//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass performs loop invariant code motion, attempting to remove as much // code from the body of a loop as possible. It does this by either hoisting // code into the preheader block, or by sinking code to the exit blocks if it is // safe. This pass also promotes must-aliased memory locations in the loop to // live in registers, thus hoisting and sinking "invariant" loads and stores. // // Hoisting operations out of loops is a canonicalization transform. It // enables and simplifies subsequent optimizations in the middle-end. // Rematerialization of hoisted instructions to reduce register pressure is the // responsibility of the back-end, which has more accurate information about // register pressure and also handles other optimizations than LICM that // increase live-ranges. // // This pass uses alias analysis for two purposes: // // 1. Moving loop invariant loads and calls out of loops. If we can determine // that a load or call inside of a loop never aliases anything stored to, // we can hoist it or sink it like any other instruction. // 2. Scalar Promotion of Memory - If there is a store instruction inside of // the loop, we try to move the store to happen AFTER the loop instead of // inside of the loop. This can only happen if a few conditions are true: // A. The pointer stored through is loop invariant // B. There are no stores or loads in the loop which _may_ alias the // pointer. There are no calls in the loop which mod/ref the pointer. // If these conditions are true, we can promote the loads and stores in the // loop of the pointer to use a temporary alloca'd variable. We then use // the SSAUpdater to construct the appropriate SSA form for the value. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LICM.h" #include "llvm/ADT/PriorityWorklist.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/GuardUtils.h" #include "llvm/Analysis/LazyBlockFrequencyInfo.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopNestAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/MustExecute.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/PredIteratorCache.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include #include using namespace llvm; namespace llvm { class LPMUpdater; } // namespace llvm #define DEBUG_TYPE "licm" STATISTIC(NumCreatedBlocks, "Number of blocks created"); STATISTIC(NumClonedBranches, "Number of branches cloned"); STATISTIC(NumSunk, "Number of instructions sunk out of loop"); STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); STATISTIC(NumPromotionCandidates, "Number of promotion candidates"); STATISTIC(NumLoadPromoted, "Number of load-only promotions"); STATISTIC(NumLoadStorePromoted, "Number of load and store promotions"); STATISTIC(NumMinMaxHoisted, "Number of min/max expressions hoisted out of the loop"); STATISTIC(NumGEPsHoisted, "Number of geps reassociated and hoisted out of the loop"); STATISTIC(NumAddSubHoisted, "Number of add/subtract expressions reassociated " "and hoisted out of the loop"); /// Memory promotion is enabled by default. static cl::opt DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), cl::desc("Disable memory promotion in LICM pass")); static cl::opt ControlFlowHoisting( "licm-control-flow-hoisting", cl::Hidden, cl::init(false), cl::desc("Enable control flow (and PHI) hoisting in LICM")); static cl::opt SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false), cl::desc("Force thread model single in LICM pass")); static cl::opt MaxNumUsesTraversed( "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), cl::desc("Max num uses visited for identifying load " "invariance in loop using invariant start (default = 8)")); // Experimental option to allow imprecision in LICM in pathological cases, in // exchange for faster compile. This is to be removed if MemorySSA starts to // address the same issue. LICM calls MemorySSAWalker's // getClobberingMemoryAccess, up to the value of the Cap, getting perfect // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, // which may not be precise, since optimizeUses is capped. The result is // correct, but we may not get as "far up" as possible to get which access is // clobbering the one queried. cl::opt llvm::SetLicmMssaOptCap( "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, cl::desc("Enable imprecision in LICM in pathological cases, in exchange " "for faster compile. Caps the MemorySSA clobbering calls.")); // Experimentally, memory promotion carries less importance than sinking and // hoisting. Limit when we do promotion when using MemorySSA, in order to save // compile time. cl::opt llvm::SetLicmMssaNoAccForPromotionCap( "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " "effect. When MSSA in LICM is enabled, then this is the maximum " "number of accesses allowed to be present in a loop in order to " "enable memory promotion.")); static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, TargetTransformInfo *TTI, bool &FoldableInLoop, bool LoopNestMode); static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU, ScalarEvolution *SE, OptimizationRemarkEmitter *ORE); static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE); static bool isSafeToExecuteUnconditionally( Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE, const Instruction *CtxI, AssumptionCache *AC, bool AllowSpeculation); static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, Loop *CurLoop, Instruction &I, SinkAndHoistLICMFlags &Flags, bool InvariantGroup); static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU); /// Aggregates various functions for hoisting computations out of loop. static bool hoistArithmetics(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT); static Instruction *cloneInstructionInExitBlock( Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU); static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU); static void moveInstructionBefore(Instruction &I, Instruction &Dest, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, ScalarEvolution *SE); static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, function_ref Fn); using PointersAndHasReadsOutsideSet = std::pair, bool>; static SmallVector collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); namespace { struct LoopInvariantCodeMotion { bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); LoopInvariantCodeMotion(unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool LicmAllowSpeculation) : LicmMssaOptCap(LicmMssaOptCap), LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), LicmAllowSpeculation(LicmAllowSpeculation) {} private: unsigned LicmMssaOptCap; unsigned LicmMssaNoAccForPromotionCap; bool LicmAllowSpeculation; }; struct LegacyLICMPass : public LoopPass { static char ID; // Pass identification, replacement for typeid LegacyLICMPass( unsigned LicmMssaOptCap = SetLicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap, bool LicmAllowSpeculation = true) : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, LicmAllowSpeculation) { initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override { if (skipLoop(L)) return false; LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block " << L->getHeader()->getNameOrAsOperand() << "\n"); Function *F = L->getHeader()->getParent(); auto *SE = getAnalysisIfAvailable(); MemorySSA *MSSA = &getAnalysis().getMSSA(); // For the old PM, we can't use OptimizationRemarkEmitter as an analysis // pass. Function analyses need to be preserved across loop transformations // but ORE cannot be preserved (see comment before the pass definition). OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); return LICM.runOnLoop( L, &getAnalysis().getAAResults(), &getAnalysis().getLoopInfo(), &getAnalysis().getDomTree(), &getAnalysis().getAssumptionCache(*F), &getAnalysis().getTLI(*F), &getAnalysis().getTTI(*F), SE ? &SE->getSE() : nullptr, MSSA, &ORE); } /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG... /// void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); getLoopAnalysisUsage(AU); LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); AU.addPreserved(); AU.addPreserved(); } private: LoopInvariantCodeMotion LICM; }; } // namespace PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { if (!AR.MSSA) report_fatal_error("LICM requires MemorySSA (loop-mssa)", /*GenCrashDiag*/false); // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis // pass. Function analyses need to be preserved across loop transformations // but ORE cannot be preserved (see comment before the pass definition). OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, Opts.AllowSpeculation); if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE)) return PreservedAnalyses::all(); auto PA = getLoopPassPreservedAnalyses(); PA.preserve(); return PA; } void LICMPass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { static_cast *>(this)->printPipeline( OS, MapClassName2PassName); OS << '<'; OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; OS << '>'; } PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { if (!AR.MSSA) report_fatal_error("LNICM requires MemorySSA (loop-mssa)", /*GenCrashDiag*/false); // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis // pass. Function analyses need to be preserved across loop transformations // but ORE cannot be preserved (see comment before the pass definition). OptimizationRemarkEmitter ORE(LN.getParent()); LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, Opts.AllowSpeculation); Loop &OutermostLoop = LN.getOutermostLoop(); bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true); if (!Changed) return PreservedAnalyses::all(); auto PA = getLoopPassPreservedAnalyses(); PA.preserve(); PA.preserve(); PA.preserve(); return PA; } void LNICMPass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { static_cast *>(this)->printPipeline( OS, MapClassName2PassName); OS << '<'; OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; OS << '>'; } char LegacyLICMPass::ID = 0; INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, false) Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop &L, MemorySSA &MSSA) : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, IsSink, L, MSSA) {} llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, Loop &L, MemorySSA &MSSA) : LicmMssaOptCap(LicmMssaOptCap), LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), IsSink(IsSink) { unsigned AccessCapCount = 0; for (auto *BB : L.getBlocks()) if (const auto *Accesses = MSSA.getBlockAccesses(BB)) for (const auto &MA : *Accesses) { (void)MA; ++AccessCapCount; if (AccessCapCount > LicmMssaNoAccForPromotionCap) { NoOfMemAccTooLarge = true; return; } } } /// Hoist expressions out of the specified loop. Note, alias info for inner /// loop is not preserved so it is not a good idea to run LICM multiple /// times on one loop. bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool LoopNestMode) { bool Changed = false; assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); // If this loop has metadata indicating that LICM is not to be performed then // just exit. if (hasDisableLICMTransformsHint(L)) { return false; } // Don't sink stores from loops with coroutine suspend instructions. // LICM would sink instructions into the default destination of // the coroutine switch. The default destination of the switch is to // handle the case where the coroutine is suspended, by which point the // coroutine frame may have been destroyed. No instruction can be sunk there. // FIXME: This would unfortunately hurt the performance of coroutines, however // there is currently no general solution for this. Similar issues could also // potentially happen in other passes where instructions are being moved // across that edge. bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) { return llvm::any_of(*BB, [](Instruction &I) { IntrinsicInst *II = dyn_cast(&I); return II && II->getIntrinsicID() == Intrinsic::coro_suspend; }); }); MemorySSAUpdater MSSAU(MSSA); SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true, *L, *MSSA); // Get the preheader block to move instructions into... BasicBlock *Preheader = L->getLoopPreheader(); // Compute loop safety information. ICFLoopSafetyInfo SafetyInfo; SafetyInfo.computeLoopSafetyInfo(L); // We want to visit all of the instructions in this loop... that are not parts // of our subloops (they have already had their invariants hoisted out of // their loop, into this loop, so there is no need to process the BODIES of // the subloops). // // Traverse the body of the loop in depth first order on the dominator tree so // that we are guaranteed to see definitions before we see uses. This allows // us to sink instructions in one pass, without iteration. After sinking // instructions, we perform another pass to hoist them out of the loop. if (L->hasDedicatedExits()) Changed |= LoopNestMode ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE) : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE); Flags.setIsSink(false); if (Preheader) Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L, MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode, LicmAllowSpeculation); // Now that all loop invariants have been removed from the loop, promote any // memory references to scalars that we can. // Don't sink stores from loops without dedicated block exits. Exits // containing indirect branches are not transformed by loop simplify, // make sure we catch that. An additional load may be generated in the // preheader for SSA updater, so also avoid sinking when no preheader // is available. if (!DisablePromotion && Preheader && L->hasDedicatedExits() && !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) { // Figure out the loop exits and their insertion points SmallVector ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); // We can't insert into a catchswitch. bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { return isa(Exit->getTerminator()); }); if (!HasCatchSwitch) { SmallVector InsertPts; SmallVector MSSAInsertPts; InsertPts.reserve(ExitBlocks.size()); MSSAInsertPts.reserve(ExitBlocks.size()); for (BasicBlock *ExitBlock : ExitBlocks) { InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); MSSAInsertPts.push_back(nullptr); } PredIteratorCache PIC; // Promoting one set of accesses may make the pointers for another set // loop invariant, so run this in a loop. bool Promoted = false; bool LocalPromoted; do { LocalPromoted = false; for (auto [PointerMustAliases, HasReadsOutsideSet] : collectPromotionCandidates(MSSA, AA, L)) { LocalPromoted |= promoteLoopAccessesToScalars( PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE, LicmAllowSpeculation, HasReadsOutsideSet); } Promoted |= LocalPromoted; } while (LocalPromoted); // Once we have promoted values across the loop body we have to // recursively reform LCSSA as any nested loop may now have values defined // within the loop used in the outer loop. // FIXME: This is really heavy handed. It would be a bit better to use an // SSAUpdater strategy during promotion that was LCSSA aware and reformed // it as it went. if (Promoted) formLCSSARecursively(*L, *DT, LI, SE); Changed |= Promoted; } } // Check that neither this loop nor its parent have had LCSSA broken. LICM is // specifically moving instructions across the loop boundary and so it is // especially in need of basic functional correctness checking here. assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && "Parent loop not left in LCSSA form after LICM!"); if (VerifyMemorySSA) MSSA->verifyMemorySSA(); if (Changed && SE) SE->forgetLoopDispositions(); return Changed; } /// Walk the specified region of the CFG (defined by all blocks dominated by /// the specified block, and that are in the current loop) in reverse depth /// first order w.r.t the DominatorTree. This allows us to visit uses before /// definitions, allowing us to sink a loop body in one pass without iteration. /// bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) { // Verify inputs. assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && "Unexpected input to sinkRegion."); // We want to visit children before parents. We will enqueue all the parents // before their children in the worklist and process the worklist in reverse // order. SmallVector Worklist = collectChildrenInLoop(N, CurLoop); bool Changed = false; for (DomTreeNode *DTN : reverse(Worklist)) { BasicBlock *BB = DTN->getBlock(); // Only need to process the contents of this block if it is not part of a // subloop (which would already have been processed). if (inSubLoop(BB, CurLoop, LI)) continue; for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { Instruction &I = *--II; // The instruction is not used in the loop if it is dead. In this case, // we just delete it instead of sinking it. if (isInstructionTriviallyDead(&I, TLI)) { LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); salvageKnowledge(&I); salvageDebugInfo(I); ++II; eraseInstruction(I, *SafetyInfo, MSSAU); Changed = true; continue; } // Check to see if we can sink this instruction to the exit blocks // of the loop. We can do this if the all users of the instruction are // outside of the loop. In this case, it doesn't even matter if the // operands of the instruction are loop invariant. // bool FoldableInLoop = false; bool LoopNestMode = OutermostLoop != nullptr; if (!I.mayHaveSideEffects() && isNotUsedOrFoldableInLoop(I, LoopNestMode ? OutermostLoop : CurLoop, SafetyInfo, TTI, FoldableInLoop, LoopNestMode) && canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) { if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { if (!FoldableInLoop) { ++II; salvageDebugInfo(I); eraseInstruction(I, *SafetyInfo, MSSAU); } Changed = true; } } } } if (VerifyMemorySSA) MSSAU.getMemorySSA()->verifyMemorySSA(); return Changed; } bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) { bool Changed = false; SmallPriorityWorklist Worklist; Worklist.insert(CurLoop); appendLoopsToWorklist(*CurLoop, Worklist); while (!Worklist.empty()) { Loop *L = Worklist.pop_back_val(); Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop); } return Changed; } namespace { // This is a helper class for hoistRegion to make it able to hoist control flow // in order to be able to hoist phis. The way this works is that we initially // start hoisting to the loop preheader, and when we see a loop invariant branch // we make note of this. When we then come to hoist an instruction that's // conditional on such a branch we duplicate the branch and the relevant control // flow, then hoist the instruction into the block corresponding to its original // block in the duplicated control flow. class ControlFlowHoister { private: // Information about the loop we are hoisting from LoopInfo *LI; DominatorTree *DT; Loop *CurLoop; MemorySSAUpdater &MSSAU; // A map of blocks in the loop to the block their instructions will be hoisted // to. DenseMap HoistDestinationMap; // The branches that we can hoist, mapped to the block that marks a // convergence point of their control flow. DenseMap HoistableBranches; public: ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, MemorySSAUpdater &MSSAU) : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} void registerPossiblyHoistableBranch(BranchInst *BI) { // We can only hoist conditional branches with loop invariant operands. if (!ControlFlowHoisting || !BI->isConditional() || !CurLoop->hasLoopInvariantOperands(BI)) return; // The branch destinations need to be in the loop, and we don't gain // anything by duplicating conditional branches with duplicate successors, // as it's essentially the same as an unconditional branch. BasicBlock *TrueDest = BI->getSuccessor(0); BasicBlock *FalseDest = BI->getSuccessor(1); if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || TrueDest == FalseDest) return; // We can hoist BI if one branch destination is the successor of the other, // or both have common successor which we check by seeing if the // intersection of their successors is non-empty. // TODO: This could be expanded to allowing branches where both ends // eventually converge to a single block. SmallPtrSet TrueDestSucc, FalseDestSucc; TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); BasicBlock *CommonSucc = nullptr; if (TrueDestSucc.count(FalseDest)) { CommonSucc = FalseDest; } else if (FalseDestSucc.count(TrueDest)) { CommonSucc = TrueDest; } else { set_intersect(TrueDestSucc, FalseDestSucc); // If there's one common successor use that. if (TrueDestSucc.size() == 1) CommonSucc = *TrueDestSucc.begin(); // If there's more than one pick whichever appears first in the block list // (we can't use the value returned by TrueDestSucc.begin() as it's // unpredicatable which element gets returned). else if (!TrueDestSucc.empty()) { Function *F = TrueDest->getParent(); auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; auto It = llvm::find_if(*F, IsSucc); assert(It != F->end() && "Could not find successor in function"); CommonSucc = &*It; } } // The common successor has to be dominated by the branch, as otherwise // there will be some other path to the successor that will not be // controlled by this branch so any phi we hoist would be controlled by the // wrong condition. This also takes care of avoiding hoisting of loop back // edges. // TODO: In some cases this could be relaxed if the successor is dominated // by another block that's been hoisted and we can guarantee that the // control flow has been replicated exactly. if (CommonSucc && DT->dominates(BI, CommonSucc)) HoistableBranches[BI] = CommonSucc; } bool canHoistPHI(PHINode *PN) { // The phi must have loop invariant operands. if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) return false; // We can hoist phis if the block they are in is the target of hoistable // branches which cover all of the predecessors of the block. SmallPtrSet PredecessorBlocks; BasicBlock *BB = PN->getParent(); for (BasicBlock *PredBB : predecessors(BB)) PredecessorBlocks.insert(PredBB); // If we have less predecessor blocks than predecessors then the phi will // have more than one incoming value for the same block which we can't // handle. // TODO: This could be handled