//===- Scalarizer.cpp - Scalarize vector operations -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass converts vector operations into scalar operations, in order // to expose optimization opportunities on the individual scalar operations. // It is mainly intended for targets that do not have vector units, but it // may also be useful for revectorizing code to different vector widths. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/Scalarizer.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Argument.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "scalarizer" static cl::opt ClScalarizeVariableInsertExtract( "scalarize-variable-insert-extract", cl::init(true), cl::Hidden, cl::desc("Allow the scalarizer pass to scalarize " "insertelement/extractelement with variable index")); // This is disabled by default because having separate loads and stores // makes it more likely that the -combiner-alias-analysis limits will be // reached. static cl::opt ClScalarizeLoadStore( "scalarize-load-store", cl::init(false), cl::Hidden, cl::desc("Allow the scalarizer pass to scalarize loads and store")); namespace { BasicBlock::iterator skipPastPhiNodesAndDbg(BasicBlock::iterator Itr) { BasicBlock *BB = Itr->getParent(); if (isa(Itr)) Itr = BB->getFirstInsertionPt(); if (Itr != BB->end()) Itr = skipDebugIntrinsics(Itr); return Itr; } // Used to store the scattered form of a vector. using ValueVector = SmallVector; // Used to map a vector Value to its scattered form. We use std::map // because we want iterators to persist across insertion and because the // values are relatively large. using ScatterMap = std::map; // Lists Instructions that have been replaced with scalar implementations, // along with a pointer to their scattered forms. using GatherList = SmallVector, 16>; // Provides a very limited vector-like interface for lazily accessing one // component of a scattered vector or vector pointer. class Scatterer { public: Scatterer() = default; // Scatter V into Size components. If new instructions are needed, // insert them before BBI in BB. If Cache is nonnull, use it to cache // the results. Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, Type *PtrElemTy, ValueVector *cachePtr = nullptr); // Return component I, creating a new Value for it if necessary. Value *operator[](unsigned I); // Return the number of components. unsigned size() const { return Size; } private: BasicBlock *BB; BasicBlock::iterator BBI; Value *V; Type *PtrElemTy; ValueVector *CachePtr; ValueVector Tmp; unsigned Size; }; // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp // called Name that compares X and Y in the same way as FCI. struct FCmpSplitter { FCmpSplitter(FCmpInst &fci) : FCI(fci) {} Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, const Twine &Name) const { return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name); } FCmpInst &FCI; }; // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp // called Name that compares X and Y in the same way as ICI. struct ICmpSplitter { ICmpSplitter(ICmpInst &ici) : ICI(ici) {} Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, const Twine &Name) const { return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name); } ICmpInst &ICI; }; // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create // a unary operator like UO called Name with operand X. struct UnarySplitter { UnarySplitter(UnaryOperator &uo) : UO(uo) {} Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const { return Builder.CreateUnOp(UO.getOpcode(), Op, Name); } UnaryOperator &UO; }; // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create // a binary operator like BO called Name with operands X and Y. struct BinarySplitter { BinarySplitter(BinaryOperator &bo) : BO(bo) {} Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, const Twine &Name) const { return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name); } BinaryOperator &BO; }; // Information about a load or store that we're scalarizing. struct VectorLayout { VectorLayout() = default; // Return the alignment of element I. Align getElemAlign(unsigned I) { return