParent()); for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end(); I != E && SuccToSinkTo == nullptr; ++I) { BasicBlock *Candidate = (*I)->getBlock(); // A node always immediate-dominates its children on the dominator // tree. if (IsAcceptableTarget(Inst, Candidate, DT, LI)) SuccToSinkTo = Candidate; } // If no suitable postdominator was found, look at all the successors and // decide which one we should sink to, if any. for (succ_iterator I = succ_begin(Inst->getParent()), E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) { if (IsAcceptableTarget(Inst, *I, DT, LI)) SuccToSinkTo = *I; } // If we couldn't find a block to sink to, ignore this instruction. if (!SuccToSinkTo) return false; LLVM_DEBUG(dbgs() << "Sink" << *Inst << " ("; Inst->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> "; SuccToSinkTo->printAsOperand(dbgs(), false); dbgs() << ")\n"); // Move the instruction. Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt()); return true; } static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI, AAResults &AA) { // Can't sink anything out of a block that has less than two successors. if (BB.getTerminator()->getNumSuccessors() <= 1) return false; // Don't bother sinking code out of unreachable blocks. In addition to being // unprofitable, it can also lead to infinite looping, because in an // unreachable loop there may be nowhere to stop. if (!DT.isReachableFromEntry(&BB)) return false; bool MadeChange = false; // Walk the basic block bottom-up. Remember if we saw a store. BasicBlock::iterator I = BB.end(); --I; bool ProcessedBegin = false; SmallPtrSet Stores; do { Instruction *Inst = &*I; // The instruction to sink. // Predecrement I (if it's not begin) so that it isn't invalidated by // sinking. ProcessedBegin = I == BB.begin(); if (!ProcessedBegin) --I; if (isa(Inst)) continue; if (SinkInstruction(Inst, Stores, DT, LI, AA)) { ++NumSunk; MadeChange = true; } // If we just processed the first instruction in the block, we're done. } while (!ProcessedBegin); return MadeChange; } static bool iterativelySinkInstructions(Function &F, DominatorTree &DT, LoopInfo &LI, AAResults &AA) { bool MadeChange, EverMadeChange = false; do { MadeChange = false; LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); // Process all basic blocks. for (BasicBlock &I : F) MadeChange |= ProcessBlock(I, DT, LI, AA); EverMadeChange |= MadeChange; NumSinkIter++; } while (MadeChange); return EverMadeChange; } PreservedAnalyses SinkingPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); auto &LI = AM.getResult(F); auto &AA = AM.getResult(F); if (!iterativelySinkInstructions(F, DT, LI, AA)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); return PA; } namespace { class SinkingLegacyPass : public FunctionPass { public: static char ID; // Pass identification SinkingLegacyPass() : FunctionPass(ID) { initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { auto &DT = getAnalysis().getDomTree(); auto &LI = getAnalysis().getLoopInfo(); auto &AA = getAnalysis().getAAResults(); return iterativelySinkInstructions(F, DT, LI, AA); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } }; } // end anonymous namespace char SinkingLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false) FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); }