be erasing some of the duplicate incoming // values. if (PredecessorBlocks.size() != pred_size(BB)) return false; for (auto &Pair : HoistableBranches) { if (Pair.second == BB) { // Which blocks are predecessors via this branch depends on if the // branch is triangle-like or diamond-like. if (Pair.first->getSuccessor(0) == BB) { PredecessorBlocks.erase(Pair.first->getParent()); PredecessorBlocks.erase(Pair.first->getSuccessor(1)); } else if (Pair.first->getSuccessor(1) == BB) { PredecessorBlocks.erase(Pair.first->getParent()); PredecessorBlocks.erase(Pair.first->getSuccessor(0)); } else { PredecessorBlocks.erase(Pair.first->getSuccessor(0)); PredecessorBlocks.erase(Pair.first->getSuccessor(1)); } } } // PredecessorBlocks will now be empty if for every predecessor of BB we // found a hoistable branch source. return PredecessorBlocks.empty(); } BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { if (!ControlFlowHoisting) return CurLoop->getLoopPreheader(); // If BB has already been hoisted, return that if (HoistDestinationMap.count(BB)) return HoistDestinationMap[BB]; // Check if this block is conditional based on a pending branch auto HasBBAsSuccessor = [&](DenseMap::value_type &Pair) { return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || Pair.first->getSuccessor(1) == BB); }; auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor); // If not involved in a pending branch, hoist to preheader BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); if (It == HoistableBranches.end()) { LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getNameOrAsOperand() << " as hoist destination for " << BB->getNameOrAsOperand() << "\n"); HoistDestinationMap[BB] = InitialPreheader; return InitialPreheader; } BranchInst *BI = It->first; assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"); LLVMContext &C = BB->getContext(); BasicBlock *TrueDest = BI->getSuccessor(0); BasicBlock *FalseDest = BI->getSuccessor(1); BasicBlock *CommonSucc = HoistableBranches[BI]; BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); // Create hoisted versions of blocks that currently don't have them auto CreateHoistedBlock = [&](BasicBlock *Orig) { if (HoistDestinationMap.count(Orig)) return HoistDestinationMap[Orig]; BasicBlock *New = BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); HoistDestinationMap[Orig] = New; DT->addNewBlock(New, HoistTarget); if (CurLoop->getParentLoop()) CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); ++NumCreatedBlocks; LLVM_DEBUG(dbgs() << "LICM created " << New->getName() << " as hoist destination for " << Orig->getName() << "\n"); return New; }; BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); // Link up these blocks with branches. if (!HoistCommonSucc->getTerminator()) { // The new common successor we've generated will branch to whatever that // hoist target branched to. BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); assert(TargetSucc && "Expected hoist target to have a single successor"); HoistCommonSucc->moveBefore(TargetSucc); BranchInst::Create(TargetSucc, HoistCommonSucc); } if (!HoistTrueDest->getTerminator()) { HoistTrueDest->moveBefore(HoistCommonSucc); BranchInst::Create(HoistCommonSucc, HoistTrueDest); } if (!HoistFalseDest->getTerminator()) { HoistFalseDest->moveBefore(HoistCommonSucc); BranchInst::Create(HoistCommonSucc, HoistFalseDest); } // If BI is being cloned to what was originally the preheader then // HoistCommonSucc will now be the new preheader. if (HoistTarget == InitialPreheader) { // Phis in the loop header now need to use the new preheader. InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); MSSAU.wireOldPredecessorsToNewImmediatePredecessor( HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); // The new preheader dominates the loop header. DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); DT->changeImmediateDominator(HeaderNode, PreheaderNode); // The preheader hoist destination is now the new preheader, with the // exception of the hoist destination of this branch. for (auto &Pair : HoistDestinationMap) if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) Pair.second = HoistCommonSucc; } // Now finally clone BI. ReplaceInstWithInst( HoistTarget->getTerminator(), BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); ++NumClonedBranches; assert(CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"); return HoistDestinationMap[BB]; } }; } // namespace /// Walk the specified region of the CFG (defined by all blocks dominated by /// the specified block, and that are in the current loop) in depth first /// order w.r.t the DominatorTree. This allows us to visit definitions before /// uses, allowing us to hoist a loop body in one pass without iteration. /// bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *TLI, Loop *CurLoop, MemorySSAUpdater &MSSAU, ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo, SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE, bool LoopNestMode, bool AllowSpeculation) { // Verify inputs. assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && "Unexpected input to hoistRegion."); ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); // Keep track of instructions that have been hoisted, as they may need to be // re-hoisted if they end up not dominating all of their uses. SmallVector HoistedInstructions; // For PHI hoisting to work we need to hoist blocks before their successors. // We can do this by iterating through the blocks in the loop in reverse // post-order. LoopBlocksRPO Worklist(CurLoop); Worklist.perform(LI); bool Changed = false; BasicBlock *Preheader = CurLoop->getLoopPreheader(); for (BasicBlock *BB : Worklist) { // Only need to process the contents of this block if it is not part of a // subloop (which would already have been processed). if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) continue; for (Instruction &I : llvm::make_early_inc_range(*BB)) { // Try hoisting the instruction out to the preheader. We can only do // this if all of the operands of the instruction are loop invariant and // if it is safe to hoist the instruction. We also check block frequency // to make sure instruction only gets hoisted into colder blocks. // TODO: It may be safe to hoist if we are hoisting to a conditional block // and we have accurately duplicated the control flow from the loop header // to that block. if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) && isSafeToExecuteUnconditionally( I, DT, TLI, CurLoop, SafetyInfo, ORE, Preheader->getTerminator(), AC, AllowSpeculation)) { hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, MSSAU, SE, ORE); HoistedInstructions.push_back(&I); Changed = true; continue; } // Attempt to remove floating point division out of the loop by // converting it to a reciprocal multiplication. if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && CurLoop->isLoopInvariant(I.getOperand(1))) { auto Divisor = I.getOperand(1); auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); ReciprocalDivisor->insertBefore(&I); auto Product = BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); Product->setFastMathFlags(I.getFastMathFlags()); SafetyInfo->insertInstructionTo(Product, I.getParent()); Product->insertAfter(&I); I.replaceAllUsesWith(Product); eraseInstruction(I, *SafetyInfo, MSSAU); hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, MSSAU, SE, ORE); HoistedInstructions.push_back(ReciprocalDivisor); Changed = true; continue; } auto IsInvariantStart = [&](Instruction &I) { using namespace PatternMatch; return I.use_empty() && match(&I, m_Intrinsic()); }; auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); }; if ((IsInvariantStart(I) || isGuard(&I)) && CurLoop->hasLoopInvariantOperands(&I) && MustExecuteWithoutWritesBefore(I)) { hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, MSSAU, SE, ORE); HoistedInstructions.push_back(&I); Changed = true; continue; } if (PHINode *PN = dyn_cast(&I)) { if (CFH.canHoistPHI(PN)) { // Redirect incoming blocks first to ensure that we create hoisted // versions of those blocks before we hoist the phi. for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) PN->setIncomingBlock( i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, MSSAU, SE, ORE); assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); Changed = true; continue; } } // Try to reassociate instructions so that part of computations can be // done out of loop. if (hoistArithmetics(I, *CurLoop, *SafetyInfo, MSSAU, AC, DT)) { Changed = true; continue; } // Remember possibly hoistable branches so we can actually hoist them // later if needed. if (BranchInst *BI = dyn_cast(&I)) CFH.registerPossiblyHoistableBranch(BI); } } // If we hoisted instructions to a conditional block they may not dominate // their uses that weren't hoisted (such as phis where some operands are not // loop invariant). If so make them unconditional by moving them to their // immediate dominator. We iterate through the instructions in reverse order // which ensures that when we rehoist an instruction we rehoist its operands, // and also keep track of where in the block we are rehoisting to to make sure // that we rehoist instructions before the instructions that use them. Instruction *HoistPoint = nullptr; if (ControlFlowHoisting) { for (Instruction *I : reverse(HoistedInstructions)) { if (!llvm::all_of(I->uses(), [&](Use &U) { return DT->dominates(I, U); })) { BasicBlock *Dominator = DT->getNode(I->getParent())->getIDom()->getBlock(); if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { if (HoistPoint) assert(DT->dominates(Dominator, HoistPoint->getParent()) && "New hoist point expected to dominate old hoist point"); HoistPoint = Dominator->getTerminator(); } LLVM_DEBUG(dbgs() << "LICM rehoisting to " << HoistPoint->getParent()->getNameOrAsOperand() << ": " << *I << "\n"); moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE); HoistPoint = I; Changed = true; } } } if (VerifyMemorySSA) MSSAU.getMemorySSA()->verifyMemorySSA(); // Now that we've finished hoisting make sure that LI and DT are still // valid. #ifdef EXPENSIVE_CHECKS if (Changed) { assert(DT->verify(DominatorTree::VerificationLevel::Fast) && "Dominator tree verification failed"); LI->verify(*DT); } #endif return Changed; } // Return true if LI is invariant within scope of the loop. LI is invariant if // CurLoop is dominated by an invariant.start representing the same memory // location and size as the memory location LI loads from, and also the // invariant.start has no uses. static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, Loop *CurLoop) { Value *Addr = LI->getOperand(0); const DataLayout &DL = LI->getModule()->getDataLayout(); const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); // It is not currently possible for clang to generate an invariant.start // intrinsic with scalable vector types because we don't support thread local // sizeless types and we don't permit sizeless types in structs or classes. // Furthermore, even if support is added for this in future the intrinsic // itself is defined to have a size of -1 for variable