//===- LoopInterchange.cpp - Loop interchange pass-------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This Pass handles loop interchange transform. // This pass interchanges loops to provide a more cache-friendly memory access // patterns. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopInterchange.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/DependenceAnalysis.h" #include "llvm/Analysis/LoopCacheAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopNestAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "loop-interchange" STATISTIC(LoopsInterchanged, "Number of loops interchanged"); static cl::opt LoopInterchangeCostThreshold( "loop-interchange-threshold", cl::init(0), cl::Hidden, cl::desc("Interchange if you gain more than this number")); namespace { using LoopVector = SmallVector; // TODO: Check if we can use a sparse matrix here. using CharMatrix = std::vector>; } // end anonymous namespace // Maximum number of dependencies that can be handled in the dependency matrix. static const unsigned MaxMemInstrCount = 100; // Maximum loop depth supported. static const unsigned MaxLoopNestDepth = 10; #ifdef DUMP_DEP_MATRICIES static void printDepMatrix(CharMatrix &DepMatrix) { for (auto &Row : DepMatrix) { for (auto D : Row) LLVM_DEBUG(dbgs() << D << " "); LLVM_DEBUG(dbgs() << "\n"); } } #endif static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, Loop *L, DependenceInfo *DI, ScalarEvolution *SE) { using ValueVector = SmallVector; ValueVector MemInstr; // For each block. for (BasicBlock *BB : L->blocks()) { // Scan the BB and collect legal loads and stores. for (Instruction &I : *BB) { if (!isa(I)) return false; if (auto *Ld = dyn_cast(&I)) { if (!Ld->isSimple()) return false; MemInstr.push_back(&I); } else if (auto *St = dyn_cast(&I)) { if (!St->isSimple()) return false; MemInstr.push_back(&I); } } } LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() << " Loads and Stores to analyze\n"); ValueVector::iterator I, IE, J, JE; for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { for (J = I, JE = MemInstr.end(); J != JE; ++J) { std::vector Dep; Instruction *Src = cast(*I); Instruction *Dst = cast(*J); // Ignore Input dependencies. if (isa(Src) && isa(Dst)) continue; // Track Output, Flow, and Anti dependencies. if (auto D = DI->depends(Src, Dst, true)) { assert(D->isOrdered() && "Expected an output, flow or anti dep."); // If the direction vector is negative, normalize it to // make it non-negative. if (D->normalize(SE)) LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n"); LLVM_DEBUG(StringRef DepType = D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; dbgs() << "Found " << DepType << " dependency between Src and Dst\n" << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); unsigned Levels = D->getLevels(); char Direction; for (unsigned II = 1; II <= Levels; ++II) { if (D->isScalar(II)) { Direction = 'S'; Dep.push_back(Direction); } else { unsigned Dir = D->getDirection(II); if (Dir == Dependence::DVEntry::LT || Dir == Dependence::DVEntry::LE) Direction = '<'; else if (Dir == Dependence::DVEntry::GT || Dir == Dependence::DVEntry::GE) Direction = '>'; else if (Dir == Dependence::DVEntry::EQ) Direction = '='; else Direction = '*'; Dep.push_back(Direction); } } while (Dep.size() != Level) { Dep.push_back('I'); } DepMatrix.push_back(Dep); if (DepMatrix.size() > MaxMemInstrCount) { LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount << " dependencies inside loop\n"); return false; } } } } return true; } // A loop is moved from index 'from' to an index 'to'. Update the Dependence // matrix by exchanging the two columns. static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, unsigned ToIndx) { for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); } // After interchanging, check if the direction vector is valid. // [Theorem] A permutation of the loops in a perfect nest is legal if and only // if the direction matrix, after the same permutation is applied to its // columns, has no ">" direction as the leftmost non-"=" direction in any row. static bool isLexicographicallyPositive(std::vector &DV) { for (unsigned char Direction : DV) { if (Direction == '<') return true; if (Direction == '>' || Direction == '*') return false; } return true; } // Checks if it is legal to interchange 2 loops. static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, unsigned InnerLoopId, unsigned OuterLoopId) { unsigned NumRows = DepMatrix.size(); std::vector Cur; // For each row check if it is valid to interchange. for (unsigned Row = 0; Row < NumRows; ++Row) { // Create temporary DepVector check its lexicographical order // before and after swapping OuterLoop vs InnerLoop Cur = DepMatrix[Row]; if (!isLexicographicallyPositive(Cur)) return false; std::swap(Cur[InnerLoopId], Cur[OuterLoopId]); if (!isLexicographicallyPositive(Cur)) return false; } return true; } static void populateWorklist(Loop &L, LoopVector &LoopList) { LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " << L.getHeader()->getParent()->getName() << " Loop: %" << L.getHeader()->getName() << '\n'); assert(LoopList.empty() && "LoopList should initially be empty!"); Loop *CurrentLoop = &L; const std::vector *Vec = &CurrentLoop->getSubLoops(); while (!Vec->empty()) { // The current loop has multiple subloops in it hence it is not tightly // nested. // Discard all loops above it added into Worklist. if (Vec->size() != 1) { LoopList = {}; return; } LoopList.push_back(CurrentLoop); CurrentLoop = Vec->front(); Vec = &CurrentLoop->getSubLoops(); } LoopList.push_back(CurrentLoop); } namespace { /// LoopInterchangeLegality checks if it is legal to interchange the loop. class LoopInterchangeLegality { public: LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, OptimizationRemarkEmitter *ORE) : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} /// Check if the loops can be interchanged. bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix); /// Discover induction PHIs in the header of \p L. Induction /// PHIs are added to \p Inductions. bool findInductions(Loop *L, SmallVectorImpl &Inductions); /// Check if the loop structure is understood. We do not handle triangular /// loops for now. bool isLoopStructureUnderstood(); bool currentLimitations(); const SmallPtrSetImpl &getOuterInnerReductions() const { return OuterInnerReductions; } const SmallVectorImpl &getInnerLoopInductions() const { return InnerLoopInductions; } private: bool tightlyNested(Loop *Outer, Loop *Inner); bool containsUnsafeInstructions(BasicBlock *BB); /// Discover induction and reduction PHIs in the header of \p L. Induction /// PHIs are added to \p Inductions, reductions are added to /// OuterInnerReductions. When the outer loop is passed, the inner loop needs /// to be passed as \p InnerLoop. bool findInductionAndReductions(Loop *L, SmallVector &Inductions, Loop *InnerLoop); Loop *OuterLoop; Loop *InnerLoop; ScalarEvolution *SE; /// Interface to emit optimization remarks. OptimizationRemarkEmitter *ORE; /// Set of reduction PHIs taking part of a reduction across the inner and /// outer loop. SmallPtrSet OuterInnerReductions; /// Set of inner loop induction PHIs SmallVector InnerLoopInductions; }; /// LoopInterchangeProfitability checks if it is profitable to interchange the /// loop. class LoopInterchangeProfitability { public: LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, OptimizationRemarkEmitter *ORE) : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} /// Check if the loop interchange is profitable. bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix, const DenseMap &CostMap, std::unique_ptr &CC); private: int getInstrOrderCost(); std::optional isProfitablePerLoopCacheAnalysis( const DenseMap &CostMap, std::unique_ptr &CC); std::optional isProfitablePerInstrOrderCost(); std::optional isProfitableForVectorization(unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix); Loop *OuterLoop; Loop *InnerLoop; /// Scev analysis. ScalarEvolution *SE; /// Interface to emit optimization remarks. OptimizationRemarkEmitter *ORE; }; /// LoopInterchangeTransform interchanges the loop. class LoopInterchangeTransform { public: LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, const LoopInterchangeLegality &LIL) : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} /// Interchange OuterLoop and InnerLoop. bool transform(); void restructureLoops(Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, BasicBlock *OrigOuterPreHeader); void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); private: bool adjustLoopLinks(); bool adjustLoopBranches(); Loop *OuterLoop; Loop *InnerLoop; /// Scev analysis. ScalarEvolution *SE; LoopInfo *LI; DominatorTree *DT; const LoopInterchangeLegality &LIL; }; struct LoopInterchange { ScalarEvolution *SE = nullptr; LoopInfo *LI = nullptr; DependenceInfo *DI = nullptr; DominatorTree *DT = nullptr; std::unique_ptr CC = nullptr; /// Interface to emit optimization remarks. OptimizationRemarkEmitter *ORE; LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, DominatorTree *DT, std::unique_ptr &CC, OptimizationRemarkEmitter *ORE) : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {} bool run(Loop *L) { if (L->getParentLoop()) return false; SmallVector LoopList; populateWorklist(*L, LoopList); return processLoopList(LoopList); } bool run(LoopNest &LN) { SmallVector LoopList(LN.getLoops().begin(), LN.getLoops().end()); for (unsigned I = 1; I < LoopList.size(); ++I) if (LoopList[I]->getParentLoop() != LoopList[I - 1]) return false; return processLoopList(LoopList); } bool isComputableLoopNest(ArrayRef LoopList) { for (Loop *L : LoopList) { const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); if (isa(ExitCountOuter)) { LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); return false; } if (L->getNumBackEdges() != 1) { LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); return false; } if (!L->getExitingBlock()) { LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); return false; } } return true; } unsigned selectLoopForInterchange(ArrayRef LoopList) { // TODO: Add a better heuristic to select the loop to be interchanged based // on the dependence matrix. Currently we select the innermost loop. return LoopList.size() - 1; } bool processLoopList(SmallVectorImpl &LoopList) { bool Changed = false; unsigned LoopNestDepth = LoopList.size(); if (LoopNestDepth < 2) { LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); return false; } if (LoopNestDepth > MaxLoopNestDepth) { LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " << MaxLoopNestDepth << "\n"); return false; } if (!isComputableLoopNest(LoopList)) { LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); return false; } LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth << "\n"); CharMatrix DependencyMatrix; Loop *OuterMostLoop = *(LoopList.begin()); if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, OuterMostLoop, DI, SE)) { LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); return false; } #ifdef DUMP_DEP_MATRICIES LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); printDepMatrix(DependencyMatrix); #endif // Get the Outermost loop exit. BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); if (!LoopNestExit) { LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); return false; } unsigned SelecLoopId = selectLoopForInterchange(LoopList); // Obtain the loop vector returned from loop cache analysis beforehand, // and put each pair into a map for constant time query // later. Indices in loop vector reprsent the optimal order of the // corresponding loop, e.g., given a loopnest with depth N, index 0 // indicates the loop should be placed as the outermost loop and index N // indicates the loop should be placed as the innermost loop. // // For the old pass manager CacheCost would be null. DenseMap CostMap; if (CC != nullptr) { const auto &LoopCosts = CC->getLoopCosts(); for (unsigned i = 0; i < LoopCosts.size(); i++) { CostMap[LoopCosts[i].first] = i; } } // We try to achieve the globally optimal memory access for the loopnest, // and do interchange based on a bubble-sort fasion. We start from // the innermost loop, move it outwards to the best possible position // and repeat this process. for (unsigned j = SelecLoopId; j > 0; j--) { bool ChangedPerIter = false; for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) { bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, DependencyMatrix, CostMap); if (!Interchanged) continue; // Loops interchanged, update LoopList accordingly. std::swap(LoopList[i - 1], LoopList[i]); // Update the DependencyMatrix