//===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Lower matrix intrinsics to vector operations. // // TODO: // * Improve fusion: // * Support more cases, e.g. multiply-add, multiply-sub, operands/results // transposed. // * Improve cost-modeling, e.g. choose different number of rows/columns // columns for tiles, consider cost of copies on alias. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/MatrixBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/MatrixUtils.h" #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "lower-matrix-intrinsics" static cl::opt FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden, cl::desc("Enable/disable fusing matrix instructions.")); // TODO: Allow and use non-square tiles. static cl::opt TileSize( "fuse-matrix-tile-size", cl::init(4), cl::Hidden, cl::desc( "Tile size for matrix instruction fusion using square-shaped tiles.")); static cl::opt TileUseLoops("fuse-matrix-use-loops", cl::init(false), cl::Hidden, cl::desc("Generate loop nest for tiling.")); static cl::opt ForceFusion( "force-fuse-matrix", cl::init(false), cl::Hidden, cl::desc("Force matrix instruction fusion even if not profitable.")); static cl::opt AllowContractEnabled( "matrix-allow-contract", cl::init(false), cl::Hidden, cl::desc("Allow the use of FMAs if available and profitable. This may " "result in different results, due to less rounding error.")); static cl::opt VerifyShapeInfo("verify-matrix-shapes", cl::Hidden, cl::desc("Enable/disable matrix shape verification."), cl::init(false)); enum class MatrixLayoutTy { ColumnMajor, RowMajor }; static cl::opt MatrixLayout( "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor), cl::desc("Sets the default matrix layout"), cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major", "Use column-major layout"), clEnumValN(MatrixLayoutTy::RowMajor, "row-major", "Use row-major layout"))); static cl::opt PrintAfterTransposeOpt("matrix-print-after-transpose-opt", cl::init(false)); /// Helper function to either return Scope, if it is a subprogram or the /// attached subprogram for a local scope. static DISubprogram *getSubprogram(DIScope *Scope) { if (auto *Subprogram = dyn_cast(Scope)) return Subprogram; return cast(Scope)->getSubprogram(); } /// Erase \p V from \p BB and move \II forward to avoid invalidating /// iterators. static void eraseFromParentAndMove(Value *V, BasicBlock::reverse_iterator &II, BasicBlock &BB) { auto *Inst = cast(V); // Still used, don't erase. if (!Inst->use_empty()) return; if (II != BB.rend() && Inst == &*II) ++II; Inst->eraseFromParent(); } /// Return true if V is a splat of a value (which is used when multiplying a /// matrix with a scalar). static bool isSplat(Value *V) { if (auto *SV = dyn_cast(V)) return SV->isZeroEltSplat(); return false; } /// Match any mul operation (fp or integer). template auto m_AnyMul(const LTy &L, const RTy &R) { return m_CombineOr(m_Mul(L, R), m_FMul(L, R)); } /// Match any add operation (fp or integer). template auto m_AnyAdd(const LTy &L, const RTy &R) { return m_CombineOr(m_Add(L, R), m_FAdd(L, R)); } namespace { // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute // the start address of vector \p VecIdx with type (\p EltType x \p NumElements) // assuming \p Stride elements between start two consecutive vectors. // \p Stride must be >= \p NumElements. // For column-major matrixes, the function computes the address of a column // vectors and \p NumElements must be set to the number of elements in a column // (= number of rows of the matrix). For row-major matrixes, the function // computes the address of a row vector and \p NumElements must be set to the // number of elements in a column (= number of columns of the matrix). // // Consider a 4x4 matrix in column-mjaor layout like below // // 0 1 2 3 // 0 v_0_0 v_0_1 v_0_2 v_0_3 // 1 v_1_0 v_1_1 v_1_2 v_1_3 // 2 v_2_0 v_2_1 v_2_2 v_2_3 // 3 v_3_0 v_3_1 v_3_2 v_3_3 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1, // we need a pointer to the first element of the submatrix as base pointer. // Then we can use computeVectorAddr to compute the addresses for the columns // of the sub-matrix. // // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..) // -> just returns Base // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..) // -> returns Base + (1 * 4) // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..) // -> returns Base + (2 * 4) // // The graphic below illustrates the number of elements in a column (marked // with |) and the number of skipped elements (marked with }). // // v_0_0 v_0_1 {v_0_2 {v_0_3 // Base Col 1 Col 2 // | | | // v_1_0 |v_1_1 |v_1_2 |v_1_3 // v_2_0 |v_2_1 |v_2_2 |v_2_3 // v_3_0 {v_3_1 {v_3_2 v_3_3 // Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride, unsigned NumElements, Type *EltType, IRBuilder<> &Builder) { assert((!isa(Stride) || cast(Stride)->getZExtValue() >= NumElements) && "Stride must be >= the number of elements in the result vector."); // Compute the start of the vector with index VecIdx as VecIdx * Stride. Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start"); // Get pointer to the start of the selected vector. Skip GEP creation, // if we select vector 0. if (isa(VecStart) && cast(VecStart)->isZero()) VecStart = BasePtr; else VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep"); return VecStart; } namespace { struct ShapeInfo { unsigned NumRows; unsigned NumColumns; bool IsColumnMajor; ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0) : NumRows(NumRows), NumColumns(NumColumns), IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} ShapeInfo(Value *NumRows, Value *NumColumns) : ShapeInfo(cast(NumRows)->getZExtValue(), cast(NumColumns)->getZExtValue()) {} bool operator==(const ShapeInfo &other) { return NumRows == other.NumRows && NumColumns == other.NumColumns; } bool operator!=(const ShapeInfo &other) { return !(*this == other); } /// Returns true if shape-information is defined, meaning both dimensions /// are != 0. operator bool() const { assert(NumRows == 0 || NumColumns != 0); return NumRows != 0; } unsigned getStride() const { if (IsColumnMajor) return NumRows; return NumColumns; } unsigned getNumVectors() const { if (IsColumnMajor) return NumColumns; return NumRows; } /// Returns the transposed shape. ShapeInfo t() const { return ShapeInfo(NumColumns, NumRows); } }; } // namespace static bool isUniformShape(Value *V) { Instruction *I = dyn_cast(V); if (!I) return true; switch (I->getOpcode()) { case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: // Scalar multiply. case Instruction::FNeg: case Instruction::Add: case Instruction::Mul: case Instruction::Sub: return true; default: return false; } } /// Return the ShapeInfo for the result of \p I, it it can be determined. static std::optional computeShapeInfoForInst(Instruction *I, const ValueMap &ShapeMap) { Value *M; Value *N; Value *K; if (match(I, m_Intrinsic( m_Value(), m_Value(), m_Value(M), m_Value(N), m_Value(K)))) return ShapeInfo(M, K); if (match(I, m_Intrinsic(m_Value(), m_Value(M), m_Value(N)))) { // Flip dimensions. return ShapeInfo(N, M); } if (match(I, m_Intrinsic( m_Value(), m_Value(), m_Value(), m_Value(), m_Value(M), m_Value(N)))) return ShapeInfo(N, M); if (match(I, m_Intrinsic( m_Value(), m_Value(), m_Value(), m_Value(M), m_Value(N)))) return ShapeInfo(M, N); Value *MatrixA; if (match(I, m_Store(m_Value(MatrixA), m_Value()))) { auto OpShape = ShapeMap.find(MatrixA); if (OpShape != ShapeMap.end()) return OpShape->second; } if (isUniformShape(I)) { // Find the first operand that has a known shape and use that. for (auto &Op : I->operands()) { auto OpShape = ShapeMap.find(Op.get()); if (OpShape != ShapeMap.end()) return OpShape->second; } } return std::nullopt; } /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics. /// /// Currently, the lowering for each matrix intrinsic is done as follows: /// 1. Propagate the shape information from intrinsics to connected /// instructions. /// 2. Lower instructions with shape information (assuming column-major layout). /// The lowering works similarly using row-major layout. /// 2.1. Get column vectors for each argument. If we already lowered the /// definition of an argument, use the produced column vectors directly. /// If not, split the operand vector containing an embedded matrix into /// a set of column vectors, /// 2.2. Lower the instruction in terms of column major operations, which /// yields a set of column vectors containing result matrix. Note that we /// lower all instructions that have shape information. Besides the /// intrinsics, this includes stores for example. /// 2.3. Update uses of the lowered instruction. If we have shape information /// for a user, there is nothing to do, as we will look up the result /// column matrix when lowering the user. For other uses, we embed the /// result matrix in a flat vector and update the use. /// 2.4. Cache the result column matrix for the instruction we lowered /// 3. After we lowered all instructions in a function, remove the now /// obsolete instructions. /// class LowerMatrixIntrinsics { Function &Func; const DataLayout &DL; const TargetTransformInfo &TTI; AliasAnalysis *AA; DominatorTree *DT; LoopInfo *LI; OptimizationRemarkEmitter *ORE; /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation. struct OpInfoTy { /// Number of stores emitted to generate this matrix. unsigned NumStores = 0; /// Number of loads emitted to generate this matrix. unsigned NumLoads = 0; /// Number of compute operations emitted to generate this matrix. unsigned NumComputeOps = 0; /// Most of the time transposes can be fused with matrix multiplies or can /// be folded away via algebraic simplifications. This is the number of /// transposes that we failed to make "free" via such optimizations. unsigned NumExposedTransposes = 0; OpInfoTy &operator+=(const OpInfoTy &RHS) { NumStores += RHS.NumStores; NumLoads += RHS.NumLoads; NumComputeOps += RHS.NumComputeOps; NumExposedTransposes += RHS.NumExposedTransposes; return *this; } }; /// Wrapper class representing a matrix as a set of vectors, either in row or /// column major layout. All vectors must have the same vector type. class MatrixTy { SmallVector Vectors; OpInfoTy OpInfo; bool IsColumnMajor = true; public: MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} MatrixTy(ArrayRef Vectors) : Vectors(Vectors.begin(), Vectors.end()), IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy) : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) { unsigned D = isColumnMajor() ? NumColumns : NumRows; for (unsigned J = 0; J < D; ++J) addVector(PoisonValue::get(FixedVectorType::get( EltTy, isColumnMajor() ? NumRows : NumColumns))); } Value *getVector(unsigned i) const { return Vectors[i]; } Value *getColumn(unsigned i) const { assert(isColumnMajor() && "only supported for column-major matrixes"); return Vectors[i]; } Value *getRow(unsigned i) const { assert(!isColumnMajor() && "only supported for row-major matrixes"); return Vectors[i]; } void setVector(unsigned i, Value *V) { Vectors[i] = V; } Type *getElementType() const { return getVectorTy()->getElementType(); } unsigned getNumVectors() const { if (isColumnMajor()) return getNumColumns(); return getNumRows(); } unsigned getNumColumns() const { if (isColumnMajor()) return Vectors.size(); else { assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); return cast(Vectors[0]->getType())->getNumElements(); } } unsigned getNumRows() const { if (isColumnMajor()) { assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); return cast(Vectors[0]->getType())->getNumElements(); } else return Vectors.size(); } void addVector(Value *V) { Vectors.push_back(V); } VectorType *getColumnTy() { assert(isColumnMajor() && "only supported for column-major matrixes"); return getVectorTy(); } VectorType *getVectorTy() const { return cast(Vectors[0]->getType()); } iterator_range::iterator> columns() { assert(isColumnMajor() && "columns() only supported for column-major matrixes"); return make_range(Vectors.begin(), Vectors.end()); } iterator_range::iterator> vectors() { return make_range(Vectors.begin(), Vectors.end()); } /// Embed the vectors of the matrix into a flat vector by concatenating /// them. Value *embedInVector(IRBuilder<> &Builder) const { return Vectors.size() == 1 ? Vectors[0] : concatenateVectors(Builder, Vectors); } MatrixTy &addNumLoads(unsigned N) { OpInfo.NumLoads += N; return *this; } void setNumLoads(unsigned N) { OpInfo.NumLoads = N; } MatrixTy &addNumStores(unsigned N) { OpInfo.NumStores += N; return *this; } MatrixTy &addNumExposedTransposes(unsigned N) { OpInfo.NumExposedTransposes += N; return *this; } MatrixTy &addNumComputeOps(unsigned N) { OpInfo.NumComputeOps += N; return *this; } unsigned getNumStores() const { return OpInfo.NumStores; } unsigned getNumLoads() const { return OpInfo.NumLoads; } unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; } const OpInfoTy &getOpInfo() const { return OpInfo; } bool isColumnMajor() const { return IsColumnMajor; } unsigned getStride() const { if (isColumnMajor()) return getNumRows(); return getNumColumns(); } /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the /// matrix is column-major, the result vector is extracted from a column /// vector, otherwise from a row vector. Value *extractVector(unsigned I, unsigned J, unsigned NumElts, IRBuilder<> &Builder) const { Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I); assert(cast(Vec->getType())->getNumElements() >= NumElts && "Extracted vector will contain poison values"); return Builder.CreateShuffleVector( Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0), "block"); } }; /// Maps instructions to their shape information. The shape information /// describes the shape to be used while lowering. This matches the shape of /// the result value of the instruction, with the only exceptions being store /// instructions and the matrix_column_major_store intrinsics. For those, the /// shape information indicates that those instructions should be lowered /// using shape information as well. A ValueMap is used so that when /// sub-passes like optimizeTransposes performs RAUW the map stays /// up-to-date. ValueMap ShapeMap; /// List of instructions to remove. While lowering, we are not replacing all /// users of a lowered instruction, if shape information is available and /// those need to be removed after we finished lowering. SmallVector ToRemove; /// Map from instructions to their produced column matrix. MapVector Inst2ColumnMatrix; private: static FastMathFlags getFastMathFlags(Instruction *Inst) { FastMathFlags FMF; if (isa(*Inst)) FMF = Inst->getFastMathFlags(); FMF.setAllowContract(AllowContractEnabled || FMF.allowContract()); return FMF; } public: LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI, AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, OptimizationRemarkEmitter *ORE) : Func(F), DL(F.getDataLayout()), TTI(TTI), AA(AA), DT(DT), LI(LI), ORE(ORE) {} unsigned getNumOps(Type *VT) { assert(isa(VT) && "Expected vector type"); return getNumOps(VT->getScalarType(), cast(VT)->getNumElements()); } /// Is this the minimal version executed in the backend pipelines. bool isMinimal() const { return !DT; } /// Return the estimated number of vector ops required for an operation on /// \p VT * N. unsigned getNumOps(Type *ST, unsigned N) { return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedValue() / double(TTI.getRegisterBitWidth( TargetTransformInfo::RGK_FixedWidthVector) .getFixedValue())); } /// Return the set of vectors that a matrix value is lowered to. /// /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise /// split the flat vector \p MatrixVal containing a matrix with shape \p SI /// into vectors. MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI, IRBuilder<> &Builder) { VectorType *VType = dyn_cast(MatrixVal->getType()); assert(VType && "MatrixVal must be a vector type"); assert(cast(VType)->getNumElements() == SI.NumRows * SI.NumColumns && "The vector size must match the number of matrix elements"); // Check if we lowered MatrixVal using shape information. In that case, // return the existing matrix, if it matches the requested shape // information. If there is a mis-match, embed the result in a flat // vector and split it later. auto Found = Inst2ColumnMatrix.find(MatrixVal); if (Found != Inst2ColumnMatrix.end()) { MatrixTy &M = Found->second; // Return the found matrix, if its shape matches the requested shape // information if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns()) return M; MatrixVal = M.embedInVector(Builder); } // Otherwise split MatrixVal. SmallVector SplitVecs; for (unsigned MaskStart = 0; MaskStart < cast(VType)->getNumElements(); MaskStart += SI.getStride()) { Value *V = Builder.CreateShuffleVector( MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0), "split"); SplitVecs.push_back(V); } return {SplitVecs}; } /// If \p V already has a known shape return false. Otherwise set the shape /// for instructions that support it. bool setShapeInfo(Value *V, ShapeInfo Shape) { assert(Shape && "Shape not set"); if (isa(V) || !supportsShapeInfo(V)) return false; auto SIter = ShapeMap.find(V); if (SIter != ShapeMap.end()) { if (VerifyShapeInfo && (SIter->second.NumRows != Shape.NumRows || SIter->second.NumColumns != Shape.NumColumns)) { errs() << "Conflicting shapes (" << SIter->second.NumRows << "x" << SIter->second.NumColumns << " vs " << Shape.NumRows << "x" << Shape.NumColumns << ") for " << *V << "\n"; report_fatal_error( "Matrix shape verification failed, compilation aborted!"); } LLVM_DEBUG(dbgs() << " not overriding existing shape: " << SIter->second.NumRows << " " << SIter->second.NumColumns << " for " << *V << "\n"); return false; } ShapeMap.insert({V, Shape}); LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns << " for " << *V << "\n"); return true; } /// Returns true if shape information can be used for \p V. The supported /// instructions must match the instructions that can be lowered by this pass. bool supportsShapeInfo(Value *V) { Instruction *Inst = dyn_cast(V); if (!Inst) return false; IntrinsicInst *II = dyn_cast(Inst); if (II) switch (II->getIntrinsicID()) { case Intrinsic::matrix_multiply: case Intrinsic::matrix_transpose: case Intrinsic::matrix_column_major_load: case Intrinsic::matrix_column_major_store: return true; default: return false; } return isUniformShape(V) || isa(V) || isa(V); } /// Propagate the shape information of instructions to their users. /// The work list contains instructions for which we can compute the shape, /// either based on the information provided by matrix intrinsics or known /// shapes of operands. SmallVector propagateShapeForward(SmallVectorImpl &WorkList) { SmallVector NewWorkList; // Pop an element for which we guaranteed to have at least one of the // operand shapes. Add the shape for this and then add users to the work // list. LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n"); while (!WorkList.empty()) { Instruction *Inst = WorkList.pop_back_val(); // New entry, set the value and insert operands bool Propagate = false; if (auto SI = computeShapeInfoForInst(Inst, ShapeMap)) Propagate = setShapeInfo(Inst, *SI); if (Propagate) { NewWorkList.push_back(Inst); for (auto *User : Inst->users()) if (ShapeMap.count(User) == 0) WorkList.push_back(cast(User)); } } return NewWorkList; } /// Propagate the shape to operands of instructions with shape information. /// \p Worklist contains the instruction for which we already know the shape. SmallVector propagateShapeBackward(SmallVectorImpl &WorkList) { SmallVector NewWorkList; auto pushInstruction = [](Value *V, SmallVectorImpl &WorkList) { Instruction *I = dyn_cast(V); if (I) WorkList.push_back(I); }; // Pop an element with known shape. Traverse the operands, if their shape // derives from the result shape and is unknown, add it and add them to the // worklist. LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n"); while (!WorkList.empty()) { Value *V = WorkList.pop_back_val(); size_t