//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This transformation analyzes and transforms the induction variables (and // computations derived from them) into simpler forms suitable for subsequent // analysis and transformation. // // If the trip count of a loop is computable, this pass also makes the following // changes: // 1. The exit condition for the loop is canonicalized to compare the // induction value against the exit value. This turns loops like: // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' // 2. Any use outside of the loop of an expression derived from the indvar // is changed to compute the derived value outside of the loop, eliminating // the dependence on the exit value of the induction variable. If the only // purpose of the loop is to compute the exit value of some derived // expression, this transformation will make the loop dead. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/IndVarSimplify.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #include "llvm/Transforms/Utils/SimplifyIndVar.h" #include #include #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "indvars" STATISTIC(NumWidened , "Number of indvars widened"); STATISTIC(NumReplaced , "Number of exit values replaced"); STATISTIC(NumLFTR , "Number of loop exit tests replaced"); STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); // Trip count verification can be enabled by default under NDEBUG if we // implement a strong expression equivalence checker in SCEV. Until then, we // use the verify-indvars flag, which may assert in some cases. static cl::opt VerifyIndvars( "verify-indvars", cl::Hidden, cl::desc("Verify the ScalarEvolution result after running indvars. Has no " "effect in release builds. (Note: this adds additional SCEV " "queries potentially changing the analysis result)")); static cl::opt ReplaceExitValue( "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), cl::values( clEnumValN(NeverRepl, "never", "never replace exit value"), clEnumValN(OnlyCheapRepl, "cheap", "only replace exit value when the cost is cheap"), clEnumValN( UnusedIndVarInLoop, "unusedindvarinloop", "only replace exit value when it is an unused " "induction variable in the loop and has cheap replacement cost"), clEnumValN(NoHardUse, "noharduse", "only replace exit values when loop def likely dead"), clEnumValN(AlwaysRepl, "always", "always replace exit value whenever possible"))); static cl::opt UsePostIncrementRanges( "indvars-post-increment-ranges", cl::Hidden, cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), cl::init(true)); static cl::opt DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), cl::desc("Disable Linear Function Test Replace optimization")); static cl::opt LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), cl::desc("Predicate conditions in read only loops")); static cl::opt AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), cl::desc("Allow widening of indvars to eliminate s/zext")); namespace { class IndVarSimplify { LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; const DataLayout &DL; TargetLibraryInfo *TLI; const TargetTransformInfo *TTI; std::unique_ptr MSSAU; SmallVector DeadInsts; bool WidenIndVars; bool handleFloatingPointIV(Loop *L, PHINode *PH); bool rewriteNonIntegerIVs(Loop *L); bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); /// Try to improve our exit conditions by converting condition from signed /// to unsigned or rotating computation out of the loop. /// (See inline comment about why this is duplicated from simplifyAndExtend) bool canonicalizeExitCondition(Loop *L); /// Try to eliminate loop exits based on analyzeable exit counts bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); /// Try to form loop invariant tests for loop exits by changing how many /// iterations of the loop run when that is unobservable. bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); bool rewriteFirstIterationLoopExitValues(Loop *L); bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, const SCEV *ExitCount, PHINode *IndVar, SCEVExpander &Rewriter); bool sinkUnusedInvariants(Loop *L); public: IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, const DataLayout &DL, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), WidenIndVars(WidenIndVars) { if (MSSA) MSSAU = std::make_unique(MSSA); } bool run(Loop *L); }; } // end anonymous namespace //===----------------------------------------------------------------------===// // rewriteNonIntegerIVs and helpers. Prefer integer IVs. //===----------------------------------------------------------------------===// /// Convert APF to an integer, if possible. static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { bool isExact = false; // See if we can convert this to an int64_t uint64_t UIntVal; if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, APFloat::rmTowardZero, &isExact) != APFloat::opOK || !isExact) return false; IntVal = UIntVal; return true; } /// If the loop has floating induction variable then insert corresponding /// integer induction variable if possible. /// For example, /// for(double i = 0; i < 10000; ++i) /// bar(i) /// is converted into /// for(int i = 0; i < 10000; ++i) /// bar((double)i); bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); unsigned BackEdge = IncomingEdge^1; // Check incoming value. auto *InitValueVal = dyn_cast(PN->getIncomingValue(IncomingEdge)); int64_t InitValue; if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) return false; // Check IV increment. Reject this PN if increment operation is not // an add or increment value can not be represented by an integer. auto *Incr = dyn_cast(PN->getIncomingValue(BackEdge)); if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; // If this is not an add of the PHI with a constantfp, or if the constant fp // is not an integer, bail out. ConstantFP *IncValueVal = dyn_cast(Incr->getOperand(1)); int64_t IncValue; if (IncValueVal == nullptr || Incr->getOperand(0) != PN || !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) return false; // Check Incr uses. One user is PN and the other user is an exit condition // used by the conditional terminator. Value::user_iterator IncrUse = Incr->user_begin(); Instruction *U1 = cast(*IncrUse++); if (IncrUse == Incr->user_end()) return false; Instruction *U2 = cast(*IncrUse++); if (IncrUse != Incr->user_end()) return false; // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't // only used by a branch, we can't transform it. FCmpInst *Compare = dyn_cast(U1); if (!Compare) Compare = dyn_cast(U2); if (!Compare || !Compare->hasOneUse() || !isa(Compare->user_back())) return false; BranchInst *TheBr = cast(Compare->user_back()); // We need to verify that the branch actually controls the iteration count // of the loop. If not, the new IV can overflow and no one will notice. // The branch block must be in the loop and one of the successors must be out // of the loop. assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); if (!L->contains(TheBr->getParent()) || (L->contains(TheBr->getSuccessor(0)) && L->contains(TheBr->getSuccessor(1)))) return false; // If it isn't a comparison with an integer-as-fp (the exit value), we can't // transform it. ConstantFP *ExitValueVal = dyn_cast(Compare->getOperand(1)); int64_t ExitValue; if (ExitValueVal == nullptr || !