sized objects. This // makes it impossible to verify if the intrinsic envelops our region of // interest. For example, both and // types would have a -1 parameter, but the former is clearly double the size // of the latter. if (LocSizeInBits.isScalable()) return false; // if the type is i8 addrspace(x)*, we know this is the type of // llvm.invariant.start operand auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), LI->getPointerAddressSpace()); unsigned BitcastsVisited = 0; // Look through bitcasts until we reach the i8* type (this is invariant.start // operand type). while (Addr->getType() != PtrInt8Ty) { auto *BC = dyn_cast(Addr); // Avoid traversing high number of bitcast uses. if (++BitcastsVisited > MaxNumUsesTraversed || !BC) return false; Addr = BC->getOperand(0); } // If we've ended up at a global/constant, bail. We shouldn't be looking at // uselists for non-local Values in a loop pass. if (isa(Addr)) return false; unsigned UsesVisited = 0; // Traverse all uses of the load operand value, to see if invariant.start is // one of the uses, and whether it dominates the load instruction. for (auto *U : Addr->users()) { // Avoid traversing for Load operand with high number of users. if (++UsesVisited > MaxNumUsesTraversed) return false; IntrinsicInst *II = dyn_cast(U); // If there are escaping uses of invariant.start instruction, the load maybe // non-invariant. if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || !II->use_empty()) continue; ConstantInt *InvariantSize = cast(II->getArgOperand(0)); // The intrinsic supports having a -1 argument for variable sized objects // so we should check for that here. if (InvariantSize->isNegative()) continue; uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; // Confirm the invariant.start location size contains the load operand size // in bits. Also, the invariant.start should dominate the load, and we // should not hoist the load out of a loop that contains this dominating // invariant.start. if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits && DT->properlyDominates(II->getParent(), CurLoop->getHeader())) return true; } return false; } namespace { /// Return true if-and-only-if we know how to (mechanically) both hoist and /// sink a given instruction out of a loop. Does not address legality /// concerns such as aliasing or speculation safety. bool isHoistableAndSinkableInst(Instruction &I) { // Only these instructions are hoistable/sinkable. return (isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I)); } /// Return true if MSSA knows there are no MemoryDefs in the loop. bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) { for (auto *BB : L->getBlocks()) if (MSSAU.getMemorySSA()->getBlockDefs(BB)) return false; return true; } /// Return true if I is the only Instruction with a MemoryAccess in L. bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, const MemorySSAUpdater &MSSAU) { for (auto *BB : L->getBlocks()) if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) { int NotAPhi = 0; for (const auto &Acc : *Accs) { if (isa(&Acc)) continue; const auto *MUD = cast(&Acc); if (MUD->getMemoryInst() != I || NotAPhi++ == 1) return false; } } return true; } } static MemoryAccess *getClobberingMemoryAccess(MemorySSA &MSSA, BatchAAResults &BAA, SinkAndHoistLICMFlags &Flags, MemoryUseOrDef *MA) { // See declaration of SetLicmMssaOptCap for usage details. if (Flags.tooManyClobberingCalls()) return MA->getDefiningAccess(); MemoryAccess *Source = MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(MA, BAA); Flags.incrementClobberingCalls(); return Source; } bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, Loop *CurLoop, MemorySSAUpdater &MSSAU, bool TargetExecutesOncePerLoop, SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) { // If we don't understand the instruction, bail early. if (!isHoistableAndSinkableInst(I)) return false; MemorySSA *MSSA = MSSAU.getMemorySSA(); // Loads have extra constraints we have to verify before we can hoist them. if (LoadInst *LI = dyn_cast(&I)) { if (!LI->isUnordered()) return false; // Don't sink/hoist volatile or ordered atomic loads! // Loads from constant memory are always safe to move, even if they end up // in the same alias set as something that ends up being modified. if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0)))) return true; if (LI->hasMetadata(LLVMContext::MD_invariant_load)) return true; if (LI->isAtomic() && !TargetExecutesOncePerLoop) return false; // Don't risk duplicating unordered loads // This checks for an invariant.start dominating the load. if (isLoadInvariantInLoop(LI, DT, CurLoop)) return true; auto MU = cast(MSSA->getMemoryAccess(LI)); bool InvariantGroup = LI->hasMetadata(LLVMContext::MD_invariant_group); bool Invalidated = pointerInvalidatedByLoop( MSSA, MU, CurLoop, I, Flags, InvariantGroup); // Check loop-invariant address because this may also be a sinkable load // whose address is not necessarily loop-invariant. if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) ORE->emit([&]() { return OptimizationRemarkMissed( DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) << "failed to move load with loop-invariant address " "because the loop may invalidate its value"; }); return !Invalidated; } else if (CallInst *CI = dyn_cast(&I)) { // Don't sink or hoist dbg info; it's legal, but not useful. if (isa(I)) return false; // Don't sink calls which can throw. if (CI->mayThrow()) return false; // Convergent attribute has been used on operations that involve // inter-thread communication which results are implicitly affected by the // enclosing control flows. It is not safe to hoist or sink such operations // across control flow. if (CI->isConvergent()) return false; using namespace PatternMatch; if (match(CI, m_Intrinsic())) // Assumes don't actually alias anything or throw return true; // Handle simple cases by querying alias analysis. MemoryEffects Behavior = AA->getMemoryEffects(CI); // FIXME: we don't handle the semantics of thread local well. So that the // address of thread locals are fake constants in coroutines. So We forbid // to treat onlyReadsMemory call in coroutines as constants now. Note that // it is possible to hide a thread local access in a onlyReadsMemory call. // Remove this check after we handle the semantics of thread locals well. if (Behavior.onlyReadsMemory() && CI->getFunction()->isPresplitCoroutine()) return false; if (Behavior.doesNotAccessMemory()) return true; if (Behavior.onlyReadsMemory()) { // A readonly argmemonly function only reads from memory pointed to by // it's arguments with arbitrary offsets. If we can prove there are no // writes to this memory in the loop, we can hoist or sink. if (Behavior.onlyAccessesArgPointees()) { // TODO: expand to writeable arguments for (Value *Op : CI->args()) if (Op->getType()->isPointerTy() && pointerInvalidatedByLoop( MSSA, cast(MSSA->getMemoryAccess(CI)), CurLoop, I, Flags, /*InvariantGroup=*/false)) return false; return true; } // If this call only reads from memory and there are no writes to memory // in the loop, we can hoist or sink the call as appropriate. if (isReadOnly(MSSAU, CurLoop)) return true; } // FIXME: This should use mod/ref information to see if we can hoist or // sink the call. return false; } else if (auto *FI = dyn_cast(&I)) { // Fences alias (most) everything to provide ordering. For the moment, // just give up if there are any other memory operations in the loop. return isOnlyMemoryAccess(FI, CurLoop, MSSAU); } else if (auto *SI = dyn_cast(&I)) { if (!SI->isUnordered()) return false; // Don't sink/hoist volatile or ordered atomic store! // We can only hoist a store that we can prove writes a value which is not // read or overwritten within the loop. For those cases, we fallback to // load store promotion instead. TODO: We can extend this to cases where // there is exactly one write to the location and that write dominates an // arbitrary number of reads in the loop. if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) return true; // If there are more accesses than the Promotion cap, then give up as we're // not walking a list that long. if (Flags.tooManyMemoryAccesses()) return false; auto *SIMD = MSSA->getMemoryAccess(SI); BatchAAResults BAA(*AA); auto *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, SIMD); // Make sure there are no clobbers inside the loop. if (!MSSA->isLiveOnEntryDef(Source) && CurLoop->contains(Source->getBlock())) return false; // If there are interfering Uses (i.e. their defining access is in the // loop), or ordered loads (stored as Defs!), don't move this store. // Could do better here, but this is conservatively correct. // TODO: Cache set of Uses on the first walk in runOnLoop, update when // moving accesses. Can also extend to dominating uses. for (auto *BB : CurLoop->getBlocks()) if (auto *Accesses = MSSA->getBlockAccesses(BB)) { for (const auto &MA : *Accesses) if (const auto *MU = dyn_cast(&MA)) { auto *MD = getClobberingMemoryAccess(*MSSA, BAA, Flags, const_cast(MU)); if (!MSSA->isLiveOnEntryDef(MD) && CurLoop->contains(MD->getBlock())) return false; // Disable hoisting past potentially interfering loads. Optimized // Uses may point to an access outside the loop, as getClobbering // checks the previous iteration when walking the backedge. // FIXME: More precise: no Uses that alias SI. if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU)) return false; } else if (const auto *MD = dyn_cast(&MA)) { if (auto *LI = dyn_cast(MD->getMemoryInst())) { (void)LI; // Silence warning. assert(!LI->isUnordered() && "Expected unordered load"); return false; } // Any call, while it may not be clobbering SI, it may be a use. if (auto *CI = dyn_cast(MD->getMemoryInst())) { // Check if the call may read from the memory location written // to by SI. Check CI's attributes and arguments; the number of // such checks performed is limited above by NoOfMemAccTooLarge. ModRefInfo MRI = BAA.getModRefInfo(CI, MemoryLocation::get(SI)); if (isModOrRefSet(MRI)) return false; } } } return true; } assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); // We've established mechanical ability and aliasing, it's up to the caller // to check fault safety return true; } /// Returns true if a PHINode is a trivially replaceable with an /// Instruction. /// This is true when all incoming values are that instruction. /// This pattern occurs most often with LCSSA PHI nodes. /// static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { for (const Value *IncValue : PN.incoming_values()) if (IncValue != &I) return false; return true; } /// Return true if the instruction is foldable in the loop. static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop, const TargetTransformInfo *TTI) { if (auto *GEP = dyn_cast(&I)) { InstructionCost CostI = TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); if (CostI != TargetTransformInfo::TCC_Free) return false; // For a GEP, we cannot simply use getInstructionCost because currently // it optimistically assumes that a GEP will fold into addressing mode // regardless of its users. const