BeforeProcessingV = WorkList.size(); if (!isa(V)) continue; Value *MatrixA; Value *MatrixB; Value *M; Value *N; Value *K; if (match(V, m_Intrinsic( m_Value(MatrixA), m_Value(MatrixB), m_Value(M), m_Value(N), m_Value(K)))) { if (setShapeInfo(MatrixA, {M, N})) pushInstruction(MatrixA, WorkList); if (setShapeInfo(MatrixB, {N, K})) pushInstruction(MatrixB, WorkList); } else if (match(V, m_Intrinsic( m_Value(MatrixA), m_Value(M), m_Value(N)))) { // Flip dimensions. if (setShapeInfo(MatrixA, {M, N})) pushInstruction(MatrixA, WorkList); } else if (match(V, m_Intrinsic( m_Value(MatrixA), m_Value(), m_Value(), m_Value(), m_Value(M), m_Value(N)))) { if (setShapeInfo(MatrixA, {M, N})) { pushInstruction(MatrixA, WorkList); } } else if (isa(V) || match(V, m_Intrinsic())) { // Nothing to do, no matrix input. } else if (isa(V)) { // Nothing to do. We forward-propagated to this so we would just // backward propagate to an instruction with an already known shape. } else if (isUniformShape(V)) { // Propagate to all operands. ShapeInfo Shape = ShapeMap[V]; for (Use &U : cast(V)->operands()) { if (setShapeInfo(U.get(), Shape)) pushInstruction(U.get(), WorkList); } } // After we discovered new shape info for new instructions in the // worklist, we use their users as seeds for the next round of forward // propagation. for (size_t I = BeforeProcessingV; I != WorkList.size(); I++) for (User *U : WorkList[I]->users()) if (isa(U) && V != U) NewWorkList.push_back(cast(U)); } return NewWorkList; } /// (Op0 op Op1)^T -> Op0^T op Op1^T /// Transpose \p Op0 and \p Op1 of shape \p Shape0 and \p Shape1, then use /// them on both sides of \p Operation. Instruction *distributeTransposes( Value *Op0, ShapeInfo Shape0, Value *Op1, ShapeInfo Shape1, MatrixBuilder &Builder, function_ref Operation) { Value *T0 = Builder.CreateMatrixTranspose( Op0, Shape0.NumRows, Shape0.NumColumns, Op0->getName() + "_t"); // We are being run after shape prop, add shape for newly created // instructions so that we lower them later. setShapeInfo(T0, Shape0.t()); Value *T1 = Builder.CreateMatrixTranspose( Op1, Shape1.NumRows, Shape1.NumColumns, Op1->getName() + "_t"); setShapeInfo(T1, Shape1.t()); return Operation(T0, Shape0.t(), T1, Shape1.t()); } void updateShapeAndReplaceAllUsesWith(Instruction &Old, Value *New) { // We need to remove Old from the ShapeMap otherwise RAUW will replace it // with New. We should only add New it it supportsShapeInfo so we insert // it conditionally instead. auto S = ShapeMap.find(&Old); if (S != ShapeMap.end()) { ShapeMap.erase(S); if (supportsShapeInfo(New)) ShapeMap.insert({New, S->second}); } Old.replaceAllUsesWith(New); } /// Sink a top-level transpose inside matmuls and adds. /// This creates and erases instructions as needed, and returns the newly /// created instruction while updating the iterator to avoid invalidation. If /// this returns nullptr, no new instruction was created. Instruction *sinkTranspose(Instruction &I, BasicBlock::reverse_iterator &II) { BasicBlock &BB = *I.getParent(); IRBuilder<> IB(&I); MatrixBuilder Builder(IB); Value *TA, *TAMA, *TAMB; ConstantInt *R, *K, *C; if (!match(&I, m_Intrinsic( m_Value(TA), m_ConstantInt(R), m_ConstantInt(C)))) return nullptr; // Transpose of a transpose is a nop Value *TATA; if (match(TA, m_Intrinsic(m_Value(TATA)))) { updateShapeAndReplaceAllUsesWith(I, TATA); eraseFromParentAndMove(&I, II, BB); eraseFromParentAndMove(TA, II, BB); return nullptr; } // k^T -> k if (isSplat(TA)) { updateShapeAndReplaceAllUsesWith(I, TA); eraseFromParentAndMove(&I, II, BB); return nullptr; } // (A * B)^t -> B^t * A^t // RxK KxC CxK KxR if (match(TA, m_Intrinsic( m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R), m_ConstantInt(K), m_ConstantInt(C)))) { auto NewInst = distributeTransposes( TAMB, {K, C}, TAMA, {R, K}, Builder, [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) { return Builder.CreateMatrixMultiply(T0, T1, Shape0.NumRows, Shape0.NumColumns, Shape1.NumColumns, "mmul"); }); updateShapeAndReplaceAllUsesWith(I, NewInst); eraseFromParentAndMove(&I, II, BB); eraseFromParentAndMove(TA, II, BB); return NewInst; } // Same as above, but with a mul, which occurs when multiplied // with a scalar. // (A * k)^t -> A^t * k // R x C RxC if (match(TA, m_AnyMul(m_Value(TAMA), m_Value(TAMB))) && (isSplat(TAMA) || isSplat(TAMB))) { IRBuilder<> LocalBuilder(&I); // We know that the transposed operand is of shape RxC. // An when multiplied with a scalar, the shape is preserved. auto NewInst = distributeTransposes( TAMA, {R, C}, TAMB, {R, C}, Builder, [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) { bool IsFP = I.getType()->isFPOrFPVectorTy(); auto *Mul = IsFP ? LocalBuilder.CreateFMul(T0, T1, "mmul") : LocalBuilder.CreateMul(T0, T1, "mmul"); auto *Result = cast(Mul); setShapeInfo(Result, Shape0); return Result; }); updateShapeAndReplaceAllUsesWith(I, NewInst); eraseFromParentAndMove(&I, II, BB); eraseFromParentAndMove(TA, II, BB); return NewInst; } // (A + B)^t -> A^t + B^t // RxC RxC CxR CxR if (match(TA, m_AnyAdd(m_Value(TAMA), m_Value(TAMB)))) { IRBuilder<> LocalBuilder(&I); auto NewInst = distributeTransposes( TAMA, {R, C}, TAMB, {R, C}, Builder, [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) { bool IsFP = I.getType()->isFPOrFPVectorTy(); auto *Add = IsFP ? LocalBuilder.CreateFAdd(T0, T1, "madd") : LocalBuilder.CreateAdd(T0, T1, "madd"); auto *Result = cast(Add); setShapeInfo(Result, Shape0); return Result; }); updateShapeAndReplaceAllUsesWith(I, NewInst); eraseFromParentAndMove(&I, II, BB); eraseFromParentAndMove(TA, II, BB); return NewInst; } return nullptr; } void liftTranspose(Instruction &I) { // Erase dead Instructions after lifting transposes from binops. auto CleanupBinOp = [](Instruction &T, Value *A, Value *B) { if (T.use_empty()) T.eraseFromParent(); if (A->use_empty()) cast(A)->eraseFromParent(); if (A != B && B->use_empty()) cast(B)->eraseFromParent(); }; Value *A, *B, *AT, *BT; ConstantInt *R, *K, *C; // A^t * B ^t -> (B * A)^t if (match(&I, m_Intrinsic( m_Value(A), m_Value(B), m_ConstantInt(R), m_ConstantInt(K), m_ConstantInt(C))) && match(A, m_Intrinsic(m_Value(AT))) && match(B, m_Intrinsic(m_Value((BT))))) { IRBuilder<> IB(&I); MatrixBuilder Builder(IB); Value *M = Builder.CreateMatrixMultiply( BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue()); setShapeInfo(M, {C, R}); Instruction *NewInst = Builder.CreateMatrixTranspose(M, C->getZExtValue(), R->getZExtValue()); updateShapeAndReplaceAllUsesWith(I, NewInst); CleanupBinOp(I, A, B); } // A^t + B ^t -> (A + B)^t. Pick rows and columns from first transpose. If // the shape of the second transpose is different, there's a shape conflict // which gets resolved by picking the shape of the first operand. else if (match(&I, m_FAdd(m_Value(A), m_Value(B))) && match(A, m_Intrinsic( m_Value(AT), m_ConstantInt(R), m_ConstantInt(C))) && match(B, m_Intrinsic( m_Value(BT), m_ConstantInt(), m_ConstantInt()))) { IRBuilder<> Builder(&I); auto *Add = cast(Builder.CreateFAdd(AT, BT, "mfadd")); setShapeInfo(Add, {R, C}); MatrixBuilder MBuilder(Builder); Instruction *NewInst = MBuilder.CreateMatrixTranspose( Add, R->getZExtValue(), C->getZExtValue(), "mfadd_t"); updateShapeAndReplaceAllUsesWith(I, NewInst); assert(computeShapeInfoForInst(NewInst, ShapeMap) == computeShapeInfoForInst(&I, ShapeMap) && "Shape of new instruction doesn't match original shape."); CleanupBinOp(I, A, B); assert(computeShapeInfoForInst(Add, ShapeMap).value_or(ShapeMap[Add]) == ShapeMap[Add] && "Shape of updated addition doesn't match cached shape."); } } /// Try moving transposes in order to fold them away or into multiplies. void optimizeTransposes() { // First sink all transposes inside matmuls and adds, hoping that we end up // with NN, NT or TN variants. for (BasicBlock &BB : reverse(Func)) { for (auto II = BB.rbegin(); II != BB.rend();) { Instruction &I = *II; // We may remove II. By default continue on the next/prev instruction. ++II; if (Instruction *NewInst = sinkTranspose(I, II)) II = std::next(BasicBlock::reverse_iterator(NewInst)); } } // If we have a TT matmul or a TT add, lift the transpose. We may be able // to fold into consuming multiply or add. for (BasicBlock &BB : Func) { for (Instruction &I : llvm::make_early_inc_range(BB)) { liftTranspose(I); } } } bool Visit() { SmallVector WorkList; // Initially only the shape of matrix intrinsics is known. // Initialize the work list with ops carrying shape information. for (BasicBlock &BB : Func) for (Instruction &Inst : BB) { IntrinsicInst *II = dyn_cast(&Inst); if (!II) continue; switch (II->getIntrinsicID()) { case Intrinsic::matrix_multiply: case Intrinsic::matrix_transpose: case Intrinsic::matrix_column_major_load: case Intrinsic::matrix_column_major_store: WorkList.push_back(&Inst); break; default: break; } } // Avoid unnecessary work if there are no matrix intrinsics in the function. if (WorkList.empty()) return false; // Propagate shapes until nothing changes any longer. while (!WorkList.empty()) { WorkList = propagateShapeForward(WorkList); WorkList = propagateShapeBackward(WorkList); } if (!isMinimal()) { optimizeTransposes(); if (PrintAfterTransposeOpt) { dbgs() << "Dump after matrix transpose optimization:\n"; Func.print(dbgs()); } } bool Changed = false; SmallVector MaybeFusableInsts; SmallVector MatrixInsts; SmallVector LifetimeEnds; // First, collect all instructions with shape information and candidates for // fusion (currently only matrix multiplies). ReversePostOrderTraversal RPOT(&Func); for (auto *BB : RPOT) for (Instruction &I : *BB) { if (match(&I, m_Intrinsic())) LifetimeEnds.push_back(cast(&I)); if (ShapeMap.find(&I) == ShapeMap.end()) continue; if (match(&I, m_Intrinsic())) MaybeFusableInsts.push_back(cast(&I)); MatrixInsts.push_back(&I); } // Second, try to lower any dot products SmallPtrSet FusedInsts; for (CallInst *CI : MaybeFusableInsts) lowerDotProduct(CI, FusedInsts, getFastMathFlags(CI)); // Third, try to fuse candidates. for (CallInst *CI : MaybeFusableInsts) LowerMatrixMultiplyFused(CI, FusedInsts, LifetimeEnds); Changed = !FusedInsts.empty(); // Fourth, lower remaining instructions with shape information. for (Instruction *Inst : MatrixInsts) { if (FusedInsts.count(Inst)) continue; IRBuilder<> Builder(Inst); if (CallInst *CInst = dyn_cast(Inst)) Changed |= VisitCallInst(CInst); Value *Op1; Value *Op2; if (auto *BinOp = dyn_cast(Inst)) Changed |= VisitBinaryOperator(BinOp); if (auto *UnOp = dyn_cast(Inst)) Changed |= VisitUnaryOperator(UnOp); if (match(Inst, m_Load(m_Value(Op1)))) Changed |= VisitLoad(cast(Inst), Op1, Builder); else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2)))) Changed |= VisitStore(cast(Inst), Op1, Op2, Builder); } if (ORE) { RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func); RemarkGen.emitRemarks(); } // Delete the instructions backwards, as it has a reduced likelihood of // having to update as many def-use and use-def chains. // // Because we add to ToRemove during fusion we can't guarantee that defs // are before uses. Change uses to poison temporarily as these should get // removed as well. // // For verification, we keep track of where we changed uses to poison in // PoisonedInsts and then check that we in fact remove them. SmallSet PoisonedInsts; for (auto *Inst : reverse(ToRemove)) { for (Use &U : llvm::make_early_inc_range(Inst->uses())) { if (auto *Poisoned = dyn_cast(U.getUser())) PoisonedInsts.insert(Poisoned); U.set(PoisonValue::get(Inst->getType())); } Inst->eraseFromParent(); PoisonedInsts.erase(Inst); } if (!PoisonedInsts.empty()) { // If we didn't remove all poisoned instructions, it's a hard error. dbgs() << "Poisoned but present instructions:\n"; for (auto *I : PoisonedInsts) dbgs() << *I << "\n"; llvm_unreachable("Poisoned but instruction not removed"); } return Changed; } /// Replace intrinsic calls bool VisitCallInst(CallInst *Inst) { if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic()) return false; switch (Inst->getCalledFunction()->getIntrinsicID()) { case Intrinsic::matrix_multiply: LowerMultiply(Inst); break; case Intrinsic::matrix_transpose: LowerTranspose(Inst); break; case Intrinsic::matrix_column_major_load: LowerColumnMajorLoad(Inst); break; case Intrinsic::matrix_column_major_store: LowerColumnMajorStore(Inst); break; default: return false; } return true; } /// Compute the alignment for a column/row \p Idx with \p Stride between them. /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a /// ConstantInt, reduce the initial alignment based on the byte offset. For /// non-ConstantInt strides, return the common alignment of the initial /// alignment and the element size in bytes. Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy, MaybeAlign A) const { Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy); if (Idx == 0) return InitialAlign; TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy); if (auto *ConstStride = dyn_cast(Stride)) { uint64_t StrideInBytes = ConstStride->getZExtValue() * ElementSizeInBits / 8; return commonAlignment(InitialAlign, Idx * StrideInBytes); } return commonAlignment(InitialAlign, ElementSizeInBits / 8); } /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between /// vectors. MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride, bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) { auto *VType = cast(Ty); Type *EltTy = VType->getElementType(); Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride()); Value *EltPtr = Ptr; MatrixTy Result; for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) { Value *GEP = computeVectorAddr( EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I), Stride, Shape.getStride(), EltTy, Builder); Value *Vector = Builder.CreateAlignedLoad( VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign), IsVolatile, "col.load"); Result.addVector(Vector); } return Result.addNumLoads(getNumOps(Result.getVectorTy()) * Result.getNumVectors()); } /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix, /// starting at \p MatrixPtr[I][J]. MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile, ShapeInfo MatrixShape, Value *I, Value *J, ShapeInfo ResultShape, Type *EltTy, IRBuilder<> &Builder) { Value *Offset = Builder.CreateAdd( Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); Value *TileStart = Builder.CreateGEP(EltTy, MatrixPtr, Offset); auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows * ResultShape.NumColumns); return loadMatrix(TileTy, TileStart, Align, Builder.getInt64(MatrixShape.getStride()), IsVolatile, ResultShape, Builder); } /// Lower a load instruction with shape information. void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride, bool IsVolatile, ShapeInfo Shape) { IRBuilder<> Builder(Inst); finalizeLowering(Inst, loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile, Shape, Builder), Builder); } /// Lowers llvm.matrix.column.major.load. /// /// The intrinsic loads a matrix from memory using a stride between columns. void LowerColumnMajorLoad(CallInst *Inst) { assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && "Intrinsic only supports column-major layout!"); Value *Ptr = Inst->getArgOperand(0); Value *Stride = Inst->getArgOperand(1); LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride, cast(Inst->getArgOperand(2))->isOne(), {Inst->getArgOperand(3), Inst->getArgOperand(4)}); } /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p /// MatrixPtr[I][J]. void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr, MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape, Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) { Value *Offset = Builder.CreateAdd( Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); Value *TileStart = Builder.CreateGEP(EltTy, MatrixPtr, Offset); auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() * StoreVal.getNumColumns()); storeMatrix(TileTy, StoreVal, TileStart, MAlign, Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder); } /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between /// vectors. MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, MaybeAlign MAlign, Value *Stride, bool IsVolatile, IRBuilder<> &Builder) { auto VType = cast(Ty); Value *EltPtr = Ptr; for (auto Vec : enumerate(StoreVal.vectors())) { Value *GEP = computeVectorAddr( EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), Vec.index()), Stride, StoreVal.getStride(), VType->getElementType(), Builder); Builder.CreateAlignedStore(Vec.value(), GEP, getAlignForIndex(Vec.index(), Stride, VType->getElementType(), MAlign), IsVolatile); } return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) * StoreVal.getNumVectors()); } /// Lower a store instruction with shape information. void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A, Value *Stride, bool IsVolatile, ShapeInfo Shape) { IRBuilder<> Builder(Inst); auto StoreVal = getMatrix(Matrix, Shape, Builder); finalizeLowering(Inst, storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride, IsVolatile, Builder), Builder); } /// Lowers llvm.matrix.column.major.store. /// /// The intrinsic store a matrix back memory using a stride between columns. void LowerColumnMajorStore(CallInst *Inst) { assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && "Intrinsic only supports column-major layout!"); Value *Matrix = Inst->getArgOperand(0); Value *Ptr = Inst->getArgOperand(1); Value *Stride = Inst->getArgOperand(2); LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride, cast(Inst->getArgOperand(3))->isOne(), {Inst->getArgOperand(4), Inst->getArgOperand(5)}); } // Set elements I..I+NumElts-1 to Block Value *insertVector(Value *Col, unsigned I, Value *Block, IRBuilder<> &Builder) { // First, bring Block to the same size as Col unsigned BlockNumElts = cast(Block->getType())->getNumElements(); unsigned NumElts = cast(Col->getType())->getNumElements(); assert(NumElts >= BlockNumElts && "Too few elements for current block"); Block = Builder.CreateShuffleVector( Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts)); // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7, // 8, 4, 5, 6 SmallVector Mask; unsigned i; for (i = 0; i < I; i++) Mask.push_back(i); unsigned VecNumElts = cast(Col->getType())->getNumElements(); for (; i < I + BlockNumElts; i++) Mask.push_back(i - I + VecNumElts); for (; i < VecNumElts; i++) Mask.push_back(i); return Builder.CreateShuffleVector(Col, Block, Mask); } Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp, IRBuilder<> &Builder, bool AllowContraction, unsigned &NumComputeOps) { NumComputeOps += getNumOps(A->getType()); if (!Sum) return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B); if (UseFPOp) { if (AllowContraction) { // Use fmuladd for floating point operations and let the backend decide // if that's profitable. Function *FMulAdd = Intrinsic::getDeclaration( Func.getParent(), Intrinsic::fmuladd, A->getType()); return Builder.CreateCall(FMulAdd, {A, B, Sum}); } NumComputeOps += getNumOps(A->getType()); Value *Mul = Builder.CreateFMul(A, B); return Builder.CreateFAdd(Sum, Mul); } NumComputeOps += getNumOps(A->getType()); Value *Mul = Builder.CreateMul(A, B); return Builder.CreateAdd(Sum, Mul); } /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For /// users with shape information, there's nothing to do: they will use the /// cached value when they are lowered. For other users, \p Matrix is /// flattened and the uses are updated to use it. Also marks \p Inst for /// deletion. void finalizeLowering(Instruction *Inst, MatrixTy Matrix, IRBuilder<> &Builder) { auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix)); (void)inserted; assert(inserted.second && "multiple matrix lowering mapping"); ToRemove.push_back(Inst); Value *Flattened = nullptr; for (Use &U : llvm::make_early_inc_range(Inst->uses())) { if (ShapeMap.find(U.getUser()) == ShapeMap.end()) { if (!Flattened) Flattened = Matrix.embedInVector(Builder); U.set(Flattened); } } } /// Special case for MatMul lowering. Prevents scalar loads of row-major /// vectors Lowers to vector reduction add instead of sequential