interChangeDependencies(DependencyMatrix, i, i - 1); #ifdef DUMP_DEP_MATRICIES LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); printDepMatrix(DependencyMatrix); #endif ChangedPerIter |= Interchanged; Changed |= Interchanged; } // Early abort if there was no interchange during an entire round of // moving loops outwards. if (!ChangedPerIter) break; } return Changed; } bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, unsigned OuterLoopId, std::vector> &DependencyMatrix, const DenseMap &CostMap) { LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId << " and OuterLoopId = " << OuterLoopId << "\n"); LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); return false; } LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId, DependencyMatrix, CostMap, CC)) { LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); return false; } ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "Interchanged", InnerLoop->getStartLoc(), InnerLoop->getHeader()) << "Loop interchanged with enclosing loop."; }); LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); LIT.transform(); LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); LoopsInterchanged++; llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE); return true; } }; } // end anonymous namespace bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { return any_of(*BB, [](const Instruction &I) { return I.mayHaveSideEffects() || I.mayReadFromMemory(); }); } bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); // A perfectly nested loop will not have any branch in between the outer and // inner block i.e. outer header will branch to either inner preheader and // outerloop latch. BranchInst *OuterLoopHeaderBI = dyn_cast(OuterLoopHeader->getTerminator()); if (!OuterLoopHeaderBI) return false; for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && Succ != OuterLoopLatch) return false; LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); // We do not have any basic block in between now make sure the outer header // and outer loop latch doesn't contain any unsafe instructions. if (containsUnsafeInstructions(OuterLoopHeader) || containsUnsafeInstructions(OuterLoopLatch)) return false; // Also make sure the inner loop preheader does not contain any unsafe // instructions. Note that all instructions in the preheader will be moved to // the outer loop header when interchanging. if (InnerLoopPreHeader != OuterLoopHeader && containsUnsafeInstructions(InnerLoopPreHeader)) return false; BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); // Ensure the inner loop exit block flows to the outer loop latch possibly // through empty blocks. const BasicBlock &SuccInner = LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); if (&SuccInner != OuterLoopLatch) { LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit << " does not lead to the outer loop latch.\n";); return false; } // The inner loop exit block does flow to the outer loop latch and not some // other BBs, now make sure it contains safe instructions, since it will be // moved into the (new) inner loop after interchange. if (containsUnsafeInstructions(InnerLoopExit)) return false; LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); // We have a perfect loop nest. return true; } bool LoopInterchangeLegality::isLoopStructureUnderstood() { BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); for (PHINode *InnerInduction : InnerLoopInductions) { unsigned Num = InnerInduction->getNumOperands(); for (unsigned i = 0; i < Num; ++i) { Value *Val = InnerInduction->getOperand(i); if (isa(Val)) continue; Instruction *I = dyn_cast(Val); if (!I) return false; // TODO: Handle triangular loops. // e.g. for(int i=0;igetIncomingBlock(IncomBlockIndx) == InnerLoopPreheader && !OuterLoop->isLoopInvariant(I)) { return false; } } } // TODO: Handle triangular loops of another form. // e.g. for(int i=0;igetLoopLatch(); BranchInst *InnerLoopLatchBI = dyn_cast(InnerLoopLatch->getTerminator()); if (!InnerLoopLatchBI->isConditional()) return false; if (CmpInst *InnerLoopCmp = dyn_cast(InnerLoopLatchBI->getCondition())) { Value *Op0 = InnerLoopCmp->getOperand(0); Value *Op1 = InnerLoopCmp->getOperand(1); // LHS and RHS of the inner loop exit condition, e.g., // in "for(int j=0;j IsPathToInnerIndVar; IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { if (llvm::is_contained(InnerLoopInductions, V)) return true; if (isa(V)) return true; const Instruction *I = dyn_cast(V); if (!I) return false; if (isa(I)) return IsPathToInnerIndVar(I->getOperand(0)); if (isa(I)) return IsPathToInnerIndVar(I->getOperand(0)) && IsPathToInnerIndVar(I->getOperand(1)); return false; }; // In case of multiple inner loop indvars, it is okay if LHS and RHS // are both inner indvar related variables. if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) return true; // Otherwise we check if the cmp instruction compares an inner indvar // related variable (Left) with a outer loop invariant (Right). if (IsPathToInnerIndVar(Op0) && !isa(Op0)) { Left = Op0; Right = Op1; } else if (IsPathToInnerIndVar(Op1) && !isa(Op1)) { Left = Op1; Right = Op0; } if (Left == nullptr) return false; const SCEV *S = SE->getSCEV(Right); if (!SE->isLoopInvariant(S, OuterLoop)) return false; } return true; } // If SV is a LCSSA PHI node with a single incoming value, return the incoming // value. static Value *followLCSSA(Value *SV) { PHINode *PHI = dyn_cast(SV); if (!PHI) return SV; if (PHI->getNumIncomingValues() != 1) return SV; return followLCSSA(PHI->getIncomingValue(0)); } // Check V's users to see if it is involved in a reduction in L. static PHINode *findInnerReductionPhi(Loop *L, Value *V) { // Reduction variables cannot be constants. if (isa(V)) return nullptr; for (Value *User : V->users()) { if (PHINode *PHI = dyn_cast(User)) { if (PHI->getNumIncomingValues() == 1) continue; RecurrenceDescriptor RD; if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { // Detect floating point reduction only when it can be reordered. if (RD.getExactFPMathInst() != nullptr) return nullptr; return PHI; } return nullptr; } } return nullptr; } bool LoopInterchangeLegality::findInductionAndReductions( Loop *L, SmallVector &Inductions, Loop *InnerLoop) { if (!L->getLoopLatch() || !L->getLoopPredecessor()) return false; for (PHINode &PHI : L->getHeader()->phis()) { InductionDescriptor ID; if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) Inductions.push_back(&PHI); else { // PHIs in inner loops need to be part of a reduction in the outer loop, // discovered when checking the PHIs of the outer loop earlier. if (!InnerLoop) { if (!OuterInnerReductions.count(&PHI)) { LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " "across the outer loop.