BasicBlock *BB = GEP->getParent(); for (const User *U : GEP->users()) { const Instruction *UI = cast(U); if (CurLoop->contains(UI) && (BB != UI->getParent() || (!isa(UI) && !isa(UI)))) return false; } return true; } return false; } /// Return true if the only users of this instruction are outside of /// the loop. If this is true, we can sink the instruction to the exit /// blocks of the loop. /// /// We also return true if the instruction could be folded away in lowering. /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, TargetTransformInfo *TTI, bool &FoldableInLoop, bool LoopNestMode) { const auto &BlockColors = SafetyInfo->getBlockColors(); bool IsFoldable = isFoldableInLoop(I, CurLoop, TTI); for (const User *U : I.users()) { const Instruction *UI = cast(U); if (const PHINode *PN = dyn_cast(UI)) { const BasicBlock *BB = PN->getParent(); // We cannot sink uses in catchswitches. if (isa(BB->getTerminator())) return false; // We need to sink a callsite to a unique funclet. Avoid sinking if the // phi use is too muddled. if (isa(I)) if (!BlockColors.empty() && BlockColors.find(const_cast(BB))->second.size() != 1) return false; if (LoopNestMode) { while (isa(UI) && UI->hasOneUser() && UI->getNumOperands() == 1) { if (!CurLoop->contains(UI)) break; UI = cast(UI->user_back()); } } } if (CurLoop->contains(UI)) { if (IsFoldable) { FoldableInLoop = true; continue; } return false; } } return true; } static Instruction *cloneInstructionInExitBlock( Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) { Instruction *New; if (auto *CI = dyn_cast(&I)) { const auto &BlockColors = SafetyInfo->getBlockColors(); // Sinking call-sites need to be handled differently from other // instructions. The cloned call-site needs a funclet bundle operand // appropriate for its location in the CFG. SmallVector OpBundles; for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); BundleIdx != BundleEnd; ++BundleIdx) { OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); if (Bundle.getTagID() == LLVMContext::OB_funclet) continue; OpBundles.emplace_back(Bundle); } if (!BlockColors.empty()) { const ColorVector &CV = BlockColors.find(&ExitBlock)->second; assert(CV.size() == 1 && "non-unique color for exit block!"); BasicBlock *BBColor = CV.front(); Instruction *EHPad = BBColor->getFirstNonPHI(); if (EHPad->isEHPad()) OpBundles.emplace_back("funclet", EHPad); } New = CallInst::Create(CI, OpBundles); } else { New = I.clone(); } New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt()); if (!I.getName().empty()) New->setName(I.getName() + ".le"); if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) { // Create a new MemoryAccess and let MemorySSA set its defining access. MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB( New, nullptr, New->getParent(), MemorySSA::Beginning); if (NewMemAcc) { if (auto *MemDef = dyn_cast(NewMemAcc)) MSSAU.insertDef(MemDef, /*RenameUses=*/true); else { auto *MemUse = cast(NewMemAcc); MSSAU.insertUse(MemUse, /*RenameUses=*/true); } } } // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that // this is particularly cheap because we can rip off the PHI node that we're // replacing for the number and blocks of the predecessors. // OPT: If this shows up in a profile, we can instead finish sinking all // invariant instructions, and then walk their operands to re-establish // LCSSA. That will eliminate creating PHI nodes just to nuke them when // sinking bottom-up. for (Use &Op : New->operands()) if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) { auto *OInst = cast(Op.get()); PHINode *OpPN = PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), OInst->getName() + ".lcssa", &ExitBlock.front()); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); Op = OpPN; } return New; } static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU) { MSSAU.removeMemoryAccess(&I); SafetyInfo.removeInstruction(&I); I.eraseFromParent(); } static void moveInstructionBefore(Instruction &I, Instruction &Dest, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, ScalarEvolution *SE) { SafetyInfo.removeInstruction(&I); SafetyInfo.insertInstructionTo(&I, Dest.getParent()); I.moveBefore(&Dest); if (MemoryUseOrDef *OldMemAcc = cast_or_null( MSSAU.getMemorySSA()->getMemoryAccess(&I))) MSSAU.moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::BeforeTerminator); if (SE) SE->forgetBlockAndLoopDispositions(&I); } static Instruction *sinkThroughTriviallyReplaceablePHI( PHINode *TPN, Instruction *I, LoopInfo *LI, SmallDenseMap &SunkCopies, const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, MemorySSAUpdater &MSSAU) { assert(isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"); BasicBlock *ExitBlock = TPN->getParent(); Instruction *New; auto It = SunkCopies.find(ExitBlock); if (It != SunkCopies.end()) New = It->second; else New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); return New; } static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { BasicBlock *BB = PN->getParent(); if (!BB->canSplitPredecessors()) return false; // It's not impossible to split EHPad blocks, but if BlockColors already exist // it require updating BlockColors for all offspring blocks accordingly. By // skipping such corner case, we can make updating BlockColors after splitting // predecessor fairly simple. if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) return false; for (BasicBlock *BBPred : predecessors(BB)) { if (isa(BBPred->getTerminator())) return false; } return true; } static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, LoopInfo *LI, const Loop *CurLoop, LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) { #ifndef NDEBUG SmallVector ExitBlocks; CurLoop->getUniqueExitBlocks(ExitBlocks); SmallPtrSet ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end()); #endif BasicBlock *ExitBB = PN->getParent(); assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); // Split predecessors of the loop exit to make instructions in the loop are // exposed to exit blocks through trivially replaceable PHIs while keeping the // loop in the canonical form where each predecessor of each exit block should // be contained within the loop. For example, this will convert the loop below // from // // LB1: // %v1 = // br %LE, %LB2 // LB2: // %v2 = // br %LE, %LB1 // LE: // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable // // to // // LB1: // %v1 = // br %LE.split, %LB2 // LB2: // %v2 = // br %LE.split2, %LB1 // LE.split: // %p1 = phi [%v1, %LB1] <-- trivially replaceable // br %LE // LE.split2: // %p2 = phi [%v2, %LB2] <-- trivially replaceable // br %LE // LE: // %p = phi [%p1, %LE.split], [%p2, %LE.split2] // const auto &BlockColors = SafetyInfo->getBlockColors(); SmallSetVector PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); while (!PredBBs.empty()) { BasicBlock *PredBB = *PredBBs.begin(); assert(CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"); if (PN->getBasicBlockIndex(PredBB) >= 0) { BasicBlock *NewPred = SplitBlockPredecessors( ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); // Since we do not allow splitting EH-block with BlockColors in // canSplitPredecessors(), we can simply assign predecessor's color to // the new block. if (!BlockColors.empty()) // Grab a reference to the ColorVector to be inserted before getting the // reference to the vector we are copying because inserting the new // element in BlockColors might cause the map to be reallocated. SafetyInfo->copyColors(NewPred, PredBB); } PredBBs.remove(PredBB); } } /// When an instruction is found to only be used outside of the loop, this /// function moves it to the exit blocks and patches up SSA form as needed. /// This method is guaranteed to remove the original instruction from its /// position, and may either delete it or move it to outside of the loop. /// static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) { bool Changed = false; LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); // Iterate over users to be ready for actual sinking. Replace users via // unreachable blocks with undef and make all user PHIs trivially replaceable. SmallPtrSet VisitedUsers; for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { auto *User = cast(*UI); Use &U = UI.getUse(); ++UI; if (VisitedUsers.count(User) || CurLoop->contains(User)) continue; if (!DT->isReachableFromEntry(User->getParent())) { U = PoisonValue::get(I.getType()); Changed = true; continue; } // The user must be a PHI node. PHINode *PN = cast(User); // Surprisingly, instructions can be used outside of loops without any // exits. This can only happen in PHI nodes if the incoming block is // unreachable. BasicBlock *BB = PN->getIncomingBlock(U); if (!DT->isReachableFromEntry(BB)) { U = PoisonValue::get(I.getType()); Changed = true; continue; } VisitedUsers.insert(PN); if (isTriviallyReplaceablePHI(*PN, I)) continue; if (!canSplitPredecessors(PN, SafetyInfo)) return Changed; // Split predecessors of the PHI so that we can make users trivially // replaceable. splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU); // Should rebuild the iterators, as they may be invalidated by // splitPredecessorsOfLoopExit(). UI = I.user_begin(); UE = I.user_end(); } if (VisitedUsers.empty()) return Changed; ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) << "sinking " << ore::NV("Inst", &I); }); if (isa(I)) ++NumMovedLoads; else if (isa(I)) ++NumMovedCalls; ++NumSunk; #ifndef NDEBUG SmallVector ExitBlocks; CurLoop->getUniqueExitBlocks(ExitBlocks); SmallPtrSet ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end()); #endif // Clones of this instruction. Don't create more than one per exit block! SmallDenseMap SunkCopies; // If this instruction is only used outside of the loop, then all users are // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of // the instruction. // First check if I is worth sinking for all uses. Sink only when it is worth // across all uses. SmallSetVector Users(I.user_begin(), I.user_end()); for (auto *UI : Users) { auto *User = cast(UI); if (CurLoop->contains(User)) continue; PHINode *PN = cast(User); assert(ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"); // The PHI must be trivially replaceable. Instruction *New = sinkThroughTriviallyReplaceablePHI( PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); // As we sink the instruction out of the BB, drop its debug location. New->dropLocation(); PN->replaceAllUsesWith(New); eraseInstruction(*PN, *SafetyInfo, MSSAU); Changed = true; } return Changed; } /// When an instruction is found to only use loop invariant operands that /// is safe to hoist, this instruction is called to do the dirty work. /// static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU, ScalarEvolution *SE, OptimizationRemarkEmitter *ORE) { LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": " << I << "\n"); ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " << ore::NV("Inst", &I); }); // Metadata can be dependent on conditions we are hoisting above. // Conservatively strip all metadata on the instruction unless we were // guaranteed to execute I if we entered the loop, in which case the metadata // is valid in the loop preheader. // Similarly, If I is a call and it is not guaranteed to execute in the loop, // then moving to the preheader means we should strip attributes on the call // that can cause UB since we may be hoisting above conditions that allowed // inferring those attributes. They may not be valid at the preheader. if ((I.hasMetadataOtherThanDebugLoc() || isa(I)) && // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning // time in isGuaranteedToExecute if we don't actually have anything to // drop. It is a compile time optimization, not required for correctness. !