//===- MergedLoadStoreMotion.cpp - merge and hoist/sink load/stores -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // //! \file //! This pass performs merges of loads and stores on both sides of a // diamond (hammock). It hoists the loads and sinks the stores. // // The algorithm iteratively hoists two loads to the same address out of a // diamond (hammock) and merges them into a single load in the header. Similar // it sinks and merges two stores to the tail block (footer). The algorithm // iterates over the instructions of one side of the diamond and attempts to // find a matching load/store on the other side. New tail/footer block may be // insterted if the tail/footer block has more predecessors (not only the two // predecessors that are forming the diamond). It hoists / sinks when it thinks // it safe to do so. This optimization helps with eg. hiding load latencies, // triggering if-conversion, and reducing static code size. // // NOTE: This code no longer performs load hoisting, it is subsumed by GVNHoist. // //===----------------------------------------------------------------------===// // // // Example: // Diamond shaped code before merge: // // header: // br %cond, label %if.then, label %if.else // + + // + + // + + // if.then: if.else: // %lt = load %addr_l %le = load %addr_l // // <...> <...> // store %st, %addr_s store %se, %addr_s // br label %if.end br label %if.end // + + // + + // + + // if.end ("footer"): // <...> // // Diamond shaped code after merge: // // header: // %l = load %addr_l // br %cond, label %if.then, label %if.else // + + // + + // + + // if.then: if.else: // // <...> <...> // br label %if.end br label %if.end // + + // + + // + + // if.end ("footer"): // %s.sink = phi [%st, if.then], [%se, if.else] // <...> // store %s.sink, %addr_s // <...> // // //===----------------------- TODO -----------------------------------------===// // // 1) Generalize to regions other than diamonds // 2) Be more aggressive merging memory operations // Note that both changes require register pressure control // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Metadata.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; #define DEBUG_TYPE "mldst-motion" namespace { //===----------------------------------------------------------------------===// // MergedLoadStoreMotion Pass //===----------------------------------------------------------------------===// class MergedLoadStoreMotion { AliasAnalysis *AA = nullptr; // The mergeLoad/Store algorithms could have Size0 * Size1 complexity, // where Size0 and Size1 are the #instructions on the two sides of // the diamond. The constant chosen here is arbitrary. Compiler Time // Control is enforced by the check Size0 * Size1 < MagicCompileTimeControl. const int MagicCompileTimeControl = 250; const bool SplitFooterBB; public: MergedLoadStoreMotion(bool SplitFooterBB) : SplitFooterBB(SplitFooterBB) {} bool run(Function &F, AliasAnalysis &AA); private: BasicBlock *getDiamondTail(BasicBlock *BB); bool isDiamondHead(BasicBlock *BB); // Routines for sinking stores StoreInst *canSinkFromBlock(BasicBlock *BB, StoreInst *SI); PHINode *getPHIOperand(BasicBlock *BB, StoreInst *S0, StoreInst *S1); bool isStoreSinkBarrierInRange(const Instruction &Start, const Instruction &End, MemoryLocation Loc); bool canSinkStoresAndGEPs(StoreInst *S0, StoreInst *S1) const; void sinkStoresAndGEPs(BasicBlock *BB, StoreInst *SinkCand, StoreInst *ElseInst); bool mergeStores(BasicBlock *BB); }; } // end anonymous namespace /// /// Return tail block of a diamond. /// BasicBlock *MergedLoadStoreMotion::getDiamondTail(BasicBlock *BB) { assert(isDiamondHead(BB) && "Basic block is not head of a diamond"); return BB->getTerminator()->getSuccessor(0)->getSingleSuccessor(); } /// /// True when BB is the head of a diamond (hammock) /// bool MergedLoadStoreMotion::isDiamondHead(BasicBlock *BB) { if (!BB) return false; auto *BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isConditional()) return false; BasicBlock *Succ0 = BI->getSuccessor(0); BasicBlock *Succ1 = BI->getSuccessor(1); if (!Succ0->getSinglePredecessor()) return false; if (!Succ1->getSinglePredecessor()) return false; BasicBlock *Succ0Succ = Succ0->getSingleSuccessor(); BasicBlock *Succ1Succ = Succ1->getSingleSuccessor(); // Ignore triangles. if (!Succ0Succ || !Succ1Succ || Succ0Succ != Succ1Succ) return false; return true; } /// /// True when instruction is a sink barrier for a store /// located in Loc /// /// Whenever an instruction could possibly read or modify the /// value being stored or protect against the store from /// happening it is considered a sink barrier. /// bool MergedLoadStoreMotion::isStoreSinkBarrierInRange(const Instruction &Start, const Instruction &End, MemoryLocation Loc) { for (const Instruction &Inst : make_range(Start.getIterator(), End.getIterator())) if (Inst.mayThrow()) return true; return AA->canInstructionRangeModRef(Start, End, Loc, ModRefInfo::ModRef); } /// /// Check if \p BB contains a store to the same address as \p SI /// /// \return The store in \p when it is safe to sink. Otherwise return Null. /// StoreInst *MergedLoadStoreMotion::canSinkFromBlock(BasicBlock *BB1, StoreInst *Store0) { LLVM_DEBUG(dbgs() << "can Sink? : "; Store0->dump(); dbgs() << "\n"); BasicBlock *BB0 = Store0->getParent(); for (Instruction &Inst : reverse(*BB1)) { auto *Store1 = dyn_cast(&Inst); if (!Store1) continue; MemoryLocation Loc0 = MemoryLocation::get(Store0); MemoryLocation Loc1 = MemoryLocation::get(Store1); if (AA->isMustAlias(Loc0, Loc1) && Store0->isSameOperationAs(Store1) && !isStoreSinkBarrierInRange(*Store1->getNextNode(), BB1->back(), Loc1) && !isStoreSinkBarrierInRange(*Store0->getNextNode(), BB0->back(), Loc0)) { return Store1; } } return nullptr; } /// /// Create a PHI node in BB for the operands of S0 and S1 /// PHINode *MergedLoadStoreMotion::getPHIOperand(BasicBlock *BB, StoreInst *S0, StoreInst *S1) { // Create a phi if the values mismatch. Value *Opd1 = S0->getValueOperand(); Value *Opd2 = S1->getValueOperand(); if (Opd1 == Opd2) return nullptr; auto *NewPN = PHINode::Create(Opd1->getType(), 2, Opd2->getName() + ".sink", &BB->front()); NewPN->applyMergedLocation(S0->getDebugLoc(), S1->getDebugLoc()); NewPN->addIncoming(Opd1, S0->getParent()); NewPN->addIncoming(Opd2, S1->getParent()); return NewPN; } /// /// Check if 2 stores can be sunk together with corresponding GEPs /// bool MergedLoadStoreMotion::canSinkStoresAndGEPs(StoreInst *S0, StoreInst *S1) const { auto *A0 = dyn_cast(S0->getPointerOperand()); auto *A1 = dyn_cast(S1->getPointerOperand()); return A0 && A1 && A0->isIdenticalTo(A1) && A0->hasOneUse() && (A0->getParent() == S0->getParent()) && A1->hasOneUse() && (A1->getParent() == S1->getParent()) && isa(A0); } /// /// Merge two stores to same address and sink into \p BB /// /// Also sinks GEP instruction computing the store address /// void MergedLoadStoreMotion::sinkStoresAndGEPs(BasicBlock *BB, StoreInst *S0, StoreInst *S1) { // Only one definition? auto *A0 = dyn_cast(S0->getPointerOperand()); auto *A1 = dyn_cast(S1->getPointerOperand()); LLVM_DEBUG(dbgs() << "Sink Instruction into BB \n"; BB->dump(); dbgs() << "Instruction Left\n"; S0->dump(); dbgs() << "\n"; dbgs() << "Instruction Right\n"; S1->dump(); dbgs() << "\n"); // Hoist the instruction. BasicBlock::iterator InsertPt = BB->getFirstInsertionPt(); // Intersect optional metadata. S0->andIRFlags(S1); S0->dropUnknownNonDebugMetadata(); // Create the new store to be inserted at the join point. StoreInst *SNew = cast(S0->clone()); Instruction *ANew = A0->clone(); SNew->insertBefore(&*InsertPt); ANew->insertBefore(SNew); assert(S0->getParent() == A0->getParent()); assert(S1->getParent() == A1->getParent()); // New PHI operand? Use it. if (PHINode *NewPN = getPHIOperand(BB, S0, S1)) SNew->setOperand(0, NewPN); S0->eraseFromParent(); S1->eraseFromParent(); A0->replaceAllUsesWith(ANew); A0->eraseFromParent(); A1->replaceAllUsesWith(ANew); A1->eraseFromParent(); } /// /// True when two stores are equivalent and can sink into the footer /// /// Starting from a diamond head block, iterate over the instructions in one /// successor block and