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) return false; // Find new predicate for integer comparison. CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; switch (Compare->getPredicate()) { default: return false; // Unknown comparison. case CmpInst::FCMP_OEQ: case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; case CmpInst::FCMP_ONE: case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; case CmpInst::FCMP_OGT: case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; case CmpInst::FCMP_OLT: case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; } // We convert the floating point induction variable to a signed i32 value if // we can. This is only safe if the comparison will not overflow in a way // that won't be trapped by the integer equivalent operations. Check for this // now. // TODO: We could use i64 if it is native and the range requires it. // The start/stride/exit values must all fit in signed i32. if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) return false; // If not actually striding (add x, 0.0), avoid touching the code. if (IncValue == 0) return false; // Positive and negative strides have different safety conditions. if (IncValue > 0) { // If we have a positive stride, we require the init to be less than the // exit value. if (InitValue >= ExitValue) return false; uint32_t Range = uint32_t(ExitValue-InitValue); // Check for infinite loop, either: // while (i <= Exit) or until (i > Exit) if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { if (++Range == 0) return false; // Range overflows. } unsigned Leftover = Range % uint32_t(IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return false; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) return false; } else { // If we have a negative stride, we require the init to be greater than the // exit value. if (InitValue <= ExitValue) return false; uint32_t Range = uint32_t(InitValue-ExitValue); // Check for infinite loop, either: // while (i >= Exit) or until (i < Exit) if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { if (++Range == 0) return false; // Range overflows. } unsigned Leftover = Range % uint32_t(-IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return false; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) return false; } IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); // Insert new integer induction variable. PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), PN->getIncomingBlock(IncomingEdge)); Value *NewAdd = BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), Incr->getName()+".int", Incr); NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, ConstantInt::get(Int32Ty, ExitValue), Compare->getName()); // In the following deletions, PN may become dead and may be deleted. // Use a WeakTrackingVH to observe whether this happens. WeakTrackingVH WeakPH = PN; // Delete the old floating point exit comparison. The branch starts using the // new comparison. NewCompare->takeName(Compare); Compare->replaceAllUsesWith(NewCompare); RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); // Delete the old floating point increment. Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType())); RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); // If the FP induction variable still has uses, this is because something else // in the loop uses its value. In order to canonicalize the induction // variable, we chose to eliminate the IV and rewrite it in terms of an // int->fp cast. // // We give preference to sitofp over uitofp because it is faster on most // platforms. if (WeakPH) { Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", &*PN->getParent()->getFirstInsertionPt()); PN->replaceAllUsesWith(Conv); RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); } return true; } bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { // First step. Check to see if there are any floating-point recurrences. // If there are, change them into integer recurrences, permitting analysis by // the SCEV routines. BasicBlock *Header = L->getHeader(); SmallVector PHIs; for (PHINode &PN : Header->phis()) PHIs.push_back(&PN); bool Changed = false; for (unsigned i = 0, e = PHIs.size(); i != e; ++i) if (PHINode *PN = dyn_cast_or_null(&*PHIs[i])) Changed |= handleFloatingPointIV(L, PN); // If the loop previously had floating-point IV, ScalarEvolution // may not have been able to compute a trip count. Now that we've done some // re-writing, the trip count may be computable. if (Changed) SE->forgetLoop(L); return Changed; } //===---------------------------------------------------------------------===// // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know // they will exit at the first iteration. //===---------------------------------------------------------------------===// /// Check to see if this loop has loop invariant conditions which lead to loop /// exits. If so, we know that if the exit path is taken, it is at the first /// loop iteration. This lets us predict exit values of PHI nodes that live in /// loop header. bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { // Verify the input to the pass is already in LCSSA form. assert(L->isLCSSAForm(*DT)); SmallVector ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); bool MadeAnyChanges = false; for (auto *ExitBB : ExitBlocks) { // If there are no more PHI nodes in this exit block, then no more // values defined inside the loop are used on this path. for (PHINode &PN : ExitBB->phis()) { for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); IncomingValIdx != E; ++IncomingValIdx) { auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); // Can we prove that the exit must run on the first iteration if it // runs at all? (i.e. early exits are fine for our purposes, but // traces which lead to this exit being taken on the 2nd iteration // aren't.) Note that this is about whether the exit branch is // executed, not about whether it is taken. if (!L->getLoopLatch() || !DT->dominates(IncomingBB, L->getLoopLatch())) continue; // Get condition that leads to the exit path. auto *TermInst = IncomingBB->getTerminator(); Value *Cond = nullptr; if (auto *BI = dyn_cast(TermInst)) { // Must be a conditional branch, otherwise the block // should not be in the loop. Cond = BI->getCondition(); } else if (auto *SI = dyn_cast(TermInst)) Cond = SI->getCondition(); else continue; if (!L->isLoopInvariant(Cond)) continue; auto *ExitVal = dyn_cast(PN.getIncomingValue(IncomingValIdx)); // Only deal with PHIs in the loop header. if (!ExitVal || ExitVal->getParent() != L->getHeader()) continue; // If ExitVal is a PHI on the loop header, then we know its // value along this exit because the exit can only be taken // on the first iteration. auto *LoopPreheader = L->getLoopPreheader(); assert(LoopPreheader && "Invalid loop"); int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); if (PreheaderIdx != -1) { assert(ExitVal->getParent() == L->getHeader() && "ExitVal must be in loop header"); MadeAnyChanges = true; PN.setIncomingValue(IncomingValIdx, ExitVal->getIncomingValue(PreheaderIdx)); SE->forgetValue(&PN); } } } } return MadeAnyChanges; } //===----------------------------------------------------------------------===// // IV Widening - Extend the width of an IV to cover its widest uses. //===----------------------------------------------------------------------===// /// Update information about the induction variable that is extended by this /// sign or zero extend operation. This is used to determine the final width of /// the IV before actually widening it. static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, const TargetTransformInfo *TTI) { bool IsSigned = Cast->getOpcode() == Instruction::SExt; if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) return; Type *Ty = Cast->getType(); uint64_t Width = SE->getTypeSizeInBits(Ty); if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) return; // Check that `Cast` actually extends the induction variable (we rely on this // later). This takes care of cases where `Cast` is extending a truncation of // the narrow induction variable, and thus can end up being narrower than the // "narrow" induction variable. uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); if (NarrowIVWidth >= Width) return; // Cast is either an sext or zext up to this point. // We should not widen an indvar if arithmetics on the wider indvar are more // expensive than those on the narrower indvar. We check only the cost of ADD // because at least an ADD is required to increment the induction variable. We // could compute more comprehensively the cost of all instructions on the // induction variable when necessary. if (TTI && TTI->getArithmeticInstrCost(Instruction::Add, Ty) > TTI->getArithmeticInstrCost(Instruction::Add, Cast->getOperand(0)->getType())) { return; } if (!WI.WidestNativeType || Width > SE->getTypeSizeInBits(WI.WidestNativeType)) { WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); WI.IsSigned = IsSigned; return; } // We extend the IV to satisfy the sign of its user(s), or 'signed' // if there are multiple users with both sign- and zero extensions, // in order not to introduce nondeterministic behaviour based on the // unspecified order of a PHI nodes' users-iterator. WI.IsSigned |= IsSigned; } //===----------------------------------------------------------------------===// // Live IV Reduction - Minimize IVs live across the loop. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Simplification of IV users based on SCEV evaluation. //===----------------------------------------------------------------------===// namespace { class IndVarSimplifyVisitor : public IVVisitor { ScalarEvolution *SE; const TargetTransformInfo *TTI; PHINode *IVPhi; public: WideIVInfo WI; IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, const TargetTransformInfo *TTI, const DominatorTree *DTree) : SE(SCEV), TTI(TTI), IVPhi(IV) { DT = DTree; WI.NarrowIV = IVPhi; } // Implement the interface used by simplifyUsersOfIV. void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } }; } // end anonymous namespace /// Iteratively perform simplification on a worklist of IV users. Each /// successive simplification may push more users which may themselves be /// candidates for simplification. /// /// Sign/Zero extend elimination is interleaved with IV simplification. bool IndVarSimplify::simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI) { SmallVector WideIVs; auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( Intrinsic::getName(Intrinsic::experimental_guard)); bool HasGuards = GuardDecl && !GuardDecl->use_empty(); SmallVector LoopPhis; for (PHINode &PN : L->getHeader()->phis()) LoopPhis.push_back(&PN); // Each round of simplification iterates through the SimplifyIVUsers worklist // for all current phis, then determines whether any IVs can be // widened. Widening adds new phis to LoopPhis, inducing another round of // simplification on the wide IVs. bool Changed = false; while (!LoopPhis.empty()) { // Evaluate as many IV expressions as possible before widening any IVs. This // forces SCEV to set no-wrap flags before evaluating sign/zero // extension. The first time SCEV attempts to normalize sign/zero extension, // the result becomes final. So for the most predictable results, we delay // evaluation of sign/zero extend evaluation until needed, and avoid running // other SCEV based analysis prior to simplifyAndExtend. do { PHINode *CurrIV = LoopPhis.pop_back_val(); // Information about sign/zero extensions of CurrIV. IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, &Visitor); if (Visitor.WI.WidestNativeType) { WideIVs.push_back(Visitor.WI); } } while(!LoopPhis.empty()); // Continue if we disallowed widening. if (!WidenIndVars) continue; for (; !WideIVs.empty(); WideIVs.pop_back()) { unsigned ElimExt; unsigned Widened; if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, HasGuards, UsePostIncrementRanges)) { NumElimExt += ElimExt; NumWidened += Widened; Changed = true; LoopPhis.push_back(WidePhi); } } } return Changed; } //===----------------------------------------------------------------------===// // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. //===----------------------------------------------------------------------===// /// Given an Value which is hoped to be part of an add recurance in the given /// loop, return the associated Phi node if so. Otherwise, return null. Note /// that this is less general than SCEVs AddRec checking. static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { Instruction *IncI = dyn_cast(IncV); if (!IncI) return nullptr; switch (IncI->getOpcode()) { case Instruction::Add: case Instruction::Sub: break; case Instruction::GetElementPtr: // An IV counter must preserve its type. if (IncI->getNumOperands() == 2) break; LLVM_FALLTHROUGH; default: return nullptr; } PHINode *Phi = dyn_cast(IncI->getOperand(0)); if (Phi && Phi->getParent() == L->getHeader()) { if (L->isLoopInvariant(IncI->getOperand(1))) return Phi; return nullptr; } if (IncI->getOpcode() == Instruction::GetElementPtr) return nullptr; // Allow add/sub to be commuted. Phi = dyn_cast(IncI->getOperand(1)); if (Phi && Phi->getParent() == L->getHeader()) { if (L->isLoopInvariant(IncI->getOperand(0))) return Phi; } return nullptr; } /// Whether the current loop exit test is based on this value. Currently this /// is limited to a direct use in the loop condition. static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { BranchInst *BI = cast(ExitingBB->getTerminator()); ICmpInst *ICmp = dyn_cast(BI->getCondition()); // TODO: Allow non-icmp loop test. if (!ICmp) return false; // TODO: Allow indirect use. return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; } /// linearFunctionTestReplace policy. Return true unless we can show that the /// current exit test is already sufficiently canonical. static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { assert(L->getLoopLatch() && "Must be in simplified form"); // Avoid converting a constant or loop invariant test back to a runtime // test. This is critical for when SCEV's cached ExitCount is less precise // than the current IR (such as after we've proven a particular exit is // actually dead and thus the BE count never reaches our ExitCount.) BranchInst *BI = cast(ExitingBB->getTerminator()); if (L->isLoopInvariant(BI->getCondition())) return false; // Do LFTR to simplify the exit condition to an ICMP. ICmpInst *Cond = dyn_cast(BI->getCondition()); if (!Cond) return true; // Do LFTR to simplify the exit ICMP to EQ/NE ICmpInst::Predicate Pred = Cond->getPredicate(); if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) return true; // Look for a loop invariant RHS Value *LHS = Cond->getOperand(0); Value *RHS = Cond->getOperand(1); if (!L->isLoopInvariant(RHS)) { if (!L->isLoopInvariant(LHS)) return true; std::swap(LHS, RHS); } // Look for a simple IV counter LHS PHINode *Phi = dyn_cast(LHS); if (!Phi) Phi = getLoopPhiForCounter(LHS, L); if (!Phi) return true; // Do LFTR if PHI node is defined in the loop, but is *not* a counter. int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); if (Idx < 0) return true; // Do LFTR if the exit condition's IV is *not* a simple counter. Value *IncV = Phi->getIncomingValue(Idx); return Phi != getLoopPhiForCounter(IncV, L); } /// Return true if undefined behavior would provable be executed on the path to /// OnPathTo if Root produced a posion result. Note that this doesn't say /// anything about whether OnPathTo is actually executed or whether Root is /// actually poison. This can be used to assess whether a new use of Root can /// be added at a location which is control equivalent with OnPathTo (such as /// immediately before it) without introducing UB which didn't previously /// exist. Note that a false result conveys no information. static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT) { // Basic approach is to assume Root is poison, propagate poison forward // through all users we can easily track, and then check whether any of those // users are provable UB and must execute before out exiting block might // exit. // The set of all recursive users we've visited (which are assumed to all be // poison because of said visit) SmallSet KnownPoison; SmallVector Worklist; Worklist.push_back(Root); while (!Worklist.empty()) { const Instruction *I = Worklist.pop_back_val(); // If we know this must trigger UB on a path leading our target. if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) return true; // If we can't analyze propagation through this instruction, just skip it // and transitive users. Safe as false is a conservative result. if (!propagatesPoison(cast(I)) && I != Root) continue; if (KnownPoison.insert(I).second) for (const User *User : I->users()) Worklist.push_back(cast(User)); } // Might be non-UB, or might have a path we couldn't prove must execute on // way to exiting bb. return false; } /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils /// down to checking that all operands are constant and listing instructions /// that may hide undef. static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl &Visited, unsigned Depth) { if (isa(V)) return !isa(V); if (Depth >= 6) return false; // Conservatively handle non-constant non-instructions. For example, Arguments // may be undef. Instruction *I = dyn_cast(V); if (!I) return false; // Load and return values may be undef. if(I->mayReadFromMemory() || isa(I) || isa(I)) return false; // Optimistically handle other instructions. for (Value *Op : I->operands()) { if (!Visited.insert(Op).second) continue; if (!hasConcreteDefImpl(Op, Visited, Depth+1)) return false; } return true; } /// Return true if the given value is concrete. We must prove that undef can /// never reach it. /// /// TODO: If we decide that this is a good approach to checking for undef, we /// may factor it into a common location. static bool hasConcreteDef(Value *V) { SmallPtrSet Visited; Visited.insert(V); return hasConcreteDefImpl(V, Visited, 0); } /// Return true if this IV has any uses other than the (soon to be rewritten) /// loop exit test. static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); Value *IncV = Phi->getIncomingValue(LatchIdx); for (User *U : Phi->users()) if (U != Cond && U != IncV) return false; for (User *U : IncV->users()) if (U != Cond && U != Phi) return false; return true; } /// Return true if the given phi is a "counter" in L. A counter is an /// add recurance (of integer or pointer type) with an arbitrary start, and a /// step of 1. Note that L must have exactly one latch. static bool isLoopCounter(PHINode* Phi, Loop *L, ScalarEvolution *SE) { assert(Phi->getParent() == L->getHeader()); assert(L->getLoopLatch()); if (!SE->isSCEVable(Phi->getType())) return false; const SCEVAddRecExpr *AR = dyn_cast(SE->getSCEV(Phi)); if (!AR || AR->getLoop() != L || !AR->isAffine()) return false; const SCEV *Step = dyn_cast(AR->getStepRecurrence(*SE)); if (!Step || !Step->isOne()) return false; int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); Value *IncV = Phi->getIncomingValue(LatchIdx); return (getLoopPhiForCounter(IncV, L) == Phi && isa(SE->getSCEV(IncV))); } /// Search the loop header for a loop counter (anadd rec w/step of one) /// suitable for use by LFTR. If multiple counters are available, select the /// "best" one based profitable heuristics. /// /// BECount may be an i8* pointer type. The pointer difference is already /// valid count without scaling the address stride, so it remains a pointer /// expression as far as SCEV is concerned. static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, const SCEV *BECount, ScalarEvolution *SE, DominatorTree *DT) { uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); Value *Cond = cast(ExitingBB->getTerminator())->getCondition(); // Loop over all of the PHI nodes, looking for a simple counter. PHINode *BestPhi = nullptr; const SCEV *BestInit = nullptr; BasicBlock *LatchBlock = L->getLoopLatch(); assert(LatchBlock && "Must be in simplified form"); const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) { PHINode *Phi = cast(I); if (!isLoopCounter(Phi, L, SE)) continue; // Avoid comparing an integer IV against a pointer Limit. if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) continue; const auto *AR = cast(SE->getSCEV(Phi)); // AR may be a pointer type, while BECount is an integer type. // AR may be wider than BECount. With eq/ne tests overflow is immaterial. // AR may not be a narrower type, or we may never exit. uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) continue; // Avoid reusing a potentially undef value to compute other values that may // have originally had a concrete definition. if (!hasConcreteDef(Phi)) { // We explicitly allow unknown phis as long as they are already used by // the loop exit test. This is legal since performing LFTR could not // increase the number of undef users. Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); if (!isLoopExitTestBasedOn(Phi, ExitingBB) && !isLoopExitTestBasedOn(IncPhi, ExitingBB)) continue; } // Avoid introducing undefined behavior due to poison which didn't exist in // the original program. (Annoyingly, the rules for poison and undef // propagation are distinct, so this does NOT cover the undef case above.) // We have to ensure that we don't introduce UB by introducing a use on an // iteration where said IV produces poison. Our strategy here differs for // pointers and integer IVs. For integers, we strip and reinfer as needed, // see code in linearFunctionTestReplace. For pointers, we restrict // transforms as there is no good way to reinfer inbounds once lost. if (!Phi->getType()->isIntegerTy() && !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) continue; const SCEV *Init = AR->getStart(); if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { // Don't force a live loop counter if another IV can be used. if (AlmostDeadIV(Phi, LatchBlock, Cond)) continue; // Prefer to count-from-zero. This is a more "canonical" counter form. It // also prefers integer to pointer IVs. if (BestInit->isZero() != Init->isZero()) { if (BestInit->isZero()) continue; } // If two IVs both count from zero or both count from nonzero then the // narrower is likely a dead phi that has been widened. Use the wider phi // to allow the other to be eliminated. else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) continue; } BestPhi = Phi; BestInit = Init; } return BestPhi; } /// Insert an IR expression which computes the value held by the IV IndVar /// (which must be an loop counter w/unit stride) after the backedge of loop L /// is taken ExitCount times. static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, const SCEV *ExitCount, bool UsePostInc, Loop *L, SCEVExpander &Rewriter, ScalarEvolution *SE) { assert(isLoopCounter(IndVar, L, SE)); const SCEVAddRecExpr *AR = cast(SE->getSCEV(IndVar)); const SCEV *IVInit = AR->getStart(); assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter // finds a valid pointer IV. Sign extend ExitCount in order to materialize a // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing // the existing GEPs whenever possible. if (IndVar->getType()->isPointerTy() && !ExitCount->getType()->isPointerTy()) { // IVOffset will be the new GEP offset that is interpreted by GEP as a // signed value. ExitCount on the other hand represents the loop trip count, // which is an unsigned value. FindLoopCounter only allows induction // variables that have a positive unit stride of one. This means we don't // have to handle the case of negative offsets (yet) and just need to zero // extend ExitCount. Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); if (UsePostInc) IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); // Expand the code for the iteration count. assert(SE->isLoopInvariant(IVOffset, L) && "Computed iteration count is not loop invariant!"); const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); BranchInst *BI = cast(ExitingBB->getTerminator()); return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); } else { // In any other case, convert both IVInit and ExitCount to integers before // comparing. This may result in SCEV expansion of pointers, but in practice // SCEV will fold the pointer arithmetic away as such: // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). // // Valid Cases: (1) both integers is most common; (2) both may be pointers // for simple memset-style loops. // // IVInit integer and ExitCount pointer would only occur if a canonical IV // were generated on top of case #2, which is not expected. // For unit stride, IVCount = Start + ExitCount with 2's complement // overflow. // For integer IVs, truncate the IV before computing IVInit + BECount, // unless we know apriori that the limit must be a constant when evaluated // in the bitwidth of the IV. We prefer (potentially) keeping a truncate // of the IV in the loop over a (potentially) expensive expansion of the // widened exit count add(zext(add)) expression. if (SE->getTypeSizeInBits(IVInit->getType()) > SE->getTypeSizeInBits(ExitCount->getType())) { if (isa(IVInit) && isa(ExitCount)) ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); else IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); } const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); if (UsePostInc) IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); // Expand the code for the iteration count. assert(SE->isLoopInvariant(IVLimit, L) && "Computed iteration count is not loop invariant!"); // Ensure that