\n"); return false; } } else { assert(PHI.getNumIncomingValues() == 2 && "Phis in loop header should have exactly 2 incoming values"); // Check if we have a PHI node in the outer loop that has a reduction // result from the inner loop as an incoming value. Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); if (!InnerRedPhi || !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { LLVM_DEBUG( dbgs() << "Failed to recognize PHI as an induction or reduction.\n"); return false; } OuterInnerReductions.insert(&PHI); OuterInnerReductions.insert(InnerRedPhi); } } } return true; } // This function indicates the current limitations in the transform as a result // of which we do not proceed. bool LoopInterchangeLegality::currentLimitations() { BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); // transform currently expects the loop latches to also be the exiting // blocks. if (InnerLoop->getExitingBlock() != InnerLoopLatch || OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || !isa(InnerLoopLatch->getTerminator()) || !isa(OuterLoop->getLoopLatch()->getTerminator())) { LLVM_DEBUG( dbgs() << "Loops where the latch is not the exiting block are not" << " supported currently.\n"); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", OuterLoop->getStartLoc(), OuterLoop->getHeader()) << "Loops where the latch is not the exiting block cannot be" " interchange currently."; }); return true; } SmallVector Inductions; if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { LLVM_DEBUG( dbgs() << "Only outer loops with induction or reduction PHI nodes " << "are supported currently.\n"); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", OuterLoop->getStartLoc(), OuterLoop->getHeader()) << "Only outer loops with induction or reduction PHI nodes can be" " interchanged currently."; }); return true; } Inductions.clear(); // For multi-level loop nests, make sure that all phi nodes for inner loops // at all levels can be recognized as a induction or reduction phi. Bail out // if a phi node at a certain nesting level cannot be properly recognized. Loop *CurLevelLoop = OuterLoop; while (!CurLevelLoop->getSubLoops().empty()) { // We already made sure that the loop nest is tightly nested. CurLevelLoop = CurLevelLoop->getSubLoops().front(); if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) { LLVM_DEBUG( dbgs() << "Only inner loops with induction or reduction PHI nodes " << "are supported currently.\n"); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", CurLevelLoop->getStartLoc(), CurLevelLoop->getHeader()) << "Only inner loops with induction or reduction PHI nodes can be" " interchange currently."; }); return true; } } // TODO: Triangular loops are not handled for now. if (!isLoopStructureUnderstood()) { LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", InnerLoop->getStartLoc(), InnerLoop->getHeader()) << "Inner loop structure not understood currently."; }); return true; } return false; } bool LoopInterchangeLegality::findInductions( Loop *L, SmallVectorImpl &Inductions) { for (PHINode &PHI : L->getHeader()->phis()) { InductionDescriptor ID; if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) Inductions.push_back(&PHI); } return !Inductions.empty(); } // We currently only support LCSSA PHI nodes in the inner loop exit, if their // users are either reduction PHIs or PHIs outside the outer loop (which means // the we are only interested in the final value after the loop). static bool areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, SmallPtrSetImpl &Reductions) { BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); for (PHINode &PHI : InnerExit->phis()) { // Reduction lcssa phi will have only 1 incoming block that from loop latch. if (PHI.getNumIncomingValues() > 1) return false; if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { PHINode *PN = dyn_cast(U); return !PN || (!Reductions.count(PN) && OuterL->contains(PN->getParent())); })) { return false; } } return true; } // We currently support LCSSA PHI nodes in the outer loop exit, if their // incoming values do not come from the outer loop latch or if the // outer loop latch has a single predecessor. In that case, the value will // be available if both the inner and outer loop conditions are true, which // will still be true after interchanging. If we have multiple predecessor, // that may not be the case, e.g. because the outer loop latch may be executed // if the inner loop is not executed. static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); for (PHINode &PHI : LoopNestExit->phis()) { for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { Instruction *IncomingI = dyn_cast(PHI.getIncomingValue(i)); if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) continue; // The incoming value is defined in the outer loop latch. Currently we // only support that in case the outer loop latch has a single predecessor. // This guarantees that the outer loop latch is executed if and only if // the inner loop is executed (because tightlyNested() guarantees that the // outer loop header only branches to the inner loop or the outer loop // latch). // FIXME: We could weaken this logic and allow multiple predecessors, // if the values are produced outside the loop latch. We would need // additional logic to update the PHI nodes in the exit block as // well. if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) return false; } } return true; } // In case of multi-level nested loops, it may occur that lcssa phis exist in // the latch of InnerLoop, i.e., when defs of the incoming values are further // inside the loopnest. Sometimes those incoming values are not available // after interchange, since the original inner latch will become the new outer // latch which may have predecessor paths that do not include those incoming // values. // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of // multi-level