try to match a store in the second successor. /// bool MergedLoadStoreMotion::mergeStores(BasicBlock *HeadBB) { bool MergedStores = false; BasicBlock *TailBB = getDiamondTail(HeadBB); BasicBlock *SinkBB = TailBB; assert(SinkBB && "Footer of a diamond cannot be empty"); succ_iterator SI = succ_begin(HeadBB); assert(SI != succ_end(HeadBB) && "Diamond head cannot have zero successors"); BasicBlock *Pred0 = *SI; ++SI; assert(SI != succ_end(HeadBB) && "Diamond head cannot have single successor"); BasicBlock *Pred1 = *SI; // tail block of a diamond/hammock? if (Pred0 == Pred1) return false; // No. // bail out early if we can not merge into the footer BB if (!SplitFooterBB && TailBB->hasNPredecessorsOrMore(3)) return false; // #Instructions in Pred1 for Compile Time Control auto InstsNoDbg = Pred1->instructionsWithoutDebug(); int Size1 = std::distance(InstsNoDbg.begin(), InstsNoDbg.end()); int NStores = 0; for (BasicBlock::reverse_iterator RBI = Pred0->rbegin(), RBE = Pred0->rend(); RBI != RBE;) { Instruction *I = &*RBI; ++RBI; // Don't sink non-simple (atomic, volatile) stores. auto *S0 = dyn_cast(I); if (!S0 || !S0->isSimple()) continue; ++NStores; if (NStores * Size1 >= MagicCompileTimeControl) break; if (StoreInst *S1 = canSinkFromBlock(Pred1, S0)) { if (!canSinkStoresAndGEPs(S0, S1)) // Don't attempt to sink below stores that had to stick around // But after removal of a store and some of its feeding // instruction search again from the beginning since the iterator // is likely stale at this point. break; if (SinkBB == TailBB && TailBB->hasNPredecessorsOrMore(3)) { // We have more than 2 predecessors. Insert a new block // postdominating 2 predecessors we're going to sink from. SinkBB = SplitBlockPredecessors(TailBB, {Pred0, Pred1}, ".sink.split"); if (!SinkBB) break; } MergedStores = true; sinkStoresAndGEPs(SinkBB, S0, S1); RBI = Pred0->rbegin(); RBE = Pred0->rend(); LLVM_DEBUG(dbgs() << "Search again\n"; Instruction *I = &*RBI; I->dump()); } } return MergedStores; } bool MergedLoadStoreMotion::run(Function &F, AliasAnalysis &AA) { this->AA = &AA; bool Changed = false; LLVM_DEBUG(dbgs() << "Instruction Merger\n"); // Merge unconditional branches, allowing PRE to catch more // optimization opportunities. // This loop doesn't care about newly inserted/split blocks // since they never will be diamond heads. for (BasicBlock &BB : make_early_inc_range(F)) // Hoist equivalent loads and sink stores // outside diamonds when possible if (isDiamondHead(&BB)) Changed |= mergeStores(&BB); return Changed; } namespace { class MergedLoadStoreMotionLegacyPass : public FunctionPass { const bool SplitFooterBB; public: static char ID; // Pass identification, replacement for typeid MergedLoadStoreMotionLegacyPass(bool SplitFooterBB = false) : FunctionPass(ID), SplitFooterBB(SplitFooterBB) { initializeMergedLoadStoreMotionLegacyPassPass( *PassRegistry::getPassRegistry()); } /// /// Run the transformation for each function /// bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; MergedLoadStoreMotion Impl(SplitFooterBB); return Impl.run(F, getAnalysis().getAAResults()); } private: void getAnalysisUsage(AnalysisUsage &AU) const override { if (!SplitFooterBB) AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); } }; char MergedLoadStoreMotionLegacyPass::ID = 0; } // anonymous namespace /// /// createMergedLoadStoreMotionPass - The public interface to this file. /// FunctionPass *llvm::createMergedLoadStoreMotionPass(bool SplitFooterBB) { return new MergedLoadStoreMotionLegacyPass(SplitFooterBB); } INITIALIZE_PASS_BEGIN(MergedLoadStoreMotionLegacyPass, "mldst-motion", "MergedLoadStoreMotion", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(MergedLoadStoreMotionLegacyPass, "mldst-motion", "MergedLoadStoreMotion", false, false) PreservedAnalyses MergedLoadStoreMotionPass::run(Function &F, FunctionAnalysisManager &AM) { MergedLoadStoreMotion Impl(Options.SplitFooterBB); auto &AA = AM.getResult(F); if (!Impl.run(F, AA)) return PreservedAnalyses::all(); PreservedAnalyses PA; if (!Options.SplitFooterBB) PA.preserveSet(); return PA; }