we generate the same type as IndVar, or a smaller integer // type. In the presence of null pointer values, we have an integer type // SCEV expression (IVInit) for a pointer type IV value (IndVar). Type *LimitTy = ExitCount->getType()->isPointerTy() ? IndVar->getType() : ExitCount->getType(); BranchInst *BI = cast(ExitingBB->getTerminator()); return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); } } /// This method rewrites the exit condition of the loop to be a canonical != /// comparison against the incremented loop induction variable. This pass is /// able to rewrite the exit tests of any loop where the SCEV analysis can /// determine a loop-invariant trip count of the loop, which is actually a much /// broader range than just linear tests. bool IndVarSimplify:: linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, const SCEV *ExitCount, PHINode *IndVar, SCEVExpander &Rewriter) { assert(L->getLoopLatch() && "Loop no longer in simplified form?"); assert(isLoopCounter(IndVar, L, SE)); Instruction * const IncVar = cast(IndVar->getIncomingValueForBlock(L->getLoopLatch())); // Initialize CmpIndVar to the preincremented IV. Value *CmpIndVar = IndVar; bool UsePostInc = false; // If the exiting block is the same as the backedge block, we prefer to // compare against the post-incremented value, otherwise we must compare // against the preincremented value. if (ExitingBB == L->getLoopLatch()) { // For pointer IVs, we chose to not strip inbounds which requires us not // to add a potentially UB introducing use. We need to either a) show // the loop test we're modifying is already in post-inc form, or b) show // that adding a use must not introduce UB. bool SafeToPostInc = IndVar->getType()->isIntegerTy() || isLoopExitTestBasedOn(IncVar, ExitingBB) || mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); if (SafeToPostInc) { UsePostInc = true; CmpIndVar = IncVar; } } // It may be necessary to drop nowrap flags on the incrementing instruction // if either LFTR moves from a pre-inc check to a post-inc check (in which // case the increment might have previously been poison on the last iteration // only) or if LFTR switches to a different IV that was previously dynamically // dead (and as such may be arbitrarily poison). We remove any nowrap flags // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc // check), because the pre-inc addrec flags may be adopted from the original // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. // TODO: This handling is inaccurate for one case: If we switch to a // dynamically dead IV that wraps on the first loop iteration only, which is // not covered by the post-inc addrec. (If the new IV was not dynamically // dead, it could not be poison on the first iteration in the first place.) if (auto *BO = dyn_cast(IncVar)) { const SCEVAddRecExpr *AR = cast(SE->getSCEV(IncVar)); if (BO->hasNoUnsignedWrap()) BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); if (BO->hasNoSignedWrap()) BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); } Value *ExitCnt = genLoopLimit( IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() && "genLoopLimit missed a cast"); // Insert a new icmp_ne or icmp_eq instruction before the branch. BranchInst *BI = cast(ExitingBB->getTerminator()); ICmpInst::Predicate P; if (L->contains(BI->getSuccessor(0))) P = ICmpInst::ICMP_NE; else P = ICmpInst::ICMP_EQ; IRBuilder<> Builder(BI); // The new loop exit condition should reuse the debug location of the // original loop exit condition. if (auto *Cond = dyn_cast(BI->getCondition())) Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); // For integer IVs, if we evaluated the limit in the narrower bitwidth to // avoid the expensive expansion of the limit expression in the wider type, // emit a truncate to narrow the IV to the ExitCount type. This is safe // since we know (from the exit count bitwidth), that we can't self-wrap in // the narrower type. unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); if (CmpIndVarSize > ExitCntSize) { assert(!CmpIndVar->getType()->isPointerTy() && !ExitCnt->getType()->isPointerTy()); // Before resorting to actually inserting the truncate, use the same // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend // the other side of the comparison instead. We still evaluate the limit // in the narrower bitwidth, we just prefer a zext/sext outside the loop to // a truncate within in. bool Extended = false; const SCEV *IV = SE->getSCEV(CmpIndVar); const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), ExitCnt->getType()); const SCEV *ZExtTrunc = SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); if (ZExtTrunc == IV) { Extended = true; ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), "wide.trip.count"); } else { const SCEV *SExtTrunc = SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); if (SExtTrunc == IV) { Extended = true; ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), "wide.trip.count"); } } if (Extended) { bool Discard; L->makeLoopInvariant(ExitCnt, Discard); } else CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), "lftr.wideiv"); } LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" << " LHS:" << *CmpIndVar << '\n' << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" << " RHS:\t" << *ExitCnt << "\n" << "ExitCount:\t" << *ExitCount << "\n" << " was: " << *BI->getCondition() << "\n"); Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); Value *OrigCond = BI->getCondition(); // It's tempting to use replaceAllUsesWith here to fully replace the old // comparison, but that's not immediately safe, since users of the old // comparison may not be dominated by the new comparison. Instead, just // update the branch to use the new comparison; in the common case this // will make old comparison dead. BI->setCondition(Cond); DeadInsts.emplace_back(OrigCond); ++NumLFTR; return true; } //===----------------------------------------------------------------------===// // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. //===----------------------------------------------------------------------===// /// If there's a single exit block, sink any loop-invariant values that /// were defined in the preheader but not used inside the loop into the /// exit block to reduce register pressure in the loop. bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { BasicBlock *ExitBlock = L->getExitBlock(); if (!ExitBlock) return false; BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) return false; bool MadeAnyChanges = false; BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); BasicBlock::iterator I(Preheader->getTerminator()); while (I != Preheader->begin()) { --I; // New instructions were inserted at the end of the preheader. if (isa(I)) break; // Don't move instructions which might have side effects, since the side // effects need to complete before instructions inside the loop. Also don't // move instructions which might read memory, since the loop may modify // memory. Note that it's okay if the instruction might have undefined // behavior: LoopSimplify guarantees that the preheader dominates the exit // block. if (I->mayHaveSideEffects() || I->mayReadFromMemory()) continue; // Skip debug info intrinsics. if (isa(I)) continue; // Skip eh pad instructions. if (I->isEHPad()) continue; // Don't sink alloca: we never want to sink static alloca's out of the // entry block, and correctly sinking dynamic alloca's requires // checks for stacksave/stackrestore intrinsics. // FIXME: Refactor this check somehow? if (isa(I)) continue; // Determine if there is a use in or before the loop (direct or // otherwise). bool UsedInLoop = false; for (Use &U : I->uses()) { Instruction *User = cast(U.getUser()); BasicBlock *UseBB = User->getParent(); if (PHINode *P = dyn_cast(User)) { unsigned i = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); UseBB = P->getIncomingBlock(i); } if (UseBB == Preheader || L->contains(UseBB)) { UsedInLoop = true; break; } } // If there is, the def must remain in the preheader. if (UsedInLoop) continue; // Otherwise, sink it to the exit block. Instruction *ToMove = &*I; bool Done = false; if (I != Preheader->begin()) { // Skip debug info intrinsics. do { --I; } while (I->isDebugOrPseudoInst() && I != Preheader->begin()); if (I->isDebugOrPseudoInst() && I == Preheader->begin()) Done = true; } else { Done = true; } MadeAnyChanges = true; ToMove->moveBefore(*ExitBlock, InsertPt); if (Done) break; InsertPt = ToMove->getIterator(); } return MadeAnyChanges; } static void replaceExitCond(BranchInst *BI, Value *NewCond, SmallVectorImpl &DeadInsts) { auto *OldCond = BI->getCondition(); BI->setCondition(NewCond); if (OldCond->use_empty()) DeadInsts.emplace_back(OldCond); } static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, SmallVectorImpl &DeadInsts) { BranchInst *BI = cast(ExitingBB->getTerminator()); bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); auto *OldCond = BI->getCondition(); auto *NewCond = ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue); replaceExitCond(BI, NewCond, DeadInsts); } static void replaceLoopPHINodesWithPreheaderValues( LoopInfo *LI, Loop *L, SmallVectorImpl &DeadInsts) { assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!"); auto *LoopPreheader = L->getLoopPreheader(); auto *LoopHeader = L->getHeader(); SmallVector Worklist; for (auto &PN : LoopHeader->phis()) { auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader); for (User *U : PN.users()) Worklist.push_back(cast(U)); PN.replaceAllUsesWith(PreheaderIncoming); DeadInsts.emplace_back(&PN); } // Replacing with the preheader value will often allow IV users to simplify // (especially if the preheader value is a constant). SmallPtrSet Visited; while (!Worklist.empty()) { auto *I = cast(Worklist.pop_back_val()); if (!Visited.insert(I).second) continue; // Don't simplify instructions outside the loop. if (!L->contains(I)) continue; Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout()); if (Res && LI->replacementPreservesLCSSAForm(I, Res)) { for (User *U : I->users()) Worklist.push_back(cast(U)); I->replaceAllUsesWith(Res); DeadInsts.emplace_back(I); } } } static void replaceWithInvariantCond( const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred, const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter, SmallVectorImpl &DeadInsts) { BranchInst *BI = cast(ExitingBB->getTerminator()); Rewriter.setInsertPoint(BI); auto *LHSV = Rewriter.expandCodeFor(InvariantLHS); auto *RHSV = Rewriter.expandCodeFor(InvariantRHS); bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); if (ExitIfTrue) InvariantPred = ICmpInst::getInversePredicate(InvariantPred); IRBuilder<> Builder(BI); auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV, BI->getCondition()->getName()); replaceExitCond(BI, NewCond, DeadInsts); } static bool optimizeLoopExitWithUnknownExitCount( const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter, bool Inverted, bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter, SmallVectorImpl &DeadInsts) { ICmpInst::Predicate Pred; Value *LHS, *RHS; BasicBlock *TrueSucc, *FalseSucc; if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) return false; assert((L->contains(TrueSucc) != L->contains(FalseSucc)) && "Not a loop exit!"); // 'LHS pred RHS' should now mean that we stay in loop. if (L->contains(FalseSucc)) Pred = CmpInst::getInversePredicate(Pred); // If we are proving loop exit, invert the predicate. if (Inverted) Pred = CmpInst::getInversePredicate(Pred); const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); // Can we prove it to be trivially true? if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) { foldExit(L, ExitingBB, Inverted, DeadInsts); return true; } // Further logic works for non-inverted condition only. if (Inverted) return false; auto *ARTy = LHSS->getType(); auto *MaxIterTy = MaxIter->getType(); // If possible, adjust types. if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { const SCEV *MinusOne = SE->getMinusOne(ARTy); auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) MaxIter = SE->getTruncateExpr(MaxIter, ARTy); } if (SkipLastIter) { const SCEV *One = SE->getOne(MaxIter->getType()); MaxIter = SE->getMinusSCEV(MaxIter, One); } // Check if there is a loop-invariant predicate equivalent to our check. auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, L, BI, MaxIter); if (!LIP) return false; // Can we prove it to be trivially true? if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) foldExit(L, ExitingBB, Inverted, DeadInsts); else replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS, Rewriter, DeadInsts); return true; } bool IndVarSimplify::canonicalizeExitCondition(Loop *L) { // Note: This is duplicating a particular part on SimplifyIndVars reasoning. // We need to duplicate it because given icmp zext(small-iv), C, IVUsers // never reaches the icmp since the zext doesn't fold to an AddRec unless // it already has flags. The alternative to this would be to extending the // set of "interesting" IV users to include the icmp, but doing that // regresses results in practice by querying SCEVs before trip counts which // rely on them which results in SCEV caching sub-optimal answers. The // concern about caching sub-optimal results is why we only query SCEVs of // the loop invariant RHS here. SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); bool Changed = false; for (auto *ExitingBB : ExitingBlocks) { auto *BI = dyn_cast(ExitingBB->getTerminator()); if (!BI) continue; assert(BI->isConditional() && "exit branch must be conditional"); auto *ICmp = dyn_cast(BI->getCondition()); if (!ICmp || !ICmp->hasOneUse()) continue; auto *LHS = ICmp->getOperand(0); auto *RHS = ICmp->getOperand(1); // For the range reasoning, avoid computing SCEVs in the loop to avoid // poisoning cache with sub-optimal results. For the must-execute case, // this is a neccessary precondition for correctness. if (!L->isLoopInvariant(RHS)) { if (!L->isLoopInvariant(LHS)) continue; // Same logic applies for the inverse case std::swap(LHS, RHS); } // Match (icmp signed-cond zext, RHS) Value *LHSOp = nullptr; if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned()) continue; const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); auto FullCR = ConstantRange::getFull(InnerBitWidth); FullCR = FullCR.zeroExtend(OuterBitWidth); auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); if (FullCR.contains(RHSCR)) { // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus // replace the signed condition with the unsigned version. ICmp->setPredicate(ICmp->getUnsignedPredicate()); Changed = true; // Note: No SCEV invalidation needed. We've changed the predicate, but // have not changed exit counts, or the values produced by the compare. continue; } } // Now that we've canonicalized the condition to match the extend, // see if we can rotate the extend out of the loop. for (auto *ExitingBB : ExitingBlocks) { auto *BI = dyn_cast(ExitingBB->getTerminator()); if (!BI) continue; assert(BI->isConditional() && "exit branch must be conditional"); auto *ICmp = dyn_cast(BI->getCondition()); if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned()) continue; bool Swapped = false; auto *LHS = ICmp->getOperand(0); auto *RHS = ICmp->getOperand(1); if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS)) // Nothing to rotate continue; if (L->isLoopInvariant(LHS)) { // Same logic applies for the inverse case until we actually pick // which operand of the compare to update. Swapped = true; std::swap(LHS, RHS); } assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS)); // Match (icmp unsigned-cond zext, RHS) // TODO: Extend to handle corresponding sext/signed-cmp case // TODO: Extend to other invertible functions Value *LHSOp = nullptr; if (!match(LHS, m_ZExt(m_Value(LHSOp)))) continue; // In general, we only rotate if we can do so without increasing the number // of instructions. The exception is when we have an zext(add-rec). The // reason for allowing this exception is that we know we need to get rid // of the zext for SCEV to be able to compute a trip count for said loops; // we consider the new trip count valuable enough to increase instruction // count by one. if (!LHS->hasOneUse() && !isa(SE->getSCEV(LHSOp))) continue; // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS) // when zext is loop varying and RHS is loop invariant. This converts // loop varying work to loop-invariant work. auto doRotateTransform = [&]() { assert(ICmp->isUnsigned() && "must have proven unsigned already"); auto *NewRHS = CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "", L->getLoopPreheader()->getTerminator()); ICmp->setOperand(Swapped ? 