loop nests. static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { if (InnerLoop->getSubLoops().empty()) return true; // If the original outer latch has only one predecessor, then values defined // further inside the looploop, e.g., in the innermost loop, will be available // at the new outer latch after interchange. if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) return true; // The outer latch has more than one predecessors, i.e., the inner // exit and the inner header. // PHI nodes in the inner latch are lcssa phis where the incoming values // are defined further inside the loopnest. Check if those phis are used // in the original inner latch. If that is the case then bail out since // those incoming values may not be available at the new outer latch. BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); for (PHINode &PHI : InnerLoopLatch->phis()) { for (auto *U : PHI.users()) { Instruction *UI = cast(U); if (InnerLoopLatch == UI->getParent()) return false; } } return true; } bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId << " and OuterLoopId = " << OuterLoopId << " due to dependence\n"); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", InnerLoop->getStartLoc(), InnerLoop->getHeader()) << "Cannot interchange loops due to dependences."; }); return false; } // Check if outer and inner loop contain legal instructions only. for (auto *BB : OuterLoop->blocks()) for (Instruction &I : BB->instructionsWithoutDebug()) if (CallInst *CI = dyn_cast(&I)) { // readnone functions do not prevent interchanging. if (CI->onlyWritesMemory()) continue; LLVM_DEBUG( dbgs() << "Loops with call instructions cannot be interchanged " << "safely."); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", CI->getDebugLoc(), CI->getParent()) << "Cannot interchange loops due to call instruction."; }); return false; } if (!findInductions(InnerLoop, InnerLoopInductions)) { LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n"); return false; } if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", InnerLoop->getStartLoc(), InnerLoop->getHeader()) << "Cannot interchange loops because unsupported PHI nodes found " "in inner loop latch."; }); return false; } // TODO: The loops could not be interchanged due to current limitations in the // transform module. if (currentLimitations()) { LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); return false; } // Check if the loops are tightly nested. if (!tightlyNested(OuterLoop, InnerLoop)) { LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", InnerLoop->getStartLoc(), InnerLoop->getHeader()) << "Cannot interchange loops because they are not tightly " "nested."; }); return false; } if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, OuterInnerReductions)) { LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", InnerLoop->getStartLoc(), InnerLoop->getHeader()) << "Found unsupported PHI node in loop exit."; }); return false; } if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", OuterLoop->getStartLoc(), OuterLoop->getHeader()) << "Found unsupported PHI node in loop exit."; }); return false; } return true; } int LoopInterchangeProfitability::getInstrOrderCost() { unsigned GoodOrder, BadOrder; BadOrder = GoodOrder = 0; for (BasicBlock *BB : InnerLoop->blocks()) { for (Instruction &Ins : *BB) { if (const GetElementPtrInst *GEP = dyn_cast(&Ins)) { unsigned NumOp = GEP->getNumOperands(); bool FoundInnerInduction = false; bool FoundOuterInduction = false; for (unsigned i = 0; i < NumOp; ++i) { // Skip operands that are not SCEV-able. if (!SE->isSCEVable(GEP->getOperand(i)->getType())) continue; const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); const SCEVAddRecExpr *AR = dyn_cast(OperandVal); if (!AR) continue; // If we find the inner induction after an outer induction e.g. // for(int i=0;igetLoop() == InnerLoop) { // We found an InnerLoop induction after OuterLoop induction. It is // a good order. FoundInnerInduction = true; if (FoundOuterInduction) { GoodOrder++; break; } } // If we find the outer induction after an inner induction e.g. // for(int i=0;igetLoop() == OuterLoop) { // We found an OuterLoop induction after InnerLoop induction. It is // a bad order. FoundOuterInduction = true; if (FoundInnerInduction) { BadOrder++; break; } } } } } } return GoodOrder - BadOrder; } std::optional LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis( const DenseMap &CostMap, std::unique_ptr &CC) { // This is the new cost model returned from loop cache analysis. // A smaller index means the loop should be placed an outer loop, and vice // versa. if (CostMap.contains(InnerLoop) && CostMap.contains(OuterLoop)) { unsigned InnerIndex = 0, OuterIndex = 0; InnerIndex = CostMap.find(InnerLoop)->second; OuterIndex = CostMap.find(OuterLoop)->second; LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex << ", OuterIndex = " << OuterIndex << "\n"); if (InnerIndex < OuterIndex) return std::optional(true); assert(InnerIndex != OuterIndex && "CostMap should assign unique " "numbers to each loop"); if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop)) return std::nullopt; return std::optional(false); } return std::nullopt; } std::optional LoopInterchangeProfitability::isProfitablePerInstrOrderCost() { // Legacy cost model: this is rough cost estimation algorithm. It counts the // good and bad order of induction variables in the instruction and allows // reordering if number of bad orders is more than good. int Cost = getInstrOrderCost(); LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); if (Cost < 0 && Cost < LoopInterchangeCostThreshold) return std::optional(true); return std::nullopt; } std::optional LoopInterchangeProfitability::isProfitableForVectorization( unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { for (auto &Row : DepMatrix) { // If the inner loop is loop independent or doesn't carry any dependency // it is not profitable to move this to outer position, since we are // likely able to do inner loop vectorization already. if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=') return std::optional(false); // If the outer loop is not loop independent it is not profitable to move // this to inner position, since doing so would not enable inner loop // parallelism. if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=') return