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) I.dropUBImplyingAttrsAndMetadata(); if (isa(I)) // Move the new node to the end of the phi list in the destination block. moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE); else // Move the new node to the destination block, before its terminator. moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE); I.updateLocationAfterHoist(); if (isa(I)) ++NumMovedLoads; else if (isa(I)) ++NumMovedCalls; ++NumHoisted; } /// Only sink or hoist an instruction if it is not a trapping instruction, /// or if the instruction is known not to trap when moved to the preheader. /// or if it is a trapping instruction and is guaranteed to execute. static bool isSafeToExecuteUnconditionally( Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE, const Instruction *CtxI, AssumptionCache *AC, bool AllowSpeculation) { if (AllowSpeculation && isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI)) return true; bool GuaranteedToExecute = SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); if (!GuaranteedToExecute) { auto *LI = dyn_cast(&Inst); if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) ORE->emit([&]() { return OptimizationRemarkMissed( DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) << "failed to hoist load with loop-invariant address " "because load is conditionally executed"; }); } return GuaranteedToExecute; } namespace { class LoopPromoter : public LoadAndStorePromoter { Value *SomePtr; // Designated pointer to store to. SmallVectorImpl &LoopExitBlocks; SmallVectorImpl &LoopInsertPts; SmallVectorImpl &MSSAInsertPts; PredIteratorCache &PredCache; MemorySSAUpdater &MSSAU; LoopInfo &LI; DebugLoc DL; Align Alignment; bool UnorderedAtomic; AAMDNodes AATags; ICFLoopSafetyInfo &SafetyInfo; bool CanInsertStoresInExitBlocks; ArrayRef Uses; // We're about to add a use of V in a loop exit block. Insert an LCSSA phi // (if legal) if doing so would add an out-of-loop use to an instruction // defined in-loop. Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB)) return V; Instruction *I = cast(V); // We need to create an LCSSA PHI node for the incoming value and // store that. PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), I->getName() + ".lcssa", &BB->front()); for (BasicBlock *Pred : PredCache.get(BB)) PN->addIncoming(I, Pred); return PN; } public: LoopPromoter(Value *SP, ArrayRef Insts, SSAUpdater &S, SmallVectorImpl &LEB, SmallVectorImpl &LIP, SmallVectorImpl &MSSAIP, PredIteratorCache &PIC, MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl, Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks) : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)), Alignment(Alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags), SafetyInfo(SafetyInfo), CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {} void insertStoresInLoopExitBlocks() { // Insert stores after in the loop exit blocks. Each exit block gets a // store of the live-out values that feed them. Since we've already told // the SSA updater about the defs in the loop and the preheader // definition, it is all set and we can start using it. DIAssignID *NewID = nullptr; for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { BasicBlock *ExitBlock = LoopExitBlocks[i]; Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); Instruction *InsertPos = LoopInsertPts[i]; StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); if (UnorderedAtomic) NewSI->setOrdering(AtomicOrdering::Unordered); NewSI->setAlignment(Alignment); NewSI->setDebugLoc(DL); // Attach DIAssignID metadata to the new store, generating it on the // first loop iteration. if (i == 0) { // NewSI will have its DIAssignID set here if there are any stores in // Uses with a DIAssignID attachment. This merged ID will then be // attached to the other inserted stores (in the branch below). NewSI->mergeDIAssignID(Uses); NewID = cast_or_null( NewSI->getMetadata(LLVMContext::MD_DIAssignID)); } else { // Attach the DIAssignID (or nullptr) merged from Uses in the branch // above. NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID); } if (AATags) NewSI->setAAMetadata(AATags); MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; MemoryAccess *NewMemAcc; if (!MSSAInsertPoint) { NewMemAcc = MSSAU.createMemoryAccessInBB( NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); } else { NewMemAcc = MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); } MSSAInsertPts[i] = NewMemAcc; MSSAU.insertDef(cast(NewMemAcc), true); // FIXME: true for safety, false may still be correct. } } void doExtraRewritesBeforeFinalDeletion() override { if (CanInsertStoresInExitBlocks) insertStoresInLoopExitBlocks(); } void instructionDeleted(Instruction *I) const override { SafetyInfo.removeInstruction(I); MSSAU.removeMemoryAccess(I); } bool shouldDelete(Instruction *I) const override { if (isa(I)) return CanInsertStoresInExitBlocks; return true; } }; bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, DominatorTree *DT) { // We can perform the captured-before check against any instruction in the // loop header, as the loop header is reachable from any instruction inside // the loop. // TODO: ReturnCaptures=true shouldn't be necessary here. return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true, /* StoreCaptures */ true, L->getHeader()->getTerminator(), DT); } /// Return true if we can prove that a caller cannot inspect the object if an /// unwind occurs inside the loop. bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L, DominatorTree *DT) { bool RequiresNoCaptureBeforeUnwind; if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind)) return false; return !RequiresNoCaptureBeforeUnwind || isNotCapturedBeforeOrInLoop(Object, L, DT); } // We don't consider globals as writable: While the physical memory is writable, // we may not have provenance to perform the write. bool isWritableObject(const Value *Object) { // TODO: Alloca might not be writable after its lifetime ends. // See https://github.com/llvm/llvm-project/issues/51838. if (isa(Object)) return true; // TODO: Also handle sret. if (auto *A = dyn_cast(Object)) return A->hasByValAttr(); // TODO: Noalias has nothing to do with writability, this should check for // an allocator function. return isNoAliasCall(Object); } bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT, TargetTransformInfo *TTI) { // The object must be function-local to start with, and then not captured // before/in the loop. return (isIdentifiedFunctionLocal(Object) && isNotCapturedBeforeOrInLoop(Object, L, DT)) || (TTI->isSingleThreaded() || SingleThread); } } // namespace /// Try to promote memory values to scalars by sinking stores out of the /// loop and moving loads to before the loop. We do this by looping over /// the stores in the loop, looking for stores to Must pointers which are /// loop invariant. /// bool llvm::promoteLoopAccessesToScalars( const SmallSetVector &PointerMustAliases, SmallVectorImpl &ExitBlocks, SmallVectorImpl &InsertPts, SmallVectorImpl &MSSAInsertPts, PredIteratorCache &PIC, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE, bool AllowSpeculation, bool HasReadsOutsideSet) { // Verify inputs. assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && "Unexpected Input to promoteLoopAccessesToScalars"); LLVM_DEBUG({ dbgs() << "Trying to promote set of must-aliased pointers:\n"; for (Value *Ptr : PointerMustAliases) dbgs() << " " << *Ptr << "\n"; }); ++NumPromotionCandidates; Value *SomePtr = *PointerMustAliases.begin(); BasicBlock *Preheader = CurLoop->getLoopPreheader(); // It is not safe to promote a load/store from the loop if the load/store is // conditional. For example, turning: // // for () { if (c) *P += 1; } // // into: // // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; // // is not safe, because *P may only be valid to access if 'c' is true. // // The safety property divides into two parts: // p1) The memory may not be dereferenceable on entry to the loop. In this // case, we can't insert the required load in the preheader. // p2) The memory model does not allow us to insert a store along any dynamic // path which did not originally have one. // // If at least one store is guaranteed to execute, both properties are // satisfied, and promotion is legal. // // This, however, is not a necessary condition. Even if no store/load is // guaranteed to execute, we can still establish these properties. // We can establish (p1) by proving that hoisting the load into the preheader // is safe (i.e. proving dereferenceability on all paths through the loop). We // can use any access within the alias set to prove dereferenceability, // since they're all must alias. // // There are two ways establish (p2): // a) Prove the location is thread-local. In this case the memory model // requirement does not apply, and stores are safe to insert. // b) Prove a store dominates every exit block. In this case, if an exit // blocks is reached, the original dynamic path would have taken us through // the store, so inserting a store into the exit block is safe. Note that this // is different from the store being guaranteed to execute. For instance, // if an exception is thrown on the first iteration of the loop, the original // store is never executed, but the exit blocks are not executed either. bool DereferenceableInPH = false; bool StoreIsGuanteedToExecute = false; bool FoundLoadToPromote = false; // Goes from Unknown to either Safe or Unsafe, but can't switch between them. enum { StoreSafe, StoreUnsafe, StoreSafetyUnknown, } StoreSafety = StoreSafetyUnknown; SmallVector LoopUses; // We start with an alignment of one and try to find instructions that allow // us to prove better alignment. Align Alignment; // Keep track of which types of access we see bool SawUnorderedAtomic = false; bool SawNotAtomic = false; AAMDNodes AATags; const DataLayout &MDL = Preheader->getModule()->getDataLayout(); // If there are reads outside the promoted set, then promoting stores is // definitely not safe. if (HasReadsOutsideSet) StoreSafety = StoreUnsafe; if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) { // If a loop can throw, we have to insert a store along each unwind edge. // That said, we can't actually make the unwind edge explicit. Therefore, // we have to prove that the store is dead along the unwind edge. We do // this by proving that the caller can't have a reference to the object // after return and thus can't