1 : 0, LHSOp); ICmp->setOperand(Swapped ? 0 : 1, NewRHS); if (LHS->use_empty()) DeadInsts.push_back(LHS); }; const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); auto FullCR = ConstantRange::getFull(InnerBitWidth); FullCR = FullCR.zeroExtend(OuterBitWidth); auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); if (FullCR.contains(RHSCR)) { doRotateTransform(); Changed = true; // Note, we are leaving SCEV in an unfortunately imprecise case here // as rotation tends to reveal information about trip counts not // previously visible. continue; } } return Changed; } bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); // Remove all exits which aren't both rewriteable and execute on every // iteration. llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { // If our exitting block exits multiple loops, we can only rewrite the // innermost one. Otherwise, we're changing how many times the innermost // loop runs before it exits. if (LI->getLoopFor(ExitingBB) != L) return true; // Can't rewrite non-branch yet. BranchInst *BI = dyn_cast(ExitingBB->getTerminator()); if (!BI) return true; // Likewise, the loop latch must be dominated by the exiting BB. if (!DT->dominates(ExitingBB, L->getLoopLatch())) return true; if (auto *CI = dyn_cast(BI->getCondition())) { // If already constant, nothing to do. However, if this is an // unconditional exit, we can still replace header phis with their // preheader value. if (!L->contains(BI->getSuccessor(CI->isNullValue()))) replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts); return true; } return false; }); if (ExitingBlocks.empty()) return false; // Get a symbolic upper bound on the loop backedge taken count. const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L); if (isa(MaxExitCount)) return false; // Visit our exit blocks in order of dominance. We know from the fact that // all exits must dominate the latch, so there is a total dominance order // between them. llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { // std::sort sorts in ascending order, so we want the inverse of // the normal dominance relation. if (A == B) return false; if (DT->properlyDominates(A, B)) return true; else { assert(DT->properlyDominates(B, A) && "expected total dominance order!"); return false; } }); #ifdef ASSERT for (unsigned i = 1; i < ExitingBlocks.size(); i++) { assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); } #endif bool Changed = false; bool SkipLastIter = false; SmallSet DominatingExitCounts; for (BasicBlock *ExitingBB : ExitingBlocks) { const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); if (isa(ExitCount)) { // Okay, we do not know the exit count here. Can we at least prove that it // will remain the same within iteration space? auto *BI = cast(ExitingBB->getTerminator()); auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) { return optimizeLoopExitWithUnknownExitCount( L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE, Rewriter, DeadInsts); }; // TODO: We might have proved that we can skip the last iteration for // this check. In this case, we only want to check the condition on the // pre-last iteration (MaxExitCount - 1). However, there is a nasty // corner case: // // for (i = len; i != 0; i--) { ... check (i ult X) ... } // // If we could not prove that len != 0, then we also could not prove that // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then // OptimizeCond will likely not prove anything for it, even if it could // prove the same fact for len. // // As a temporary solution, we query both last and pre-last iterations in // hope that we will be able to prove triviality for at least one of // them. We can stop querying MaxExitCount for this case once SCEV // understands that (MaxExitCount - 1) will not overflow here. if (OptimizeCond(false, false) || OptimizeCond(true, false)) Changed = true; else if (SkipLastIter) if (OptimizeCond(false, true) || OptimizeCond(true, true)) Changed = true; continue; } if (MaxExitCount == ExitCount) // If the loop has more than 1 iteration, all further checks will be // executed 1 iteration less. SkipLastIter = true; // If we know we'd exit on the first iteration, rewrite the exit to // reflect this. This does not imply the loop must exit through this // exit; there may be an earlier one taken on the first iteration. // We know that the backedge can't be taken, so we replace all // the header PHIs with values coming from the preheader. if (ExitCount->isZero()) { foldExit(L, ExitingBB, true, DeadInsts); replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts); Changed = true; continue; } assert(ExitCount->getType()->isIntegerTy() && MaxExitCount->getType()->isIntegerTy() && "Exit counts must be integers"); Type *WiderType = SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); assert(MaxExitCount->getType() == ExitCount->getType()); // Can we prove that some other exit must be taken strictly before this // one? if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, MaxExitCount, ExitCount)) { foldExit(L, ExitingBB, false, DeadInsts); Changed = true; continue; } // As we run, keep track of which exit counts we've encountered. If we // find a duplicate, we've found an exit which would have exited on the // exiting iteration, but (from the visit order) strictly follows another // which does the same and is thus dead. if (!DominatingExitCounts.insert(ExitCount).second) { foldExit(L, ExitingBB, false, DeadInsts); Changed = true; continue; } // TODO: There might be another oppurtunity to leverage SCEV's reasoning // here. If we kept track of the min of dominanting exits so far, we could // discharge exits with EC >= MDEC. This is less powerful than the existing // transform (since later exits aren't considered), but potentially more // powerful for any case where SCEV can prove a >=u b, but neither a == b // or a >u b. Such a case is not currently known. } return Changed; } bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); // Finally, see if we can rewrite our exit conditions into a loop invariant // form. If we have a read-only loop, and we can tell that we must exit down // a path which does not need any of the values computed within the loop, we // can rewrite the loop to exit on the first iteration. Note that this // doesn't either a) tell us the loop exits on the first iteration (unless // *all* exits are predicateable) or b) tell us *which* exit might be taken. // This transformation looks a lot like a restricted form of dead loop // elimination, but restricted to read-only loops and without neccesssarily // needing to kill the loop entirely. if (!LoopPredication) return false; // Note: ExactBTC is the exact backedge taken count *iff* the loop exits // through *explicit* control flow. We have to eliminate the possibility of // implicit exits (see below) before we know it's truly exact. const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); if (isa(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC)) return false; assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant"); assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer"); auto BadExit = [&](BasicBlock *ExitingBB) { // If our exiting block exits multiple loops, we can only rewrite the // innermost one. Otherwise, we're changing how many times the innermost // loop runs before it exits. if (LI->getLoopFor(ExitingBB) != L) return true; // Can't rewrite non-branch yet. BranchInst *BI = dyn_cast(ExitingBB->getTerminator()); if (!BI) return true; // If already constant, nothing to do. if (isa(BI->getCondition())) return true; // If the exit block has phis, we need to be able to compute the values // within the loop which contains them. This assumes trivially lcssa phis // have already been removed; TODO: generalize BasicBlock *ExitBlock = BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); if (!ExitBlock->phis().empty()) return true; const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); if (isa(ExitCount) || !Rewriter.isSafeToExpand(ExitCount)) return