std::optional(false); } // If inner loop has dependence and outer loop is loop independent then it // is/ profitable to interchange to enable inner loop parallelism. // If there are no dependences, interchanging will not improve anything. return std::optional(!DepMatrix.empty()); } bool LoopInterchangeProfitability::isProfitable( const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix, const DenseMap &CostMap, std::unique_ptr &CC) { // isProfitable() is structured to avoid endless loop interchange. // If loop cache analysis could decide the profitability then, // profitability check will stop and return the analysis result. // If cache analysis failed to analyze the loopnest (e.g., // due to delinearization issues) then only check whether it is // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to // analysis the profitability then only, isProfitableForVectorization // will decide. std::optional shouldInterchange = isProfitablePerLoopCacheAnalysis(CostMap, CC); if (!shouldInterchange.has_value()) { shouldInterchange = isProfitablePerInstrOrderCost(); if (!shouldInterchange.has_value()) shouldInterchange = isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix); } if (!shouldInterchange.has_value()) { ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", InnerLoop->getStartLoc(), InnerLoop->getHeader()) << "Insufficient information to calculate the cost of loop for " "interchange."; }); return false; } else if (!shouldInterchange.value()) { ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", InnerLoop->getStartLoc(), InnerLoop->getHeader()) << "Interchanging loops is not considered to improve cache " "locality nor vectorization."; }); return false; } return true; } void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, Loop *InnerLoop) { for (Loop *L : *OuterLoop) if (L == InnerLoop) { OuterLoop->removeChildLoop(L); return; } llvm_unreachable("Couldn't find loop"); } /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the /// new inner and outer loop after interchanging: NewInner is the original /// outer loop and NewOuter is the original inner loop. /// /// Before interchanging, we have the following structure /// Outer preheader // Outer header // Inner preheader // Inner header // Inner body // Inner latch // outer bbs // Outer latch // // After interchanging: // Inner preheader // Inner header // Outer preheader // Outer header // Inner body // outer bbs // Outer latch // Inner latch void LoopInterchangeTransform::restructureLoops( Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, BasicBlock *OrigOuterPreHeader) { Loop *OuterLoopParent = OuterLoop->getParentLoop(); // The original inner loop preheader moves from the new inner loop to // the parent loop, if there is one. NewInner->removeBlockFromLoop(OrigInnerPreHeader); LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); // Switch the loop levels. if (OuterLoopParent) { // Remove the loop from its parent loop. removeChildLoop(OuterLoopParent, NewInner); removeChildLoop(NewInner, NewOuter); OuterLoopParent->addChildLoop(NewOuter); } else { removeChildLoop(NewInner, NewOuter); LI->changeTopLevelLoop(NewInner, NewOuter); } while (!NewOuter->isInnermost()) NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); NewOuter->addChildLoop(NewInner); // BBs from the original inner loop. SmallVector OrigInnerBBs(NewOuter->blocks()); // Add BBs from the original outer loop to the original inner loop (excluding // BBs already in inner loop) for (BasicBlock *BB : NewInner->blocks()) if (LI->getLoopFor(BB) == NewInner) NewOuter->addBlockEntry(BB); // Now remove inner loop header and latch from the new inner loop and move // other BBs (the loop body) to the new inner loop. BasicBlock *OuterHeader = NewOuter->getHeader(); BasicBlock *OuterLatch = NewOuter->getLoopLatch(); for (BasicBlock *BB : OrigInnerBBs) { // Nothing will change for BBs in child loops. if (LI->getLoopFor(BB) != NewOuter) continue; // Remove the new outer loop header and latch from the new inner loop. if (BB == OuterHeader || BB == OuterLatch) NewInner->removeBlockFromLoop(BB); else LI->changeLoopFor(BB, NewInner); } // The preheader of the original outer loop becomes part of the new // outer loop. NewOuter->addBlockEntry(OrigOuterPreHeader); LI->changeLoopFor(OrigOuterPreHeader, NewOuter); // Tell SE that we move the loops around. SE->forgetLoop(NewOuter); } bool LoopInterchangeTransform::transform() { bool Transformed = false; if (InnerLoop->getSubLoops().empty()) { BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); auto &InductionPHIs = LIL.getInnerLoopInductions(); if (InductionPHIs.empty()) { LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); return false; } SmallVector InnerIndexVarList; for (PHINode *CurInductionPHI : InductionPHIs) { if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) InnerIndexVarList.push_back( dyn_cast(CurInductionPHI->getIncomingValue(1))); else InnerIndexVarList.push_back( dyn_cast(CurInductionPHI->getIncomingValue(0))); } // Create a new latch block for the inner loop. We split at the // current latch's terminator and then move the condition and all // operands that are not either loop-invariant or the induction PHI into the // new latch block. BasicBlock *NewLatch = SplitBlock(InnerLoop->getLoopLatch(), InnerLoop->getLoopLatch()->getTerminator(), DT, LI); SmallSetVector WorkList; unsigned i = 0; auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { for (; i < WorkList.size(); i++) { // Duplicate instruction and move it the new latch. Update uses that // have been moved. Instruction *NewI = WorkList[i]->clone(); NewI->insertBefore(NewLatch->getFirstNonPHI()); assert(!NewI->mayHaveSideEffects() && "Moving instructions with side-effects may change behavior of " "the loop nest!"); for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { Instruction *UserI = cast(U.getUser()); if (!InnerLoop->contains(UserI->getParent()) || UserI->getParent() == NewLatch || llvm::is_contained(InductionPHIs, UserI)) U.set(NewI); } // Add operands of moved instruction to the worklist, except if they are // outside the inner loop or are the induction PHI. for (Value *Op : WorkList[i]->operands()) { Instruction *OpI = dyn_cast(Op); if (!OpI || this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || llvm::is_contained(InductionPHIs, OpI)) continue; WorkList.insert(OpI); } } }; // FIXME: Should we interchange when we have a constant condition? Instruction *CondI = dyn_cast( cast(InnerLoop->getLoopLatch()->getTerminator()) ->getCondition()); if (CondI) WorkList.insert(CondI); MoveInstructions(); for (Instruction *InnerIndexVar : InnerIndexVarList) WorkList.insert(cast(InnerIndexVar)); MoveInstructions(); } // Ensure the inner loop phi nodes have a separate basic block. BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) { SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); } // Instructions in the original inner loop preheader may depend on values // defined in the outer loop header. Move them there, because the original // inner loop preheader will become the entry into the interchanged loop nest. // Currently we move all instructions and rely on LICM to move invariant // instructions outside the loop nest. BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); if (InnerLoopPreHeader != OuterLoopHeader) { SmallPtrSet NeedsMoving; for (Instruction &I : make_early_inc_range(make_range(InnerLoopPreHeader->begin(), std::prev(InnerLoopPreHeader->end())))) I.moveBefore(OuterLoopHeader->getTerminator()); } Transformed |= adjustLoopLinks(); if (!Transformed) { LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); return false; } return true; } /// \brief Move all instructions except the terminator from FromBB right before /// InsertBefore static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { BasicBlock *ToBB = InsertBefore->getParent(); ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(), FromBB->getTerminator()->getIterator()); } /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { // Save all non-terminator instructions of BB1 into TempInstrs and unlink them // from BB1 afterwards. auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); SmallVector TempInstrs(Iter.begin(), std::prev(Iter.end())); for (Instruction *I : TempInstrs) I->removeFromParent(); // Move instructions from BB2 to BB1. moveBBContents(BB2, BB1->getTerminator()); // Move instructions from TempInstrs to BB2. for (Instruction *I : TempInstrs) I->insertBefore(BB2->getTerminator()); } // Update BI to jump to NewBB instead of OldBB. Records updates to the // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that // \p OldBB is exactly once in BI's successor list. static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, BasicBlock *NewBB, std::vector &DTUpdates, bool MustUpdateOnce = true) { assert((!MustUpdateOnce || llvm::count_if(successors(BI), [OldBB](BasicBlock *BB) { return BB == OldBB; }) == 1) && "BI must jump to OldBB exactly once."); bool Changed = false; for (Use &Op : BI->operands()) if (Op == OldBB) { Op.set(NewBB); Changed = true; } if (Changed) { DTUpdates.push_back( {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); DTUpdates.push_back( {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); } assert(Changed && "Expected a successor to be updated"); } // Move Lcssa PHIs to the right place. static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, BasicBlock *InnerLatch, BasicBlock *OuterHeader, BasicBlock *OuterLatch, BasicBlock *OuterExit, Loop *InnerLoop, LoopInfo *LI) { // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are // defined either in the header or latch. Those blocks will become header and // latch of the new outer loop, and the only possible users can PHI nodes // in the exit block of the loop nest or the outer loop header (reduction // PHIs, in that case, the incoming value must be defined in the inner loop // header). We can just substitute the user with the incoming value and remove // the PHI. for (PHINode &P : make_early_inc_range(InnerExit->phis())) { assert(P.getNumIncomingValues() == 1 && "Only loops with a single exit are supported!"); // Incoming values are guaranteed be instructions currently. auto IncI = cast(P.getIncomingValueForBlock(InnerLatch)); // In case of multi-level nested loops, follow LCSSA to find the incoming // value defined from the innermost loop. auto IncIInnerMost = cast(followLCSSA(IncI)); // Skip phis with incoming values from the inner loop body, excluding the // header and latch. if (IncIInnerMost->getParent() != InnerLatch && IncIInnerMost->getParent() != InnerHeader) continue; assert(all_of(P.users(), [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { return (cast(U)->getParent() == OuterHeader && IncI->getParent() == InnerHeader) || cast(U)->getParent() == OuterExit; }) && "Can only replace phis iff the uses are in the loop nest exit or " "the incoming value is defined in the inner header (it will " "dominate all loop blocks after interchanging)"); P.replaceAllUsesWith(IncI); P.eraseFromParent(); } SmallVector LcssaInnerExit; for (PHINode &P : InnerExit->phis()) LcssaInnerExit.push_back(&P); SmallVector LcssaInnerLatch; for (PHINode &P : InnerLatch->phis()) LcssaInnerLatch.push_back(&P); // Lcssa PHIs for values used outside the inner loop are in InnerExit. // If a PHI node has users outside of InnerExit, it has a use outside the // interchanged loop and we have to preserve it. We move these to // InnerLatch, which will become the new exit block for the innermost // loop after interchanging. for (PHINode *P : LcssaInnerExit) P->moveBefore(InnerLatch->getFirstNonPHI()); // If the inner loop latch contains LCSSA PHIs, those come from a child loop // and we have to move them to the new inner latch. for (PHINode *P : LcssaInnerLatch) P->moveBefore(InnerExit->getFirstNonPHI()); // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have // incoming values defined in the outer loop, we have to add a new PHI // in the inner loop latch, which became the exit block of the outer loop, // after interchanging. if (OuterExit) { for (PHINode &P : OuterExit->phis()) { if (P.getNumIncomingValues() != 1) continue; // Skip Phis with incoming values defined in the inner loop. Those should // already have been updated. auto I = dyn_cast(P.getIncomingValue(0)); if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) continue; PHINode *NewPhi = dyn_cast(P.clone()); NewPhi->setIncomingValue(0, P.getIncomingValue(0)); NewPhi->setIncomingBlock(0, OuterLatch); // We might have incoming edges from other BBs, i.e., the original outer // header. for (auto *Pred : predecessors(InnerLatch)) { if (Pred == OuterLatch) continue; NewPhi->addIncoming(P.getIncomingValue(0), Pred); } NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); P.setIncomingValue(0, NewPhi); } } // Now adjust the incoming blocks for the LCSSA PHIs. // For PHIs moved from Inner's exit block, we need to replace Inner's latch // with the new latch. InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); } bool LoopInterchangeTransform::adjustLoopBranches() { LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); std::vector DTUpdates; BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); assert(OuterLoopPreHeader != OuterLoop->getHeader() && InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && InnerLoopPreHeader && "Guaranteed by loop-simplify form"); // Ensure that both preheaders do not contain PHI nodes and have single // predecessors. This allows us to move them easily. We use // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing // preheaders do not satisfy those conditions. if (isa(OuterLoopPreHeader->begin()) || !OuterLoopPreHeader->getUniquePredecessor()) OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); if (InnerLoopPreHeader == OuterLoop->getHeader()) InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); // Adjust the loop preheader BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); BasicBlock *InnerLoopLatchPredecessor = InnerLoopLatch->getUniquePredecessor(); BasicBlock *InnerLoopLatchSuccessor; BasicBlock *OuterLoopLatchSuccessor; BranchInst *OuterLoopLatchBI = dyn_cast(OuterLoopLatch->getTerminator()); BranchInst *InnerLoopLatchBI = dyn_cast(InnerLoopLatch->getTerminator()); BranchInst *OuterLoopHeaderBI = dyn_cast(OuterLoopHeader->getTerminator()); BranchInst *InnerLoopHeaderBI = dyn_cast(InnerLoopHeader->getTerminator()); if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || !InnerLoopHeaderBI) return false; BranchInst *InnerLoopLatchPredecessorBI = dyn_cast(InnerLoopLatchPredecessor->getTerminator()); BranchInst *OuterLoopPredecessorBI = dyn_cast(OuterLoopPredecessor->getTerminator()); if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) return false; BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); if (!InnerLoopHeaderSuccessor) return false; // Adjust Loop Preheader and headers. // The branches in the outer loop predecessor and the outer loop header can // be unconditional branches or conditional branches with duplicates. Consider // this when updating the successors. updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); // The outer loop header might or might not branch to the outer latch. // We are guaranteed to branch to the inner loop preheader. if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { // In this case the outerLoopHeader should branch to the InnerLoopLatch. updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, DTUpdates, /*MustUpdateOnce=*/false); } updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, InnerLoopHeaderSuccessor, DTUpdates, /*MustUpdateOnce=*/false); // Adjust reduction PHI's now that the incoming block has changed. InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, OuterLoopHeader); updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, OuterLoopPreHeader, DTUpdates); // -------------Adjust loop latches----------- if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); else InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, InnerLoopLatchSuccessor, DTUpdates); if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); else OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, OuterLoopLatchSuccessor, DTUpdates); updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, DTUpdates); DT->applyUpdates(DTUpdates); restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, OuterLoopPreHeader); moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), InnerLoop, LI); // For PHIs in the exit block of the outer loop, outer's latch has been // replaced by Inners'. OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); auto &OuterInnerReductions = LIL.getOuterInnerReductions(); // Now update the reduction PHIs in the inner and outer loop headers. SmallVector InnerLoopPHIs, OuterLoopPHIs; for (PHINode &PHI : InnerLoopHeader->phis()) if (OuterInnerReductions.contains(&PHI)) InnerLoopPHIs.push_back(&PHI); for (PHINode &PHI : OuterLoopHeader->phis()) if (OuterInnerReductions.contains(&PHI)) OuterLoopPHIs.push_back(&PHI); // Now move the remaining reduction PHIs from outer to inner loop header and // vice versa. The PHI nodes must be part of a reduction across the inner and // outer loop and all the remains to do is and updating the incoming blocks. for (PHINode *PHI : OuterLoopPHIs) { LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); } for (PHINode *PHI : InnerLoopPHIs) { LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); } // Update the incoming blocks for moved PHI nodes. OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); // Values defined in the outer loop header could be used in the inner loop // latch. In that case, we need to create LCSSA phis for them, because after // interchanging they will be defined in the new inner loop and used in the // new outer loop. SmallVector MayNeedLCSSAPhis; for (Instruction &I : make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) MayNeedLCSSAPhis.push_back(&I); formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE); return true; } bool LoopInterchangeTransform::adjustLoopLinks() { // Adjust all branches in the inner and outer loop. bool Changed = adjustLoopBranches(); if (Changed) { // We have interchanged the preheaders so we need to interchange the data in // the preheaders as well. This is because the content of the inner // preheader was previously executed inside the outer loop. BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); } return Changed; } PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U) { Function &F = *LN.getParent(); DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); std::unique_ptr CC = CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI); OptimizationRemarkEmitter ORE(&F); if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN)) return PreservedAnalyses::all(); U.markLoopNestChanged(true); return getLoopPassPreservedAnalyses(); }