commonAlignment(VecAlign, I * ElemSize); } // The type of the vector. VectorType *VecTy = nullptr; // The type of each element. Type *ElemTy = nullptr; // The alignment of the vector. Align VecAlign; // The size of each element. uint64_t ElemSize = 0; }; template T getWithDefaultOverride(const cl::opt &ClOption, const llvm::Optional &DefaultOverride) { return ClOption.getNumOccurrences() ? ClOption : DefaultOverride.value_or(ClOption); } class ScalarizerVisitor : public InstVisitor { public: ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT, ScalarizerPassOptions Options) : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT), ScalarizeVariableInsertExtract( getWithDefaultOverride(ClScalarizeVariableInsertExtract, Options.ScalarizeVariableInsertExtract)), ScalarizeLoadStore(getWithDefaultOverride(ClScalarizeLoadStore, Options.ScalarizeLoadStore)) { } bool visit(Function &F); // InstVisitor methods. They return true if the instruction was scalarized, // false if nothing changed. bool visitInstruction(Instruction &I) { return false; } bool visitSelectInst(SelectInst &SI); bool visitICmpInst(ICmpInst &ICI); bool visitFCmpInst(FCmpInst &FCI); bool visitUnaryOperator(UnaryOperator &UO); bool visitBinaryOperator(BinaryOperator &BO); bool visitGetElementPtrInst(GetElementPtrInst &GEPI); bool visitCastInst(CastInst &CI); bool visitBitCastInst(BitCastInst &BCI); bool visitInsertElementInst(InsertElementInst &IEI); bool visitExtractElementInst(ExtractElementInst &EEI); bool visitShuffleVectorInst(ShuffleVectorInst &SVI); bool visitPHINode(PHINode &PHI); bool visitLoadInst(LoadInst &LI); bool visitStoreInst(StoreInst &SI); bool visitCallInst(CallInst &ICI); private: Scatterer scatter(Instruction *Point, Value *V, Type *PtrElemTy = nullptr); void gather(Instruction *Op, const ValueVector &CV); void replaceUses(Instruction *Op, Value *CV); bool canTransferMetadata(unsigned Kind); void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV); Optional getVectorLayout(Type *Ty, Align Alignment, const DataLayout &DL); bool finish(); template bool splitUnary(Instruction &, const T &); template bool splitBinary(Instruction &, const T &); bool splitCall(CallInst &CI); ScatterMap Scattered; GatherList Gathered; bool Scalarized; SmallVector PotentiallyDeadInstrs; unsigned ParallelLoopAccessMDKind; DominatorTree *DT; const bool ScalarizeVariableInsertExtract; const bool ScalarizeLoadStore; }; class ScalarizerLegacyPass : public FunctionPass { public: static char ID; ScalarizerLegacyPass() : FunctionPass(ID) { initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage& AU) const override { AU.addRequired(); AU.addPreserved(); } }; } // end anonymous namespace char ScalarizerLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer", "Scalarize vector operations", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer", "Scalarize vector operations", false, false) Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, Type *PtrElemTy, ValueVector *cachePtr) : BB(bb), BBI(bbi), V(v), PtrElemTy(PtrElemTy), CachePtr(cachePtr) { Type *Ty = V->getType(); if (Ty->isPointerTy()) { assert(cast(Ty)->isOpaqueOrPointeeTypeMatches(PtrElemTy) && "Pointer element type mismatch"); Ty = PtrElemTy; } Size = cast(Ty)->getNumElements(); if (!CachePtr) Tmp.resize(Size, nullptr); else if (CachePtr->empty()) CachePtr->resize(Size, nullptr); else assert(Size == CachePtr->size() && "Inconsistent vector sizes"); } // Return component I, creating a new Value for it if necessary. Value *Scatterer::operator[](unsigned I) { ValueVector &CV = (CachePtr ? *CachePtr : Tmp); // Try to reuse a previous value. if (CV[I]) return CV[I]; IRBuilder<> Builder(BB, BBI); if (PtrElemTy) { Type *VectorElemTy = cast(PtrElemTy)->getElementType(); if (!CV[0]) { Type *NewPtrTy = PointerType::get( VectorElemTy, V->getType()->getPointerAddressSpace()); CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0"); } if (I != 0) CV[I] = Builder.CreateConstGEP1_32(VectorElemTy, CV[0], I, V->getName() + ".i" + Twine(I)); } else { // Search through a chain of InsertElementInsts looking for element I. // Record other elements in the cache. The