add if /// reassocation is enabled. void lowerDotProduct(CallInst *MatMul, SmallPtrSet &FusedInsts, FastMathFlags FMF) { if (FusedInsts.contains(MatMul) || MatrixLayout != MatrixLayoutTy::ColumnMajor) return; ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); if (LShape.NumRows != 1 || RShape.NumColumns != 1) // not a dot product return; Value *LHS = MatMul->getArgOperand(0); Value *RHS = MatMul->getArgOperand(1); Type *ElementType = cast(LHS->getType())->getElementType(); bool IsIntVec = ElementType->isIntegerTy(); // Floating point reductions require reassocation. if (!IsIntVec && !FMF.allowReassoc()) return; auto CanBeFlattened = [](Value *Op) { if (match(Op, m_BinOp())) return true; return match( Op, m_OneUse(m_CombineOr( m_Load(m_Value()), m_CombineOr(m_Intrinsic(), m_Intrinsic( m_Value(), m_SpecificInt(1)))))); }; // Returns the cost benefit of using \p Op with the dot product lowering. If // the returned cost is < 0, the argument is cheaper to use in the // dot-product lowering. auto GetCostForArg = [this, &CanBeFlattened](Value *Op, unsigned N) { if (ShapeMap.find(Op) == ShapeMap.end()) return InstructionCost::getInvalid(); if (!isa(Op)) return InstructionCost(0); FixedVectorType *VecTy = cast(Op->getType()); Type *EltTy = VecTy->getElementType(); if (!CanBeFlattened(Op)) { InstructionCost EmbedCost(0); // Roughly estimate the cost for embedding the columns into a vector. for (unsigned I = 1; I < N; ++I) EmbedCost += TTI.getShuffleCost(TTI::SK_Splice, FixedVectorType::get(EltTy, 1), std::nullopt, TTI::TCK_RecipThroughput); return EmbedCost; } if (match(Op, m_BinOp()) && ShapeMap.find(Op) != ShapeMap.end()) { InstructionCost OriginalCost = TTI.getArithmeticInstrCost(cast(Op)->getOpcode(), EltTy) * N; InstructionCost NewCost = TTI.getArithmeticInstrCost( cast(Op)->getOpcode(), VecTy); return NewCost - OriginalCost; } if (match(Op, m_Intrinsic())) { // The transpose can be skipped for the dot product lowering, roughly // estimate the savings as the cost of embedding the columns in a // vector. InstructionCost EmbedCost(0); for (unsigned I = 1; I < N; ++I) EmbedCost -= TTI.getShuffleCost(TTI::SK_Splice, FixedVectorType::get(EltTy, 1), std::nullopt, TTI::TCK_RecipThroughput); return EmbedCost; } // Costs for loads. if (N == 1) return InstructionCost(0); return TTI.getMemoryOpCost(Instruction::Load, VecTy, Align(1), 0) - N * TTI.getMemoryOpCost(Instruction::Load, EltTy, Align(1), 0); }; // Iterate over LHS and operations feeding LHS and check if it is profitable // to flatten the visited ops. For each op, we compute the difference // between the flattened and matrix versions. SmallPtrSet Seen; SmallVector WorkList; SmallVector ToFlatten; WorkList.push_back(LHS); InstructionCost LHSCost(0); while (!WorkList.empty()) { Value *Op = WorkList.pop_back_val(); if (!Seen.insert(Op).second) continue; InstructionCost OpCost = GetCostForArg(Op, LShape.NumColumns); if (OpCost + LHSCost >= LHSCost) continue; LHSCost += OpCost; ToFlatten.push_back(Op); if (auto *I = dyn_cast(Op)) WorkList.append(I->op_begin(), I->op_end()); } // We compare the costs of a vector.reduce.add to sequential add. int AddOpCode = IsIntVec ? Instruction::Add : Instruction::FAdd; int MulOpCode = IsIntVec ? Instruction::Mul : Instruction::FMul; InstructionCost ReductionCost = TTI.getArithmeticReductionCost( AddOpCode, cast(LHS->getType()), IsIntVec ? std::nullopt : std::optional(FMF)) + TTI.getArithmeticInstrCost(MulOpCode, LHS->getType()); InstructionCost SequentialAddCost = TTI.getArithmeticInstrCost(AddOpCode, ElementType) * (LShape.NumColumns - 1) + TTI.getArithmeticInstrCost(MulOpCode, ElementType) * (LShape.NumColumns); if ((LHSCost + ReductionCost - SequentialAddCost) > InstructionCost(0)) return; FusedInsts.insert(MatMul); IRBuilder<> Builder(MatMul); auto FlattenArg = [&Builder, &FusedInsts, &CanBeFlattened, this](Value *Op) { // Matmul must be the only user of loads because we don't use LowerLoad // for row vectors (LowerLoad results in scalar loads and shufflevectors // instead of single vector load). if (!CanBeFlattened(Op)) return; if (match(Op, m_BinOp()) && ShapeMap.find(Op) != ShapeMap.end()) { ShapeMap[Op] = ShapeMap[Op].t(); return; } FusedInsts.insert(cast(Op)); // If vector uses the builtin load, lower to a LoadInst Value *Arg; if (match(Op, m_Intrinsic( m_Value(Arg)))) { auto *NewLoad = Builder.CreateLoad(Op->getType(), Arg); Op->replaceAllUsesWith(NewLoad); cast(Op)->eraseFromParent(); return; } else if (match(Op, m_Intrinsic( m_Value(Arg)))) { ToRemove.push_back(cast(Op)); Op->replaceAllUsesWith(Arg); return; } }; for (auto *V : ToFlatten) FlattenArg(V); LHS = MatMul->getArgOperand(0); // Insert mul/fmul and llvm.vector.reduce.fadd Value *Mul = IsIntVec ? Builder.CreateMul(LHS, RHS) : Builder.CreateFMul(LHS, RHS); Value *Result; if (IsIntVec) Result = Builder.CreateAddReduce(Mul); else { Result = Builder.CreateFAddReduce( ConstantFP::get(cast(LHS->getType())->getElementType(), 0.0), Mul); cast(Result)->setFastMathFlags(FMF); } // pack scalar back into a matrix and then replace matmul inst Result = Builder.CreateInsertElement(PoisonValue::get(MatMul->getType()), Result, uint64_t(0)); MatMul->replaceAllUsesWith(Result); FusedInsts.insert(MatMul); ToRemove.push_back(MatMul); } /// Compute \p Result += \p A * \p B for input matrices with left-associating /// addition. /// /// We can fold a transpose into the operand that is used to extract scalars. /// This is the first operands with row-major and the second with /// column-major. If \p IsScalarMatrixTransposed we assume the appropriate /// operand is transposed. void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A, const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled, bool IsScalarMatrixTransposed, FastMathFlags FMF) { const unsigned VF = std::max( TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) .getFixedValue() / Result.getElementType()->getPrimitiveSizeInBits().getFixedValue(), 1U); unsigned R = Result.getNumRows(); unsigned C = Result.getNumColumns(); unsigned M = A.getNumColumns(); bool IsFP = Result.getElementType()->isFloatingPointTy(); assert(A.isColumnMajor() == B.isColumnMajor() && Result.isColumnMajor() == A.isColumnMajor() && "operands must agree on matrix layout"); unsigned NumComputeOps = 0; Builder.setFastMathFlags(FMF); if (A.isColumnMajor()) { // Multiply columns from the first operand with scalars from the second // operand. Then move along the K axes and accumulate the columns. With // this the adds can be vectorized without reassociation. for (unsigned J = 0; J < C; ++J) { unsigned BlockSize = VF; // If Result is zero, we don't need to accumulate in the K==0 iteration. bool isSumZero = isa(Result.getColumn(J)); for (unsigned I = 0; I < R; I += BlockSize) { // Gradually lower the vectorization factor to cover the remainder. while (I + BlockSize > R) BlockSize /= 2; Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder) : nullptr; for (unsigned K = 0; K < M; ++K) { Value *L = A.extractVector(I, K, BlockSize, Builder); Value *RH = Builder.CreateExtractElement( B.getColumn(IsScalarMatrixTransposed ? K : J), IsScalarMatrixTransposed ? J : K); Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat"); Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat, IsFP, Builder, FMF.allowContract(), NumComputeOps); } Result.setVector(J, insertVector(Result.getVector(J), I, Sum, Builder)); } } } else { // Multiply rows from the second operand with scalars from the first // operand. Then move along the K axes and accumulate the rows. With this // the adds can be vectorized without reassociation. for (unsigned I = 0; I < R; ++I) { unsigned BlockSize = VF; bool isSumZero = isa(Result.getRow(I)); for (unsigned J = 0; J < C; J += BlockSize) { // Gradually lower the vectorization factor to cover the remainder. while (J + BlockSize > C) BlockSize /= 2; Value *Sum = nullptr; for (unsigned K = 0; K < M; ++K) { Value *R = B.extractVector(K, J, BlockSize, Builder); Value *LH = Builder.CreateExtractElement( A.getVector(IsScalarMatrixTransposed ? K : I), IsScalarMatrixTransposed ? I : K); Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat"); Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R, IsFP, Builder, FMF.allowContract(), NumComputeOps); } Result.setVector(I, insertVector(Result.getVector(I), J, Sum, Builder)); } } } Result.addNumComputeOps(NumComputeOps); } /// Ensure that the memory in \p Load does not alias \p Store by potentially /// copying it to a new location. This new or otherwise the original location /// is returned. Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store, CallInst *MatMul) { MemoryLocation StoreLoc = MemoryLocation::get(Store); MemoryLocation LoadLoc = MemoryLocation::get(Load); // If we can statically determine noalias we're good. if (AA->isNoAlias(LoadLoc, StoreLoc)) return Load->getPointerOperand(); // Create code to check if the memory locations of the Load and Store // overlap and if they do, copy Load's operand to a new buffer. // First, create new blocks for 2n part of the check and the copy. BasicBlock *Check0 = MatMul->getParent(); // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a // DT. Manually collect dominator tree updates, to avoid unnecessary work, // as we adjust Check0 and Check1's branches. SmallVector DTUpdates; for (BasicBlock *Succ : successors(Check0)) DTUpdates.push_back({DT->Delete, Check0, Succ}); BasicBlock *Check1 = SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, nullptr, "alias_cont"); BasicBlock *Copy = SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, nullptr, "copy"); BasicBlock *Fusion = SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, nullptr, "no_alias"); // Check if the loaded memory location begins before the end of the store // location. If the condition holds, they might overlap, otherwise they are // guaranteed to not overlap. IRBuilder<> Builder(MatMul); Check0->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(Check0); Type *IntPtrTy = Builder.getIntPtrTy(Load->getDataLayout()); Value *StoreBegin = Builder.CreatePtrToInt( const_cast(StoreLoc.Ptr), IntPtrTy, "store.begin"); Value *StoreEnd = Builder.CreateAdd( StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()), "store.end", true, true); Value *LoadBegin = Builder.CreatePtrToInt(const_cast(LoadLoc.Ptr), IntPtrTy, "load.begin"); Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1, Fusion); // Check if the store begins before the end of the load location. If the // condition holds, they alias, otherwise they are guaranteed to not // overlap. Check1->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(Check1, Check1->begin()); Value *LoadEnd = Builder.CreateAdd( LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()), "load.end", true, true); Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy, Fusion); // Copy load operand to new alloca. Builder.SetInsertPoint(Copy, Copy->begin()); auto *VT = cast(Load->getType()); // Use an array type for the alloca, to avoid potentially huge alignment // requirements for large vector types. auto *ArrayTy = ArrayType::get(VT->getElementType(), VT->getNumElements()); AllocaInst *Alloca = Builder.CreateAlloca(ArrayTy, Load->getPointerAddressSpace()); Builder.CreateMemCpy(Alloca, Alloca->getAlign(), Load->getPointerOperand(), Load->getAlign(), LoadLoc.Size.getValue()); Builder.SetInsertPoint(Fusion, Fusion->begin()); PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3); PHI->addIncoming(Load->getPointerOperand(), Check0); PHI->addIncoming(Load->getPointerOperand(), Check1); PHI->addIncoming(Alloca, Copy); // Adjust DT. DTUpdates.push_back({DT->Insert, Check0, Check1}); DTUpdates.push_back({DT->Insert, Check0, Fusion}); DTUpdates.push_back({DT->Insert, Check1, Copy}); DTUpdates.push_back({DT->Insert, Check1, Fusion}); DT->applyUpdates(DTUpdates); return PHI; } bool isFusionProfitable(CallInst *MatMul) { if (ForceFusion) return true; ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); const unsigned R = LShape.NumRows; const unsigned C = RShape.NumColumns; const unsigned M = LShape.NumColumns; auto *EltType = cast(MatMul->getType())->getElementType(); const unsigned VF = std::max( TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) .getFixedValue() / EltType->getPrimitiveSizeInBits().getFixedValue(), 1U); // Cost model for tiling // // For tiling to be beneficial, we need reuse either along the R or // the C axis. We vectorize along the R axis so that means at least // 3 elements. // TODO: Also consider cost of copying if operands alias. if (R <= VF && C == 1) return false; // Then we need enough elements to exceed the number of vector // registers we have. Note that this is an oversimplification since // fusing also takes some extra loads which may exceed the number of // reloads necessary. unsigned Op0Regs = (R + VF - 1) / VF * M; unsigned Op1Regs = (M + VF - 1) / VF * C; return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(TTI.getRegisterClassForType(true)); } MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) { MatrixTy Res; auto *ColumType = FixedVectorType::get(EltType, R); for (unsigned I = 0; I < C; ++I) Res.addVector(ConstantAggregateZero::get(ColumType)); return Res; } void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape, Value *RPtr, ShapeInfo RShape, StoreInst *Store) { auto *EltType = cast(MatMul->getType())->getElementType(); // Create the main tiling loop nest. TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize); DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); Instruction *InsertI = cast(MatMul); BasicBlock *Start = InsertI->getParent(); BasicBlock *End = SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue"); IRBuilder<> Builder(MatMul); BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI); Type *TileVecTy = FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize); MatrixTy TileResult; // Insert in the inner loop header. Builder.SetInsertPoint(TI.KLoop.Header->getTerminator()); // Create PHI nodes for the result columns to accumulate across iterations. SmallVector ColumnPhis; for (unsigned I = 0; I < TileSize; I++) { auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I)); Phi->addIncoming(ConstantAggregateZero::get(TileVecTy), TI.RowLoop.Header->getSingleSuccessor()); TileResult.addVector(Phi); ColumnPhis.push_back(Phi); } // Insert in the inner loop body, which computes // Res += Load(CurrentRow, K) * Load(K, CurrentColumn) Builder.SetInsertPoint(InnerBody->getTerminator()); // Load tiles of the operands. MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.RowLoop.Index, TI.KLoop.Index, {TileSize, TileSize}, EltType, Builder); MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.KLoop.Index, TI.ColumnLoop.Index, {TileSize, TileSize}, EltType, Builder); emitMatrixMultiply(TileResult, A, B, Builder, true, false, getFastMathFlags(MatMul)); // Store result after the inner loop is done. Builder.SetInsertPoint(TI.RowLoop.Latch->getTerminator()); storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(), Store->isVolatile(), {LShape.NumRows, RShape.NumColumns}, TI.RowLoop.Index, TI.ColumnLoop.Index, EltType, Builder); for (unsigned I = 0; I < TileResult.getNumVectors(); I++) ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.KLoop.Latch); // Force unrolling of a few iterations of the inner loop, to make sure there // is enough work per iteration. // FIXME: The unroller should make this decision directly instead, but // currently the cost-model is not up to the task. unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize); addStringMetadataToLoop(LI->getLoopFor(TI.KLoop.Header), "llvm.loop.unroll.count", InnerLoopUnrollCount); } void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1, StoreInst *Store, SmallPtrSetImpl &FusedInsts) { assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && "Tiling only supported for column-major matrixes at the moment!"); if (!isFusionProfitable(MatMul)) return; ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); const unsigned R = LShape.NumRows; const unsigned C = RShape.NumColumns; const unsigned M = LShape.NumColumns; auto *EltType = cast(MatMul->getType())->getElementType(); Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul); Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul); Value *CPtr = Store->getPointerOperand(); if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0)) createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store); else { IRBuilder<> Builder(Store); for (unsigned J = 0; J < C; J += TileSize) for (unsigned I = 0; I < R; I += TileSize) { const unsigned TileR = std::min(R - I, unsigned(TileSize)); const unsigned TileC = std::min(C - J, unsigned(TileSize)); MatrixTy Res = getZeroMatrix(EltType, TileR, TileC); for (unsigned K = 0; K < M; K += TileSize) { const unsigned TileM = std::min(M - K, unsigned(TileSize)); MatrixTy A = loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(), LShape, Builder.getInt64(I), Builder.getInt64(K), {TileR, TileM}, EltType, Builder); MatrixTy B = loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(), RShape, Builder.getInt64(K), Builder.getInt64(J), {TileM, TileC}, EltType, Builder); emitMatrixMultiply(Res, A, B, Builder, true, false, getFastMathFlags(MatMul)); } storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M}, Builder.getInt64(I), Builder.getInt64(J), EltType, Builder); } } // Mark eliminated instructions as fused and remove them. FusedInsts.insert(Store); FusedInsts.insert(MatMul); Store->eraseFromParent(); MatMul->eraseFromParent(); if (LoadOp0->hasNUses(0)) { FusedInsts.insert(LoadOp0); LoadOp0->eraseFromParent(); } if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) { FusedInsts.insert(LoadOp1); LoadOp1->eraseFromParent(); } } /// Try to lower matrix multiply chains by fusing operations. /// /// Call finalizeLowering on lowered instructions. Instructions that are /// completely eliminated by fusion are added to \p FusedInsts. void LowerMatrixMultiplyFused(CallInst *MatMul, SmallPtrSetImpl &FusedInsts, SmallVector &LifetimeEnds) { if (!FuseMatrix || !DT) return; assert(AA && LI && "Analyses should be available"); Value *A = MatMul->getArgOperand(0); Value *B = MatMul->getArgOperand(1); // We can fold the transpose into the operand that is used to fetch scalars. Value *T; if (MatrixLayout == MatrixLayoutTy::ColumnMajor ? match(B, m_Intrinsic(m_Value(T))) : match(A, m_Intrinsic(m_Value(T)))) { IRBuilder<> Builder(MatMul); auto *EltType = cast(MatMul->getType())->getElementType(); ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); const unsigned R = LShape.NumRows; const unsigned M = LShape.NumColumns; const unsigned C = RShape.NumColumns; MatrixTy MA; MatrixTy MB; Value *Transpose; if (MatrixLayout == MatrixLayoutTy::ColumnMajor) { MA = getMatrix(A, ShapeInfo(R, M), Builder); MB = getMatrix(T, ShapeInfo(C, M), Builder); Transpose = B; } else { MA = getMatrix(T, ShapeInfo(R, M), Builder); MB = getMatrix(B, ShapeInfo(C, M), Builder); Transpose = A; } // Initialize the output MatrixTy Result(R, C, EltType); emitMatrixMultiply(Result, MA, MB, Builder, false, true, getFastMathFlags(MatMul)); FusedInsts.insert(MatMul); if (Transpose->hasOneUse()) { FusedInsts.insert(cast(Transpose)); ToRemove.push_back(cast(Transpose)); // TODO: add a fake entry for the folded instruction so that this is // included in the expression in the remark. Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType); } finalizeLowering(MatMul, Result, Builder); return; } if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor) return; // Lower {ld, ld} -> matmul -> st chains. No need to call finalizeLowering // since the single store user will be lowered as part of this. auto *LoadOp0 = dyn_cast(A); auto *LoadOp1 = dyn_cast(B); auto *Store = dyn_cast(*MatMul->user_begin()); if (LoadOp0 && LoadOp1 && Store) { // The store address must dominate the MatMul instruction, otherwise // we create invalid IR. SetVector WorkList; WorkList.insert(Store->getOperand(1)); SmallVector ToHoist; for (unsigned I = 0; I != WorkList.size(); ++I) { Value *Current = WorkList[I]; auto *CurrI = dyn_cast(Current); if (!CurrI) continue; if (isa(CurrI)) return; if (DT->dominates(CurrI, MatMul)) continue; if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory()) return; ToHoist.push_back(CurrI); WorkList.insert(CurrI->op_begin(), CurrI->op_end()); } sort(ToHoist, [this](Instruction *A, Instruction *B) { return DT->dominates(A, B); }); for (Instruction *I : ToHoist) I->moveBefore(MatMul); // Deal with lifetime.end calls that might be between Load0/Load1 and the // store. To avoid introducing loads to dead objects (i.e. after the // lifetime has been termined by @llvm.lifetime.end), either sink them // after the store if in the same block, or remove the lifetime.end marker // otherwise. This might pessimize further optimizations, by extending the // lifetime of the object until the function returns, but should be // conservatively correct. MemoryLocation Load0Loc = MemoryLocation::get(LoadOp0); MemoryLocation Load1Loc = MemoryLocation::get(LoadOp1); BasicBlock *StoreParent = Store->getParent(); bool FusableOpsInSameBlock = LoadOp0->getParent() == StoreParent && LoadOp1->getParent() == StoreParent; for (unsigned Idx = 0; Idx != LifetimeEnds.size();) { IntrinsicInst *End = LifetimeEnds[Idx]; auto Inc = make_scope_exit([&Idx]() { Idx++; }); // If the lifetime.end is guaranteed to be before the loads or after the // store, it won't interfere with fusion. if (DT->dominates(End, LoadOp0) && DT->dominates(End, LoadOp1)) continue; if (DT->dominates(Store, End)) continue; // If all fusable ops are in the same block and the lifetime.end is in a // different block, it won't interfere with fusion. if (FusableOpsInSameBlock && End->getParent() != StoreParent) continue; // If the loads don't alias the lifetime.end, it won't interfere with // fusion. MemoryLocation EndLoc = MemoryLocation::getForArgument(End, 1, nullptr); if (!EndLoc.Ptr) continue; if (AA->isNoAlias(Load0Loc, EndLoc) && AA->isNoAlias(Load1Loc, EndLoc)) continue; // If both lifetime.end and the store are in the same block, extend the // lifetime until after the store, so the new lifetime covers the loads // we introduce later. if (End->getParent() == StoreParent) { End->moveAfter(Store); continue; } // Otherwise remove the conflicting lifetime.end marker. ToRemove.push_back(End); std::swap(LifetimeEnds[Idx], LifetimeEnds.back()); LifetimeEnds.pop_back(); Inc.release(); } emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts); return; } } /// Lowers llvm.matrix.multiply. void LowerMultiply(CallInst *MatMul) { IRBuilder<> Builder(MatMul); auto *EltType = cast(MatMul->getType())->getElementType(); ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder); const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder); assert(Lhs.getElementType() == Rhs.getElementType() && "Matrix multiply argument element types do not match."); const unsigned R = LShape.NumRows; const unsigned C = RShape.NumColumns; assert(LShape.NumColumns == RShape.NumRows); // Initialize the output MatrixTy Result(R, C, EltType); assert(Lhs.getElementType() == Result.getElementType() && "Matrix multiply result element type does not match arguments."); emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false, getFastMathFlags(MatMul)); finalizeLowering(MatMul, Result, Builder); } /// Lowers llvm.matrix.transpose. void LowerTranspose(CallInst *Inst) { MatrixTy Result; IRBuilder<> Builder(Inst); Value *InputVal = Inst->getArgOperand(0); VectorType *VectorTy = cast(InputVal->getType()); ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2)); MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder); const unsigned NewNumVecs = InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns; const unsigned NewNumElts = InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows; for (unsigned I = 0; I < NewNumVecs; ++I) { // Build a single result vector. First initialize it. Value *ResultVector = PoisonValue::get( FixedVectorType::get(VectorTy->getElementType(), NewNumElts)); // Go through the old elements and insert it into the resulting vector. for (auto J : enumerate(InputMatrix.vectors())) { Value *Elt = Builder.CreateExtractElement(J.value(), I); // Row and column indices are transposed. ResultVector = Builder.CreateInsertElement(ResultVector, Elt, J.index()); } Result.addVector(ResultVector); } // TODO: Improve estimate of operations needed for transposes. Currently we // just count the insertelement/extractelement instructions, but do not // account for later simplifications/combines. finalizeLowering( Inst, Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns) .addNumExposedTransposes(1), Builder); } /// Lower load instructions, if shape information is available. bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) { auto I = ShapeMap.find(Inst); if (I == ShapeMap.end()) return false; LowerLoad(Inst, Ptr, Inst->getAlign(), Builder.getInt64(I->second.getStride()), Inst->isVolatile(), I->second); return true; } bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr, IRBuilder<> &Builder) { auto I = ShapeMap.find(StoredVal); if (I == ShapeMap.end()) return false; LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(), Builder.getInt64(I->second.getStride()), Inst->isVolatile(), I->second); return true; } /// Lower binary operators, if shape information is available. bool VisitBinaryOperator(BinaryOperator *Inst) { auto I = ShapeMap.find(Inst); if (I == ShapeMap.end()) return false; Value *Lhs = Inst->getOperand(0); Value *Rhs = Inst->getOperand(1); IRBuilder<> Builder(Inst); ShapeInfo &Shape = I->second; MatrixTy Result; MatrixTy A = getMatrix(Lhs, Shape, Builder); MatrixTy B = getMatrix(Rhs, Shape, Builder); assert(A.isColumnMajor() == B.isColumnMajor() && Result.isColumnMajor() == A.isColumnMajor() && "operands must agree on matrix layout"); Builder.setFastMathFlags(getFastMathFlags(Inst)); // Helper to perform binary op on vectors. auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) { switch (Inst->getOpcode()) { case Instruction::Add: return Builder.CreateAdd(LHS, RHS); case Instruction::Mul: return Builder.CreateMul(LHS, RHS); case Instruction::Sub: return Builder.CreateSub(LHS, RHS); case Instruction::FAdd: return Builder.CreateFAdd(LHS, RHS); case Instruction::FMul: return Builder.CreateFMul(LHS, RHS); case Instruction::FSub: return Builder.CreateFSub(LHS, RHS); default: llvm_unreachable("Unsupported binary operator for matrix"); } }; for (unsigned I = 0; I < Shape.getNumVectors(); ++I) Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I))); finalizeLowering(Inst, Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * Result.getNumVectors()), Builder); return true; } /// Lower unary operators, if shape information is available. bool VisitUnaryOperator(UnaryOperator *Inst) { auto I = ShapeMap.find(Inst); if (I == ShapeMap.end()) return false; Value *Op = Inst->getOperand(0); IRBuilder<> Builder(Inst); ShapeInfo &Shape = I->second; MatrixTy Result; MatrixTy M = getMatrix(Op, Shape, Builder); Builder.setFastMathFlags(getFastMathFlags(Inst)); // Helper to perform unary op on vectors. auto BuildVectorOp = [&Builder, Inst](Value *Op) { switch (Inst->getOpcode()) { case Instruction::FNeg: return Builder.CreateFNeg(Op); default: llvm_unreachable("Unsupported unary operator for matrix"); } }; for (unsigned I = 0; I < Shape.getNumVectors(); ++I) Result.addVector(BuildVectorOp(M.getVector(I))); finalizeLowering(Inst, Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * Result.getNumVectors()), Builder); return true; } /// Helper to linearize a matrix expression tree into a string. Currently /// matrix expressions are linarized by starting at an expression leaf and /// linearizing bottom up. struct ExprLinearizer { unsigned LengthToBreak = 100; std::string Str; raw_string_ostream Stream; unsigned LineLength = 0; const DataLayout &DL; /// Mapping from instructions to matrixes. It is used to identify /// matrix instructions. const MapVector &Inst2Matrix; /// Mapping from values to the leaves of all expressions that the value is /// part of. const DenseMap> &Shared; /// Set of matrix expressions in the scope of a given DISubprogram. const SmallSetVector &ExprsInSubprogram; /// Leaf node of the expression to linearize. Value *Leaf; /// Used to keep track of sub-expressions that get reused while linearizing /// the expression. Re-used sub-expressions are marked as (reused). SmallPtrSet ReusedExprs; ExprLinearizer(const DataLayout &DL, const MapVector &Inst2Matrix, const DenseMap> &Shared, const SmallSetVector &ExprsInSubprogram, Value *Leaf) : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared), ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {} void indent(unsigned N) { LineLength += N; for (unsigned i = 0; i < N; i++) Stream << " "; } void lineBreak() { Stream << "\n"; LineLength = 0; } void maybeIndent(unsigned Indent) { if (LineLength >= LengthToBreak) lineBreak(); if (LineLength == 0) indent(Indent); } void write(StringRef S) { LineLength += S.size(); Stream << S; } Value *getUnderlyingObjectThroughLoads(Value *V) { if (Value *Ptr = getPointerOperand(V)) return getUnderlyingObjectThroughLoads(Ptr); else if (V->getType()->isPointerTy()) return getUnderlyingObject(V); return V; } /// Returns true if \p V is a matrix value in the given subprogram. bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); } /// If \p V is a matrix value, print its shape as NumRows x NumColumns to /// \p SS. void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) { auto M = Inst2Matrix.find(V); if (M == Inst2Matrix.end()) SS << "unknown"; else { SS << M->second.getNumRows(); SS << "x"; SS << M->second.getNumColumns(); } } /// Write the called function name. Handles calls to llvm.matrix.