possibly load from the object. Value *Object = getUnderlyingObject(SomePtr); if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT)) StoreSafety = StoreUnsafe; } // Check that all accesses to pointers in the alias set use the same type. // We cannot (yet) promote a memory location that is loaded and stored in // different sizes. While we are at it, collect alignment and AA info. Type *AccessTy = nullptr; for (Value *ASIV : PointerMustAliases) { for (Use &U : ASIV->uses()) { // Ignore instructions that are outside the loop. Instruction *UI = dyn_cast(U.getUser()); if (!UI || !CurLoop->contains(UI)) continue; // If there is an non-load/store instruction in the loop, we can't promote // it. if (LoadInst *Load = dyn_cast(UI)) { if (!Load->isUnordered()) return false; SawUnorderedAtomic |= Load->isAtomic(); SawNotAtomic |= !Load->isAtomic(); FoundLoadToPromote = true; Align InstAlignment = Load->getAlign(); // Note that proving a load safe to speculate requires proving // sufficient alignment at the target location. Proving it guaranteed // to execute does as well. Thus we can increase our guaranteed // alignment as well. if (!DereferenceableInPH || (InstAlignment > Alignment)) if (isSafeToExecuteUnconditionally( *Load, DT, TLI, CurLoop, SafetyInfo, ORE, Preheader->getTerminator(), AC, AllowSpeculation)) { DereferenceableInPH = true; Alignment = std::max(Alignment, InstAlignment); } } else if (const StoreInst *Store = dyn_cast(UI)) { // Stores *of* the pointer are not interesting, only stores *to* the // pointer. if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) continue; if (!Store->isUnordered()) return false; SawUnorderedAtomic |= Store->isAtomic(); SawNotAtomic |= !Store->isAtomic(); // If the store is guaranteed to execute, both properties are satisfied. // We may want to check if a store is guaranteed to execute even if we // already know that promotion is safe, since it may have higher // alignment than any other guaranteed stores, in which case we can // raise the alignment on the promoted store. Align InstAlignment = Store->getAlign(); bool GuaranteedToExecute = SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop); StoreIsGuanteedToExecute |= GuaranteedToExecute; if (GuaranteedToExecute) { DereferenceableInPH = true; if (StoreSafety == StoreSafetyUnknown) StoreSafety = StoreSafe; Alignment = std::max(Alignment, InstAlignment); } // If a store dominates all exit blocks, it is safe to sink. // As explained above, if an exit block was executed, a dominating // store must have been executed at least once, so we are not // introducing stores on paths that did not have them. // Note that this only looks at explicit exit blocks. If we ever // start sinking stores into unwind edges (see above), this will break. if (StoreSafety == StoreSafetyUnknown && llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { return DT->dominates(Store->getParent(), Exit); })) StoreSafety = StoreSafe; // If the store is not guaranteed to execute, we may still get // deref info through it. if (!DereferenceableInPH) { DereferenceableInPH = isDereferenceableAndAlignedPointer( Store->getPointerOperand(), Store->getValueOperand()->getType(), Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI); } } else continue; // Not a load or store. if (!AccessTy) AccessTy = getLoadStoreType(UI); else if (AccessTy != getLoadStoreType(UI)) return false; // Merge the AA tags. if (LoopUses.empty()) { // On the first load/store, just take its AA tags. AATags = UI->getAAMetadata(); } else if (AATags) { AATags = AATags.merge(UI->getAAMetadata()); } LoopUses.push_back(UI); } } // If we found both an unordered atomic instruction and a non-atomic memory // access, bail. We can't blindly promote non-atomic to atomic since we // might not be able to lower the result. We can't downgrade since that // would violate memory model. Also, align 0 is an error for atomics. if (SawUnorderedAtomic && SawNotAtomic) return false; // If we're inserting an atomic load in the preheader, we must be able to // lower it. We're only guaranteed to be able to lower naturally aligned // atomics. if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy)) return false; // If we couldn't prove we can hoist the load, bail. if (!DereferenceableInPH) { LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n"); return false; } // We know we can hoist the load, but don't have a guaranteed store. // Check whether the location is writable and thread-local. If it is, then we // can insert stores along paths which originally didn't have them without // violating the memory model. if (StoreSafety == StoreSafetyUnknown) { Value *Object = getUnderlyingObject(SomePtr); if (isWritableObject(Object) && isThreadLocalObject(Object, CurLoop, DT, TTI)) StoreSafety = StoreSafe; } // If we've still failed to prove we can sink the store, hoist the load // only, if possible. if (StoreSafety != StoreSafe && !FoundLoadToPromote) // If we cannot hoist the load either, give up. return false; // Lets do the promotion! if (StoreSafety == StoreSafe) { LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr << '\n'); ++NumLoadStorePromoted; } else { LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr << '\n'); ++NumLoadPromoted; } ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", LoopUses[0]) << "Moving accesses to memory location out of the loop"; }); // Look at all the loop uses, and try to merge their locations. std::vector LoopUsesLocs; for (auto *U : LoopUses) LoopUsesLocs.push_back(U->getDebugLoc().get()); auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs)); // We use the SSAUpdater interface to insert phi nodes as required. SmallVector NewPHIs; SSAUpdater SSA(&NewPHIs); LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment, SawUnorderedAtomic, AATags, *SafetyInfo, StoreSafety == StoreSafe); // Set up the preheader to have a definition of the value. It is the live-out // value from the preheader that uses in the loop will use. LoadInst *PreheaderLoad = nullptr; if (FoundLoadToPromote || !StoreIsGuanteedToExecute) { PreheaderLoad = new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted", Preheader->getTerminator()); if (SawUnorderedAtomic) PreheaderLoad->setOrdering(AtomicOrdering::Unordered); PreheaderLoad->setAlignment(Alignment); PreheaderLoad->setDebugLoc(DebugLoc()); if (AATags) PreheaderLoad->setAAMetadata(AATags); MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB( PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); MemoryUse *NewMemUse = cast(PreheaderLoadMemoryAccess); MSSAU.insertUse(NewMemUse, /*RenameUses=*/true); SSA.AddAvailableValue(Preheader, PreheaderLoad); } else { SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy)); } if (VerifyMemorySSA) MSSAU.getMemorySSA()->verifyMemorySSA(); // Rewrite all the loads in the loop and remember all the definitions from // stores in the loop. Promoter.run(LoopUses); if (VerifyMemorySSA) MSSAU.getMemorySSA()->verifyMemorySSA(); // If the SSAUpdater didn't use the load in the preheader, just zap it now. if (PreheaderLoad && PreheaderLoad->use_empty()) eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU); return true; } static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, function_ref Fn) { for (const BasicBlock *BB : L->blocks()) if (const auto *Accesses = MSSA->getBlockAccesses(BB)) for (const auto &Access : *Accesses) if (const auto *MUD = dyn_cast(&Access)) Fn(MUD->getMemoryInst()); } // The bool indicates whether there might be reads outside the set, in which // case only loads may be promoted. static SmallVector collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { BatchAAResults BatchAA(*AA); AliasSetTracker AST(BatchAA); auto IsPotentiallyPromotable = [L](const Instruction *I) { if (const auto *SI = dyn_cast(I)) return L->isLoopInvariant(SI->getPointerOperand()); if (const auto *LI = dyn_cast(I)) return L->isLoopInvariant(LI->getPointerOperand()); return false; }; // Populate AST with potentially promotable accesses. SmallPtrSet AttemptingPromotion; foreachMemoryAccess(MSSA, L, [&](Instruction *I) { if (IsPotentiallyPromotable(I)) { AttemptingPromotion.insert(I); AST.add(I); } }); // We're only interested in must-alias sets that contain a mod. SmallVector, 8> Sets; for (AliasSet &AS : AST) if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) Sets.push_back({&AS, false}); if (Sets.empty()) return {}; // Nothing to promote... // Discard any sets for which there is an aliasing non-promotable access. foreachMemoryAccess(MSSA, L, [&](Instruction *I) { if (AttemptingPromotion.contains(I)) return; llvm::erase_if(Sets, [&](PointerIntPair &Pair) { ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA); // Cannot promote if there are writes outside the set. if (isModSet(MR)) return true; if (isRefSet(MR)) { // Remember reads outside the set. Pair.setInt(true); // If this is a mod-only set and there are reads outside the set, // we will not be able to promote, so bail out early. return !Pair.getPointer()->isRef(); } return false; }); }); SmallVector, bool>, 0> Result; for (auto [Set, HasReadsOutsideSet] : Sets) { SmallSetVector PointerMustAliases; for (const auto &ASI : *Set) PointerMustAliases.insert(ASI.getValue()); Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet); } return Result; } static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, Loop *CurLoop, Instruction &I, SinkAndHoistLICMFlags &Flags, bool InvariantGroup) { // For hoisting, use the walker to determine safety if (!Flags.getIsSink()) { // If hoisting an invariant group, we only need to check that there // is no store to the loaded pointer between the start of the loop, // and the load (since all values must be the same). // This can be checked in two conditions: // 1) if the memoryaccess is outside the loop // 2) the earliest access is at the loop header, // if the memory loaded is the phi node BatchAAResults BAA(MSSA->getAA()); MemoryAccess *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, MU); return !MSSA->isLiveOnEntryDef(Source) && CurLoop->contains(Source->getBlock()) && !