new V is still suitable // for all uncached indices. while (true) { InsertElementInst *Insert = dyn_cast(V); if (!Insert) break; ConstantInt *Idx = dyn_cast(Insert->getOperand(2)); if (!Idx) break; unsigned J = Idx->getZExtValue(); V = Insert->getOperand(0); if (I == J) { CV[J] = Insert->getOperand(1); return CV[J]; } else if (!CV[J]) { // Only cache the first entry we find for each index we're not actively // searching for. This prevents us from going too far up the chain and // caching incorrect entries. CV[J] = Insert->getOperand(1); } } CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I), V->getName() + ".i" + Twine(I)); } return CV[I]; } bool ScalarizerLegacyPass::runOnFunction(Function &F) { if (skipFunction(F)) return false; Module &M = *F.getParent(); unsigned ParallelLoopAccessMDKind = M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); DominatorTree *DT = &getAnalysis().getDomTree(); ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, ScalarizerPassOptions()); return Impl.visit(F); } FunctionPass *llvm::createScalarizerPass() { return new ScalarizerLegacyPass(); } bool ScalarizerVisitor::visit(Function &F) { assert(Gathered.empty() && Scattered.empty()); Scalarized = false; // To ensure we replace gathered components correctly we need to do an ordered // traversal of the basic blocks in the function. ReversePostOrderTraversal RPOT(&F.getEntryBlock()); for (BasicBlock *BB : RPOT) { for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { Instruction *I = &*II; bool Done = InstVisitor::visit(I); ++II; if (Done && I->getType()->isVoidTy()) I->eraseFromParent(); } } return finish(); } // Return a scattered form of V that can be accessed by Point. V must be a // vector or a pointer to a vector. Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V, Type *PtrElemTy) { if (Argument *VArg = dyn_cast(V)) { // Put the scattered form of arguments in the entry block, // so that it can be used everywhere. Function *F = VArg->getParent(); BasicBlock *BB = &F->getEntryBlock(); return Scatterer(BB, BB->begin(), V, PtrElemTy, &Scattered[V]); } if (Instruction *VOp = dyn_cast(V)) { // When scalarizing PHI nodes we might try to examine/rewrite InsertElement // nodes in predecessors. If those predecessors are unreachable from entry, // then the IR in those blocks could have unexpected properties resulting in // infinite loops in Scatterer::operator[]. By simply treating values // originating from instructions in unreachable blocks as undef we do not // need to analyse them further. if (!DT->isReachableFromEntry(VOp->getParent())) return Scatterer(Point->getParent(), Point->getIterator(), PoisonValue::get(V->getType()), PtrElemTy); // Put the scattered form of an instruction directly after the // instruction, skipping over PHI nodes and debug intrinsics. BasicBlock *BB = VOp->getParent(); return Scatterer( BB, skipPastPhiNodesAndDbg(std::next(BasicBlock::iterator(VOp))), V, PtrElemTy, &Scattered[V]); } // In the fallback case, just put the scattered before Point and // keep the result local to Point. return Scatterer(Point->getParent(), Point->getIterator(), V, PtrElemTy); } // Replace Op with the gathered form of the components in CV. Defer the // deletion of Op and creation of the gathered form to the end of the pass, // so that we can avoid creating the gathered form if all uses of Op are // replaced with uses of CV. void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) { transferMetadataAndIRFlags(Op, CV); // If we already have a scattered form of Op (created from ExtractElements // of Op itself), replace them with the new form. ValueVector &SV = Scattered[Op]; if (!SV.empty()) { for (unsigned I = 0, E = SV.size(); I != E; ++I) { Value *V = SV[I]; if (V == nullptr || SV[I] == CV[I]) continue; Instruction *Old = cast(V); if (isa(CV[I])) CV[I]->takeName(Old); Old->replaceAllUsesWith(CV[I]); PotentiallyDeadInstrs.emplace_back(Old); } } SV = CV; Gathered.push_back(GatherList::value_type(Op, &SV)); } // Replace Op with CV and collect Op has a potentially dead instruction. void ScalarizerVisitor::replaceUses(Instruction *Op, Value *CV) { if (CV != Op) { Op->replaceAllUsesWith(CV); PotentiallyDeadInstrs.emplace_back(Op); Scalarized = true; } } // Return true if it is safe to transfer the given metadata tag from // vector to scalar instructions. bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) { return (Tag == LLVMContext::MD_tbaa || Tag == LLVMContext::MD_fpmath || Tag == LLVMContext::MD_tbaa_struct || Tag == LLVMContext::MD_invariant_load || Tag == LLVMContext::MD_alias_scope || Tag == LLVMContext::MD_noalias || Tag == ParallelLoopAccessMDKind || Tag == LLVMContext::MD_access_group); } // Transfer metadata from Op to the instructions in CV if it is known // to be safe to do so. void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV) { SmallVector, 4> MDs; Op->getAllMetadataOtherThanDebugLoc(MDs); for (unsigned I = 0, E = CV.size(); I != E; ++I) { if (Instruction *New = dyn_cast(CV[I])) { for (const auto &MD : MDs) if (canTransferMetadata(MD.first)) New->setMetadata(MD.first, MD.second); New->copyIRFlags(Op); if (Op->getDebugLoc() && !New->getDebugLoc()) New->setDebugLoc(Op->getDebugLoc()); } } } // Try to fill in Layout from Ty, returning true on success. Alignment is // the alignment of the vector, or None if the ABI default should be used. Optional ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment, const DataLayout &DL) { VectorLayout Layout; // Make sure we're dealing with a vector. Layout.VecTy = dyn_cast(Ty); if (!Layout.VecTy) return None; // Check that we're dealing with full-byte elements. Layout.ElemTy = Layout.VecTy->getElementType(); if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy)) return None; Layout.VecAlign = Alignment; Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy); return Layout; } // Scalarize one-operand instruction I, using Split(Builder, X, Name) // to create an instruction like I with operand X and name Name. template bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) { VectorType *VT = dyn_cast(I.getType()); if (!VT) return false; unsigned NumElems = cast(VT)->getNumElements(); IRBuilder<> Builder(&I); Scatterer Op = scatter(&I, I.getOperand(0)); assert(Op.size() == NumElems && "Mismatched unary operation"); ValueVector Res; Res.resize(NumElems); for (unsigned Elem = 0; Elem < NumElems; ++Elem) Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem)); gather(&I, Res); return true; } // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name) // to create an instruction like I with operands X and Y and name Name. template bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) { VectorType *VT = dyn_cast(I.getType()); if (!VT) return false; unsigned NumElems = cast(VT)->getNumElements(); IRBuilder<> Builder(&I); Scatterer VOp0 = scatter(&I, I.getOperand(0)); Scatterer VOp1 = scatter(&I, I.getOperand(1)); assert(VOp0.size() == NumElems && "Mismatched binary operation"); assert(VOp1.size() == NumElems && "Mismatched binary operation"); ValueVector Res; Res.resize(NumElems); for (unsigned Elem = 0; Elem < NumElems; ++Elem) { Value *Op0 = VOp0[Elem]; Value *Op1 = VOp1[Elem]; Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem)); } gather(&I, Res); return true; } static bool isTriviallyScalariable(Intrinsic::ID ID) { return isTriviallyVectorizable(ID); } // All of the current scalarizable intrinsics only have one mangled type. static Function *getScalarIntrinsicDeclaration(Module *M, Intrinsic::ID ID, ArrayRef Tys) { return Intrinsic::getDeclaration(M, ID, Tys); } /// If a call to a vector typed intrinsic function, split into a scalar call per /// element if possible for the intrinsic. bool ScalarizerVisitor::splitCall(CallInst &CI) { VectorType *VT = dyn_cast(CI.getType()); if (!VT) return false; Function *F = CI.getCalledFunction(); if (!F) return false; Intrinsic::ID ID = F->getIntrinsicID(); if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID)) return false; unsigned NumElems = cast(VT)->getNumElements(); unsigned NumArgs = CI.arg_size(); ValueVector ScalarOperands(NumArgs); SmallVector Scattered(NumArgs); Scattered.resize(NumArgs); SmallVector Tys; Tys.push_back(VT->getScalarType()); // Assumes that any vector type has the same