* /// specially: we write the name, followed by the dimensions of the input /// matrixes, followed by the scalar type name. void writeFnName(CallInst *CI) { if (!CI->getCalledFunction()) write(""); else { StringRef Name = CI->getCalledFunction()->getName(); if (!Name.starts_with("llvm.matrix")) { write(Name); return; } auto *II = cast(CI); write(Intrinsic::getBaseName(II->getIntrinsicID()) .drop_front(StringRef("llvm.matrix.").size())); write("."); std::string Tmp; raw_string_ostream SS(Tmp); switch (II->getIntrinsicID()) { case Intrinsic::matrix_multiply: prettyPrintMatrixType(II->getOperand(0), SS); SS << "."; prettyPrintMatrixType(II->getOperand(1), SS); SS << "." << *II->getType()->getScalarType(); break; case Intrinsic::matrix_transpose: prettyPrintMatrixType(II->getOperand(0), SS); SS << "." << *II->getType()->getScalarType(); break; case Intrinsic::matrix_column_major_load: prettyPrintMatrixType(II, SS); SS << "." << *II->getType()->getScalarType(); break; case Intrinsic::matrix_column_major_store: prettyPrintMatrixType(II->getOperand(0), SS); SS << "." << *II->getOperand(0)->getType()->getScalarType(); break; default: llvm_unreachable("Unhandled case"); } SS.flush(); write(Tmp); } } unsigned getNumShapeArgs(CallInst *CI) const { if (IntrinsicInst *II = dyn_cast(CI)) { switch (II->getIntrinsicID()) { case Intrinsic::matrix_multiply: return 3; case Intrinsic::matrix_transpose: return 2; case Intrinsic::matrix_column_major_load: case Intrinsic::matrix_column_major_store: return 3; default: return 0; } } return 0; } /// Special printing for values: for pointers, we print if they refer to an /// (function) external address or a stack address, for other values we /// either print the constant or "scalar"/"matrix" for other values. void write(Value *V) { V = getUnderlyingObjectThroughLoads(V); if (V->getType()->isPointerTy()) { if (isa(V)) { Stream << "stack addr"; LineLength += StringRef("stack addr").size(); } else { Stream << "addr"; LineLength += StringRef("addr").size(); } if (!V->getName().empty()) { Stream << " %" << V->getName() << ""; LineLength += V->getName().size() + 2; } return; } std::string Tmp; raw_string_ostream TmpStream(Tmp); if (auto *CI = dyn_cast(V)) TmpStream << CI->getValue(); else if (isa(V)) TmpStream << "constant"; else { if (isMatrix(V)) TmpStream << "matrix"; else TmpStream << "scalar"; } TmpStream.flush(); Tmp = std::string(StringRef(Tmp).trim()); LineLength += Tmp.size(); Stream << Tmp; } /// Linearize expression \p Expr starting at an indentation of \p Indent. /// Expressions that are re-used multiple times are prefixed with (reused) /// at the re-used root instruction. void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused, bool ParentShared) { auto *I = cast(Expr); maybeIndent(Indent); SmallVector Ops; // Is Expr shared with other expression leaves? bool ExprShared = false; // Deal with shared subtrees. Mark them as shared, if required. if (!ParentShared) { auto SI = Shared.find(Expr); assert(SI != Shared.end() && SI->second.count(Leaf)); for (Value *S : SI->second) { if (S == Leaf) continue; DebugLoc DL = cast(S)->getDebugLoc(); write("shared with remark at line " + std::to_string(DL.getLine()) + " column " + std::to_string(DL.getCol()) + " ("); } ExprShared = SI->second.size() > 1; } bool Reused = !ReusedExprs.insert(Expr).second; if (Reused && !ParentReused) write("(reused) "); if (auto *CI = dyn_cast(I)) { writeFnName(CI); Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI)); } else if (isa(Expr)) { // Special case bitcasts, which are used to materialize matrixes from // non-matrix ops. write("matrix"); return; } else { Ops.append(I->value_op_begin(), I->value_op_end()); write(std::string(I->getOpcodeName())); } write(std::string("(")); unsigned NumOpsToBreak = 1; if (match(Expr, m_Intrinsic())) NumOpsToBreak = 2; for (Value *Op : Ops) { if (Ops.size() > NumOpsToBreak) lineBreak(); maybeIndent(Indent + 1); if (isMatrix(Op)) linearizeExpr(Op, Indent + 1, Reused, ExprShared); else write(Op); if (Op != Ops.back()) write(", "); } write(")"); } const std::string &getResult() { Stream.flush(); return Str; } }; /// Generate remarks for matrix operations in a function. To generate remarks /// for matrix expressions, the following approach is used: /// 1. Use the inlined-at debug information to group matrix operations to the /// DISubprograms they are contained in. /// 2. Collect leaves of matrix expressions (done in /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression // mapping. Leaves are lowered matrix instructions without other matrix // users (like stores) in the current subprogram. /// 3. For each leaf, create a remark containing a linearizied version of the /// matrix expression. The expression is linearized by a recursive /// bottom-up traversal of the matrix operands, starting at a leaf. Note /// that multiple leaves can share sub-expressions. Shared subexpressions /// are explicitly marked as shared(). struct RemarkGenerator { const MapVector &Inst2Matrix; OptimizationRemarkEmitter &ORE; Function &Func; const DataLayout &DL; RemarkGenerator(const MapVector &Inst2Matrix, OptimizationRemarkEmitter &ORE, Function &Func) : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func), DL(Func.getDataLayout()) {} /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are /// instructions in Inst2Matrix returning void or without any users in /// \p ExprsInSubprogram. Currently that should only include stores. SmallVector getExpressionLeaves(const SmallSetVector &ExprsInSubprogram) { SmallVector Leaves; for (auto *Expr : ExprsInSubprogram) if (Expr->getType()->isVoidTy() || !any_of(Expr->users(), [&ExprsInSubprogram](User *U) { return ExprsInSubprogram.count(U); })) Leaves.push_back(Expr); return Leaves; } /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf /// to all visited expressions in \p Shared. Limit the matrix operations to /// the ones in \p ExprsInSubprogram. void collectSharedInfo(Value *Leaf, Value *V, const SmallSetVector &ExprsInSubprogram, DenseMap> &Shared) { if (!ExprsInSubprogram.count(V)) return; auto I = Shared.insert({V, {}}); I.first->second.insert(Leaf); for (Value *Op : cast(V)->operand_values()) collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared); } /// Calculate the number of exclusive and shared op counts for expression /// starting at \p V. Expressions used multiple times are counted once. /// Limit the matrix operations to the ones in \p ExprsInSubprogram. std::pair sumOpInfos(Value *Root, SmallPtrSetImpl &ReusedExprs, const SmallSetVector &ExprsInSubprogram, DenseMap> &Shared) const { if (!ExprsInSubprogram.count(Root)) return {}; // Already counted this expression. Stop. if (!ReusedExprs.insert(Root).second) return {}; OpInfoTy SharedCount; OpInfoTy Count; auto I = Shared.find(Root); auto CM = Inst2Matrix.find(Root); if (I->second.size() == 1) Count = CM->second.getOpInfo(); else SharedCount = CM->second.getOpInfo(); for (Value *Op : cast(Root)->operand_values()) { auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared); Count += C.first; SharedCount += C.second; } return {Count, SharedCount}; } void emitRemarks() { if (!ORE.allowExtraAnalysis(DEBUG_TYPE)) return; // Map matrix operations to their containting subprograms, by traversing // the inlinedAt chain. If the function does not have a DISubprogram, we // only map them to the containing function. MapVector> Subprog2Exprs; for (const auto &KV : Inst2Matrix) { if (Func.getSubprogram()) { auto *I = cast(KV.first); DILocation *Context = I->getDebugLoc(); while (Context) { auto I = Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}}); I.first->second.push_back(KV.first); Context = DebugLoc(Context).getInlinedAt(); } } else { auto I = Subprog2Exprs.insert({nullptr, {}}); I.first->second.push_back(KV.first); } } for (auto &KV : Subprog2Exprs) { SmallSetVector ExprsInSubprogram(KV.second.begin(), KV.second.end()); auto Leaves = getExpressionLeaves(ExprsInSubprogram); DenseMap> Shared; for (Value *Leaf : Leaves) collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared); // Generate remarks for each leaf. for (auto *L : Leaves) { DebugLoc Loc = cast(L)->getDebugLoc(); DILocation *Context = cast(L)->getDebugLoc(); while (Context) { if (getSubprogram(Context->getScope()) == KV.first) { Loc = Context; break; } Context = DebugLoc(Context).getInlinedAt(); } SmallPtrSet ReusedExprs; OpInfoTy Counts, SharedCounts; std::tie(Counts, SharedCounts) = sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared); OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc, cast(L)->getParent()); Rem << "Lowered with "; Rem << ore::NV("NumStores", Counts.NumStores) << " stores, " << ore::NV("NumLoads", Counts.NumLoads) << " loads, " << ore::NV("NumComputeOps", Counts.NumComputeOps) << " compute ops, " << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes) << " exposed transposes"; if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 || SharedCounts.NumComputeOps > 0) { Rem << ",\nadditionally " << ore::NV("NumStores", SharedCounts.NumStores) << " stores, " << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, " << ore::NV("NumFPOps", SharedCounts.NumComputeOps) << " compute ops" << " are shared with other expressions"; } Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL)); ORE.emit(Rem); } } } std::string linearize(Value *L, const DenseMap> &Shared, const SmallSetVector &ExprsInSubprogram, const DataLayout &DL) { ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L); Lin.linearizeExpr(L, 0, false, false); return Lin.getResult(); } }; }; } // namespace PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TTI = AM.getResult(F); OptimizationRemarkEmitter *ORE = nullptr; AAResults *AA = nullptr; DominatorTree *DT = nullptr; LoopInfo *LI = nullptr; if (!Minimal) { ORE = &AM.getResult(F); AA = &AM.getResult(F); DT = &AM.getResult(F); LI = &AM.getResult(F); } LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE); if (LMT.Visit()) { PreservedAnalyses PA; if (!Minimal) { PA.preserve(); PA.preserve(); } return PA; } return PreservedAnalyses::all(); } void LowerMatrixIntrinsicsPass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { static_cast *>(this)->printPipeline( OS, MapClassName2PassName); OS << '<'; if (Minimal) OS << "minimal"; OS << '>'; }