(InvariantGroup && Source->getBlock() == CurLoop->getHeader() && isa(Source)); } // For sinking, we'd need to check all Defs below this use. The getClobbering // call will look on the backedge of the loop, but will check aliasing with // the instructions on the previous iteration. // For example: // for (i ... ) // load a[i] ( Use (LoE) // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. // i++; // The load sees no clobbering inside the loop, as the backedge alias check // does phi translation, and will check aliasing against store a[i-1]. // However sinking the load outside the loop, below the store is incorrect. // For now, only sink if there are no Defs in the loop, and the existing ones // precede the use and are in the same block. // FIXME: Increase precision: Safe to sink if Use post dominates the Def; // needs PostDominatorTreeAnalysis. // FIXME: More precise: no Defs that alias this Use. if (Flags.tooManyMemoryAccesses()) return true; for (auto *BB : CurLoop->getBlocks()) if (pointerInvalidatedByBlock(*BB, *MSSA, *MU)) return true; // When sinking, the source block may not be part of the loop so check it. if (!CurLoop->contains(&I)) return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU); return false; } bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) { if (const auto *Accesses = MSSA.getBlockDefs(&BB)) for (const auto &MA : *Accesses) if (const auto *MD = dyn_cast(&MA)) if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) return true; return false; } /// Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A < /// min(INV_1, INV_2)), if INV_1 and INV_2 are both loop invariants and their /// minimun can be computed outside of loop, and X is not a loop-invariant. static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU) { bool Inverse = false; using namespace PatternMatch; Value *Cond1, *Cond2; if (match(&I, m_LogicalOr(m_Value(Cond1), m_Value(Cond2)))) { Inverse = true; } else if (match(&I, m_LogicalAnd(m_Value(Cond1), m_Value(Cond2)))) { // Do nothing } else return false; auto MatchICmpAgainstInvariant = [&](Value *C, ICmpInst::Predicate &P, Value *&LHS, Value *&RHS) { if (!match(C, m_OneUse(m_ICmp(P, m_Value(LHS), m_Value(RHS))))) return false; if (!LHS->getType()->isIntegerTy()) return false; if (!ICmpInst::isRelational(P)) return false; if (L.isLoopInvariant(LHS)) { std::swap(LHS, RHS); P = ICmpInst::getSwappedPredicate(P); } if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS)) return false; if (Inverse) P = ICmpInst::getInversePredicate(P); return true; }; ICmpInst::Predicate P1, P2; Value *LHS1, *LHS2, *RHS1, *RHS2; if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) || !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2)) return false; if (P1 != P2 || LHS1 != LHS2) return false; // Everything is fine, we can do the transform. bool UseMin = ICmpInst::isLT(P1) || ICmpInst::isLE(P1); assert( (UseMin || ICmpInst::isGT(P1) || ICmpInst::isGE(P1)) && "Relational predicate is either less (or equal) or greater (or equal)!"); Intrinsic::ID id = ICmpInst::isSigned(P1) ? (UseMin ? Intrinsic::smin : Intrinsic::smax) : (UseMin ? Intrinsic::umin : Intrinsic::umax); auto *Preheader = L.getLoopPreheader(); assert(Preheader && "Loop is not in simplify form?"); IRBuilder<> Builder(Preheader->getTerminator()); // We are about to create a new guaranteed use for RHS2 which might not exist // before (if it was a non-taken input of logical and/or instruction). If it // was poison, we need to freeze it. Note that no new use for LHS and RHS1 are // introduced, so they don't need this. if (isa(I)) RHS2 = Builder.CreateFreeze(RHS2, RHS2->getName() + ".fr"); Value *NewRHS = Builder.CreateBinaryIntrinsic( id, RHS1, RHS2, nullptr, StringRef("invariant.") + (ICmpInst::isSigned(P1) ? "s" : "u") + (UseMin ? "min" : "max")); Builder.SetInsertPoint(&I); ICmpInst::Predicate P = P1; if (Inverse) P = ICmpInst::getInversePredicate(P); Value *NewCond = Builder.CreateICmp(P, LHS1, NewRHS); NewCond->takeName(&I); I.replaceAllUsesWith(NewCond); eraseInstruction(I, SafetyInfo, MSSAU); eraseInstruction(*cast(Cond1), SafetyInfo, MSSAU); eraseInstruction(*cast(Cond2), SafetyInfo, MSSAU); return true; } /// Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if /// this allows hoisting the inner GEP. static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT) { auto *GEP = dyn_cast(&I); if (!GEP) return false; auto *Src = dyn_cast(GEP->getPointerOperand()); if (!Src || !Src->hasOneUse() || !L.contains(Src)) return false; Value *SrcPtr = Src->getPointerOperand(); auto LoopInvariant = [&](Value *V) { return L.isLoopInvariant(V); }; if (!L.isLoopInvariant(SrcPtr) || !all_of(GEP->indices(), LoopInvariant)) return false; // This can only happen if !AllowSpeculation, otherwise this would already be // handled. // FIXME: Should we respect AllowSpeculation in these reassociation folds? // The flag exists to prevent metadata dropping, which is not relevant here. if (all_of(Src->indices(), LoopInvariant)) return false; // The swapped GEPs are inbounds if both original GEPs are inbounds // and the sign of the offsets is the same. For simplicity, only // handle both offsets being non-negative. const DataLayout &DL = GEP->getModule()->getDataLayout(); auto NonNegative = [&](Value *V) { return isKnownNonNegative(V, DL, 0, AC, GEP, DT); }; bool IsInBounds = Src->isInBounds() && GEP->isInBounds() && all_of(Src->indices(), NonNegative) && all_of(GEP->indices(), NonNegative); BasicBlock *Preheader = L.getLoopPreheader(); IRBuilder<> Builder(Preheader->getTerminator()); Value *NewSrc = Builder.CreateGEP(GEP->getSourceElementType(), SrcPtr, SmallVector(GEP->indices()), "invariant.gep", IsInBounds); Builder.SetInsertPoint(GEP); Value *NewGEP = Builder.CreateGEP(Src->getSourceElementType(), NewSrc, SmallVector(Src->indices()), "gep", IsInBounds); GEP->replaceAllUsesWith(NewGEP); eraseInstruction(*GEP, SafetyInfo, MSSAU); eraseInstruction(*Src, SafetyInfo, MSSAU); return true; } /// Try to turn things like "LV + C1 < C2" into "LV < C2 - C1". Here /// C1 and C2 are loop invariants and LV is a loop-variant. static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS, Value *InvariantRHS, ICmpInst &ICmp, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT) { assert(ICmpInst::isSigned(Pred) && "Not supported yet!"); assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); // Try to represent VariantLHS as sum of invariant and variant operands. using namespace PatternMatch; Value *VariantOp, *InvariantOp; if (!match(VariantLHS, m_NSWAdd(m_Value(VariantOp), m_Value(InvariantOp)))) return false; // LHS itself is a loop-variant, try to represent it in the form: // "VariantOp + InvariantOp". If it is possible, then we can reassociate. if (L.isLoopInvariant(VariantOp)) std::swap(VariantOp, InvariantOp); if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) return false; // In order to turn "LV + C1 < C2" into "LV < C2 - C1", we need to be able to // freely move values from left side of inequality to right side (just as in // normal linear arithmetics). Overflows make things much more complicated, so // we want to avoid this. auto &DL = L.getHeader()->getModule()->getDataLayout(); bool ProvedNoOverflowAfterReassociate = computeOverflowForSignedSub(InvariantRHS, InvariantOp, DL, AC, &ICmp, DT) == llvm::OverflowResult::NeverOverflows; if (!ProvedNoOverflowAfterReassociate) return false; auto *Preheader = L.getLoopPreheader(); assert(Preheader && "Loop is not in simplify form?"); IRBuilder<> Builder(Preheader->getTerminator()); Value *NewCmpOp = Builder.CreateSub(InvariantRHS, InvariantOp, "invariant.op", /*HasNUW*/ false, /*HasNSW*/ true); ICmp.setPredicate(Pred); ICmp.setOperand(0, VariantOp); ICmp.setOperand(1, NewCmpOp); eraseInstruction(cast(*VariantLHS), SafetyInfo, MSSAU); return true; } /// Try to reassociate and hoist the following two patterns: /// LV - C1 < C2 --> LV < C1 + C2, /// C1 - LV < C2 --> LV > C1 - C2. static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS, Value *InvariantRHS, ICmpInst &ICmp, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT) { assert(ICmpInst::isSigned(Pred) && "Not supported yet!"); assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); // Try to represent VariantLHS as sum of invariant and variant operands. using namespace PatternMatch; Value *VariantOp, *InvariantOp; if (!match(VariantLHS, m_NSWSub(m_Value(VariantOp), m_Value(InvariantOp)))) return false; bool VariantSubtracted = false; // LHS itself is a loop-variant, try to represent it in the form: // "VariantOp + InvariantOp". If it is possible, then we can reassociate. If // the variant operand goes with minus, we use a slightly different scheme. if (L.isLoopInvariant(VariantOp)) { std::swap(VariantOp, InvariantOp); VariantSubtracted = true; Pred = ICmpInst::getSwappedPredicate(Pred); } if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) return false; // In order to turn "LV - C1 < C2" into "LV < C2 + C1", we need to be able to // freely move values from left side of inequality to right side (just as in // normal linear arithmetics). Overflows make things much more complicated, so // we want to avoid this. Likewise, for "C1 - LV < C2" we need to prove that // "C1 - C2" does not overflow. auto &DL = L.getHeader()->getModule()->getDataLayout(); if (VariantSubtracted) { // C1 - LV < C2 --> LV > C1 - C2 if (computeOverflowForSignedSub(InvariantOp, InvariantRHS, DL, AC, &ICmp, DT) != llvm::OverflowResult::NeverOverflows) return false; } else { // LV - C1 < C2 --> LV < C1 + C2 if (computeOverflowForSignedAdd(InvariantOp, InvariantRHS, DL, AC, &ICmp, DT) != llvm::OverflowResult::NeverOverflows) return false; } auto *Preheader = L.getLoopPreheader(); assert(Preheader && "Loop is not in simplify form?"); IRBuilder<> Builder(Preheader->getTerminator()); Value *NewCmpOp = VariantSubtracted ? Builder.CreateSub(InvariantOp, InvariantRHS, "invariant.op", /*HasNUW*/ false, /*HasNSW*/ true) : Builder.CreateAdd(InvariantOp, InvariantRHS, "invariant.op", /*HasNUW*/ false, /*HasNSW*/ true); ICmp.setPredicate(Pred); ICmp.setOperand(0, VariantOp); ICmp.setOperand(1, NewCmpOp); eraseInstruction(cast(*VariantLHS), SafetyInfo, MSSAU); return true; } /// Reassociate and hoist add/sub expressions. static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT) { using namespace PatternMatch; ICmpInst::Predicate Pred; Value *LHS, *RHS; if (!match(&I, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) return false; // TODO: Support unsigned predicates? if (!ICmpInst::isSigned(Pred)) return false; // Put variant operand to LHS position. if (L.isLoopInvariant(LHS)) { std::swap(LHS, RHS); Pred = ICmpInst::getSwappedPredicate(Pred); } // We want to delete the initial operation after reassociation, so only do it // if it has no other uses. if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS) || !LHS->hasOneUse()) return false; // TODO: We could go with smarter context, taking common dominator of all I's // users instead of I itself. if (hoistAdd(Pred, LHS, RHS, cast(I), L, SafetyInfo, MSSAU, AC, DT)) return true; if (hoistSub(Pred, LHS, RHS, cast(I), L, SafetyInfo, MSSAU, AC, DT)) return true; return false; } static bool hoistArithmetics(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, AssumptionCache *AC, DominatorTree *DT) { // Optimize complex patterns, such as (x < INV1 && x < INV2), turning them // into (x < min(INV1, INV2)), and hoisting the invariant part of this // expression out of the loop. if (hoistMinMax(I, L, SafetyInfo, MSSAU)) { ++NumHoisted; ++NumMinMaxHoisted; return true; } // Try to hoist GEPs by reassociation. if (hoistGEP(I, L, SafetyInfo, MSSAU, AC, DT)) { ++NumHoisted; ++NumGEPsHoisted; return true; } // Try to hoist add/sub's by reassociation. if (hoistAddSub(I, L, SafetyInfo, MSSAU, AC, DT)) { ++NumHoisted; ++NumAddSubHoisted; return true; } return false; } /// Little predicate that returns true if the specified basic block is in /// a subloop of the current one, not the current one itself. /// static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); return LI->getLoopFor(BB) != CurLoop; }