number of elements as the return // vector type, which is true for all current intrinsics. for (unsigned I = 0; I != NumArgs; ++I) { Value *OpI = CI.getOperand(I); if (OpI->getType()->isVectorTy()) { Scattered[I] = scatter(&CI, OpI); assert(Scattered[I].size() == NumElems && "mismatched call operands"); if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I)) Tys.push_back(OpI->getType()->getScalarType()); } else { ScalarOperands[I] = OpI; if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I)) Tys.push_back(OpI->getType()); } } ValueVector Res(NumElems); ValueVector ScalarCallOps(NumArgs); Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys); IRBuilder<> Builder(&CI); // Perform actual scalarization, taking care to preserve any scalar operands. for (unsigned Elem = 0; Elem < NumElems; ++Elem) { ScalarCallOps.clear(); for (unsigned J = 0; J != NumArgs; ++J) { if (isVectorIntrinsicWithScalarOpAtArg(ID, J)) ScalarCallOps.push_back(ScalarOperands[J]); else ScalarCallOps.push_back(Scattered[J][Elem]); } Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps, CI.getName() + ".i" + Twine(Elem)); } gather(&CI, Res); return true; } bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) { VectorType *VT = dyn_cast(SI.getType()); if (!VT) return false; unsigned NumElems = cast(VT)->getNumElements(); IRBuilder<> Builder(&SI); Scatterer VOp1 = scatter(&SI, SI.getOperand(1)); Scatterer VOp2 = scatter(&SI, SI.getOperand(2)); assert(VOp1.size() == NumElems && "Mismatched select"); assert(VOp2.size() == NumElems && "Mismatched select"); ValueVector Res; Res.resize(NumElems); if (SI.getOperand(0)->getType()->isVectorTy()) { Scatterer VOp0 = scatter(&SI, SI.getOperand(0)); assert(VOp0.size() == NumElems && "Mismatched select"); for (unsigned I = 0; I < NumElems; ++I) { Value *Op0 = VOp0[I]; Value *Op1 = VOp1[I]; Value *Op2 = VOp2[I]; Res[I] = Builder.CreateSelect(Op0, Op1, Op2, SI.getName() + ".i" + Twine(I)); } } else { Value *Op0 = SI.getOperand(0); for (unsigned I = 0; I < NumElems; ++I) { Value *Op1 = VOp1[I]; Value *Op2 = VOp2[I]; Res[I] = Builder.CreateSelect(Op0, Op1, Op2, SI.getName() + ".i" + Twine(I)); } } gather(&SI, Res); return true; } bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) { return splitBinary(ICI, ICmpSplitter(ICI)); } bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) { return splitBinary(FCI, FCmpSplitter(FCI)); } bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) { return splitUnary(UO, UnarySplitter(UO)); } bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) { return splitBinary(BO, BinarySplitter(BO)); } bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { VectorType *VT = dyn_cast(GEPI.getType()); if (!VT) return false; IRBuilder<> Builder(&GEPI); unsigned NumElems = cast(VT)->getNumElements(); unsigned NumIndices = GEPI.getNumIndices(); // The base pointer might be scalar even if it's a vector GEP. In those cases, // splat the pointer into a vector value, and scatter that vector. Value *Op0 = GEPI.getOperand(0); if (!Op0->getType()->isVectorTy()) Op0 = Builder.CreateVectorSplat(NumElems, Op0); Scatterer Base = scatter(&GEPI, Op0); SmallVector Ops; Ops.resize(NumIndices); for (unsigned I = 0; I < NumIndices; ++I) { Value *Op = GEPI.getOperand(I + 1); // The indices might be scalars even if it's a vector GEP. In those cases, // splat the scalar into a vector value, and scatter that vector. if (!Op->getType()->isVectorTy()) Op = Builder.CreateVectorSplat(NumElems, Op); Ops[I] = scatter(&GEPI, Op); } ValueVector Res; Res.resize(NumElems); for (unsigned I = 0; I < NumElems; ++I) { SmallVector Indices; Indices.resize(NumIndices); for (unsigned J = 0; J < NumIndices; ++J) Indices[J] = Ops[J][I]; Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices, GEPI.getName() + ".i" + Twine(I)); if (GEPI.isInBounds()) if (GetElementPtrInst *NewGEPI = dyn_cast(Res[I])) NewGEPI->setIsInBounds(); } gather(&GEPI, Res); return true; } bool ScalarizerVisitor::visitCastInst(CastInst &CI) { VectorType *VT = dyn_cast(CI.getDestTy()); if (!VT) return false; unsigned NumElems = cast(VT)->getNumElements(); IRBuilder<> Builder(&CI); Scatterer Op0 = scatter(&CI, CI.getOperand(0)); assert(Op0.size() == NumElems && "Mismatched cast"); ValueVector Res; Res.resize(NumElems); for (unsigned I = 0; I < NumElems; ++I) Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(), CI.getName() + ".i" + Twine(I)); gather(&CI, Res); return true; } bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) { VectorType *DstVT = dyn_cast(BCI.getDestTy()); VectorType *SrcVT = dyn_cast(BCI.getSrcTy()); if (!DstVT || !SrcVT) return false; unsigned DstNumElems = cast(DstVT)->getNumElements(); unsigned SrcNumElems = cast(SrcVT)->getNumElements(); IRBuilder<> Builder(&BCI); Scatterer Op0 = scatter(&BCI, BCI.getOperand(0)); ValueVector Res; Res.resize(DstNumElems); if (DstNumElems == SrcNumElems) { for (unsigned I = 0; I < DstNumElems; ++I) Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(), BCI.getName() + ".i" + Twine(I)); } else if (DstNumElems > SrcNumElems) { // -> . Convert each t1 to and copy the // individual elements to the destination. unsigned FanOut = DstNumElems / SrcNumElems; auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut); unsigned ResI = 0; for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) { Value *V = Op0[Op0I]; Instruction *VI; // Look through any existing bitcasts before converting to . // In the best case, the resulting conversion might be a no-op. while ((VI = dyn_cast(V)) && VI->getOpcode() == Instruction::BitCast) V = VI->getOperand(0); V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast"); Scatterer Mid = scatter(&BCI, V); for (unsigned MidI = 0; MidI < FanOut; ++MidI) Res[ResI++] = Mid[MidI]; } } else { // -> . Convert each group of into a t2. unsigned FanIn = SrcNumElems / DstNumElems; auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn); unsigned Op0I = 0; for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) { Value *V = PoisonValue::get(MidTy); for (unsigned MidI = 0; MidI < FanIn; ++MidI) V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI), BCI.getName() + ".i" + Twine(ResI) + ".upto" + Twine(MidI)); Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(), BCI.getName() + ".i" + Twine(ResI)); } } gather(&BCI, Res); return true; } bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) { VectorType *VT = dyn_cast(IEI.getType()); if (!VT) return false; unsigned NumElems = cast(VT)->getNumElements(); IRBuilder<> Builder(&IEI); Scatterer Op0 = scatter(&IEI, IEI.getOperand(0)); Value *NewElt = IEI.getOperand(1); Value *InsIdx = IEI.getOperand(2); ValueVector Res; Res.resize(NumElems); if (auto *CI = dyn_cast(InsIdx)) { for (unsigned I = 0; I < NumElems; ++I) Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I]; } else { if (!ScalarizeVariableInsertExtract) return false; for (unsigned I = 0; I < NumElems; ++I) { Value *ShouldReplace = Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I), InsIdx->getName() + ".is." + Twine(I)); Value *OldElt = Op0[I]; Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt, IEI.getName() + ".i" + Twine(I)); } } gather(&IEI, Res); return true; } bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) { VectorType *VT = dyn_cast(EEI.getOperand(0)->getType()); if (!VT) return false; unsigned NumSrcElems = cast(VT)->getNumElements(); IRBuilder<> Builder(&EEI); Scatterer Op0 = scatter(&EEI, EEI.getOperand(0)); Value *ExtIdx = EEI.getOperand(1); if (auto *CI = dyn_cast(ExtIdx)) { Value *Res = Op0[CI->getValue().getZExtValue()]; replaceUses(&EEI, Res); return true; } if (!ScalarizeVariableInsertExtract) return false; Value *Res = UndefValue::get(VT->getElementType()); for (unsigned I = 0; I < NumSrcElems; ++I) { Value *ShouldExtract = Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I), ExtIdx->getName() + ".is." + Twine(I)); Value *Elt = Op0[I]; Res = Builder.CreateSelect(ShouldExtract, Elt, Res, EEI.getName() + ".upto" + Twine(I)); } replaceUses(&EEI, Res); return true; } bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) { VectorType *VT = dyn_cast(SVI.getType()); if (!VT) return false; unsigned NumElems = cast(VT)->getNumElements(); Scatterer Op0 = scatter(&SVI, SVI.getOperand(0)); Scatterer Op1 = scatter(&SVI, SVI.getOperand(1)); ValueVector Res; Res.resize(NumElems); for (unsigned I = 0; I < NumElems; ++I) { int Selector = SVI.getMaskValue(I); if (Selector < 0) Res[I] = UndefValue::get(VT->getElementType()); else if (unsigned(Selector) < Op0.size()) Res[I] = Op0[Selector]; else Res[I] = Op1[Selector - Op0.size()]; } gather(&SVI, Res); return true; } bool ScalarizerVisitor::visitPHINode(PHINode &PHI) { VectorType *VT = dyn_cast(PHI.getType()); if (!VT) return false; unsigned NumElems = cast(VT)->getNumElements(); IRBuilder<> Builder(&PHI); ValueVector Res; Res.resize(NumElems); unsigned NumOps = PHI.getNumOperands(); for (unsigned I = 0; I < NumElems; ++I) Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps, PHI.getName() + ".i" + Twine(I)); for (unsigned I = 0; I < NumOps; ++I) { Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I)); BasicBlock *IncomingBlock = PHI.getIncomingBlock(I); for (unsigned J = 0; J < NumElems; ++J) cast(Res[J])->addIncoming(Op[J], IncomingBlock); } gather(&PHI, Res); return true; } bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) { if (!ScalarizeLoadStore) return false; if (!LI.isSimple()) return false; Optional Layout = getVectorLayout( LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout()); if (!Layout) return false; unsigned NumElems = cast(Layout->VecTy)->getNumElements(); IRBuilder<> Builder(&LI); Scatterer Ptr = scatter(&LI, LI.getPointerOperand(), LI.getType()); ValueVector Res; Res.resize(NumElems); for (unsigned I = 0; I < NumElems; ++I) Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I], Align(Layout->getElemAlign(I)), LI.getName() + ".i" + Twine(I)); gather(&LI, Res); return true; } bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) { if (!ScalarizeLoadStore) return false; if (!SI.isSimple()) return false; Value *FullValue = SI.getValueOperand(); Optional Layout = getVectorLayout( FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout()); if (!Layout) return false; unsigned NumElems = cast(Layout->VecTy)->getNumElements(); IRBuilder<> Builder(&SI); Scatterer VPtr = scatter(&SI, SI.getPointerOperand(), FullValue->getType()); Scatterer VVal = scatter(&SI, FullValue); ValueVector Stores; Stores.resize(NumElems); for (unsigned I = 0; I < NumElems; ++I) { Value *Val = VVal[I]; Value *Ptr = VPtr[I]; Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I)); } transferMetadataAndIRFlags(&SI, Stores); return true; } bool ScalarizerVisitor::visitCallInst(CallInst &CI) { return splitCall(CI); } // Delete the instructions that we scalarized. If a full vector result // is still needed, recreate it using InsertElements. bool ScalarizerVisitor::finish() { // The presence of data in Gathered or Scattered indicates changes // made to the Function. if (Gathered.empty() && Scattered.empty() && !Scalarized) return false; for (const auto &GMI : Gathered) { Instruction *Op = GMI.first; ValueVector &CV = *GMI.second; if (!Op->use_empty()) { // The value is still needed, so recreate it using a series of // InsertElements. Value *Res = PoisonValue::get(Op->getType()); if (auto *Ty = dyn_cast(Op->getType())) { BasicBlock *BB = Op->getParent(); unsigned Count = cast(Ty)->getNumElements(); IRBuilder<> Builder(Op); if (isa(Op)) Builder.SetInsertPoint(BB, BB->getFirstInsertionPt()); for (unsigned I = 0; I < Count; ++I) Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I), Op->getName() + ".upto" + Twine(I)); Res->takeName(Op); } else { assert(CV.size() == 1 && Op->getType() == CV[0]->getType()); Res = CV[0]; if (Op == Res) continue; } Op->replaceAllUsesWith(Res); } PotentiallyDeadInstrs.emplace_back(Op); } Gathered.clear(); Scattered.clear(); Scalarized = false; RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs); return true; } PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) { Module &M = *F.getParent(); unsigned ParallelLoopAccessMDKind = M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); DominatorTree *DT = &AM.getResult(F); ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, Options); bool Changed = Impl.visit(F); PreservedAnalyses PA; PA.preserve(); return Changed ? PA : PreservedAnalyses::all(); }