true; assert(SE->isLoopInvariant(ExitCount, L) && "Exit count must be loop invariant"); assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer"); return false; }; // If we have any exits which can't be predicated themselves, than we can't // predicate any exit which isn't guaranteed to execute before it. Consider // two exits (a) and (b) which would both exit on the same iteration. If we // can predicate (b), but not (a), and (a) preceeds (b) along some path, then // we could convert a loop from exiting through (a) to one exiting through // (b). Note that this problem exists only for exits with the same exit // count, and we could be more aggressive when exit counts are known inequal. llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { // std::sort sorts in ascending order, so we want the inverse of // the normal dominance relation, plus a tie breaker for blocks // unordered by dominance. if (DT->properlyDominates(A, B)) return true; if (DT->properlyDominates(B, A)) return false; return A->getName() < B->getName(); }); // Check to see if our exit blocks are a total order (i.e. a linear chain of // exits before the backedge). If they aren't, reasoning about reachability // is complicated and we choose not to for now. for (unsigned i = 1; i < ExitingBlocks.size(); i++) if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) return false; // Given our sorted total order, we know that exit[j] must be evaluated // after all exit[i] such j > i. for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) if (BadExit(ExitingBlocks[i])) { ExitingBlocks.resize(i); break; } if (ExitingBlocks.empty()) return false; // We rely on not being able to reach an exiting block on a later iteration // then it's statically compute exit count. The implementaton of // getExitCount currently has this invariant, but assert it here so that // breakage is obvious if this ever changes.. assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { return DT->dominates(ExitingBB, L->getLoopLatch()); })); // At this point, ExitingBlocks consists of only those blocks which are // predicatable. Given that, we know we have at least one exit we can // predicate if the loop is doesn't have side effects and doesn't have any // implicit exits (because then our exact BTC isn't actually exact). // @Reviewers - As structured, this is O(I^2) for loop nests. Any // suggestions on how to improve this? I can obviously bail out for outer // loops, but that seems less than ideal. MemorySSA can find memory writes, // is that enough for *all* side effects? for (BasicBlock *BB : L->blocks()) for (auto &I : *BB) // TODO:isGuaranteedToTransfer if (I.mayHaveSideEffects()) return false; bool Changed = false; // Finally, do the actual predication for all predicatable blocks. A couple // of notes here: // 1) We don't bother to constant fold dominated exits with identical exit // counts; that's simply a form of CSE/equality propagation and we leave // it for dedicated passes. // 2) We insert the comparison at the branch. Hoisting introduces additional // legality constraints and we leave that to dedicated logic. We want to // predicate even if we can't insert a loop invariant expression as // peeling or unrolling will likely reduce the cost of the otherwise loop // varying check. Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); IRBuilder<> B(L->getLoopPreheader()->getTerminator()); Value *ExactBTCV = nullptr; // Lazily generated if needed. for (BasicBlock *ExitingBB : ExitingBlocks) { const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); auto *BI = cast(ExitingBB->getTerminator()); Value *NewCond; if (ExitCount == ExactBTC) { NewCond = L->contains(BI->getSuccessor(0)) ? B.getFalse() : B.getTrue(); } else { Value *ECV = Rewriter.expandCodeFor(ExitCount); if (!ExactBTCV) ExactBTCV = Rewriter.expandCodeFor(ExactBTC); Value *RHS = ExactBTCV; if (ECV->getType() != RHS->getType()) { Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); ECV = B.CreateZExt(ECV, WiderTy); RHS = B.CreateZExt(RHS, WiderTy); } auto Pred = L->contains(BI->getSuccessor(0)) ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; NewCond = B.CreateICmp(Pred, ECV, RHS); } Value *OldCond = BI->getCondition(); BI->setCondition(NewCond); if (OldCond->use_empty()) DeadInsts.emplace_back(OldCond); Changed = true; } return Changed; } //===----------------------------------------------------------------------===// // IndVarSimplify driver. Manage several subpasses of IV simplification. //===----------------------------------------------------------------------===// bool IndVarSimplify::run(Loop *L) { // We need (and expect!) the incoming loop to be in LCSSA. assert(L->isRecursivelyLCSSAForm(*DT, *LI) && "LCSSA required to run indvars!"); // If LoopSimplify form is not available, stay out of trouble. Some notes: // - LSR currently only supports LoopSimplify-form loops. Indvars' // canonicalization can be a pessimization without LSR to "clean up" // afterwards. // - We depend on having a preheader; in particular, // Loop::getCanonicalInductionVariable only supports loops with preheaders, // and we're in trouble if we can't find the induction variable even when // we've manually inserted one. // - LFTR relies on having a single backedge. if (!L->isLoopSimplifyForm()) return false; #ifndef NDEBUG // Used below for a consistency check only // Note: Since the result returned by ScalarEvolution may depend on the order // in which previous results are added to its cache, the call to // getBackedgeTakenCount() may change following SCEV queries. const SCEV *BackedgeTakenCount; if (VerifyIndvars) BackedgeTakenCount = SE->getBackedgeTakenCount(L); #endif bool Changed = false; // If there are any floating-point recurrences, attempt to // transform them to use integer recurrences. Changed |= rewriteNonIntegerIVs(L); // Create a rewriter object which we'll use to transform the code with. SCEVExpander Rewriter(*SE, DL, "indvars"); #ifndef NDEBUG Rewriter.setDebugType(DEBUG_TYPE); #endif // Eliminate redundant IV users. // // Simplification works best when run before other consumers of SCEV. We // attempt to avoid evaluating SCEVs for sign/zero extend operations until // other expressions involving loop IVs have been evaluated. This helps SCEV // set no-wrap flags before normalizing sign/zero extension. Rewriter.disableCanonicalMode(); Changed |= simplifyAndExtend(L, Rewriter, LI); // Check to see if we can compute the final value of any expressions // that are recurrent in the loop, and substitute the exit values from the // loop into any instructions outside of the loop that use the final values // of the current expressions. if (ReplaceExitValue != NeverRepl) { if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, ReplaceExitValue, DeadInsts)) { NumReplaced += Rewrites; Changed = true; } } // Eliminate redundant IV cycles. NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI); // Try to convert exit conditions to unsigned and rotate computation // out of the loop. Note: Handles invalidation internally if needed. Changed |= canonicalizeExitCondition(L); // Try to eliminate loop exits based on analyzeable exit counts if (optimizeLoopExits(L, Rewriter)) { Changed = true; // Given we've changed exit counts, notify SCEV // Some nested loops may share same folded exit basic block, // thus we need to notify top most loop. SE->forgetTopmostLoop(L); } // Try to form loop invariant tests for loop exits by changing how many // iterations of the loop run when that is unobservable. if (predicateLoopExits(L, Rewriter)) { Changed = true; // Given we've changed exit counts, notify SCEV SE->forgetLoop(L); } // If we have a trip count expression, rewrite the loop's exit condition // using it. if (!DisableLFTR) { BasicBlock *PreHeader = L->getLoopPreheader(); SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); for (BasicBlock *ExitingBB : ExitingBlocks) { // Can't rewrite non-branch yet. if (!isa(ExitingBB->getTerminator())) continue; // If our exitting block exits multiple loops, we can only rewrite the // innermost one. Otherwise, we're changing how many times the innermost // loop runs before it exits. if (LI->getLoopFor(ExitingBB) != L) continue; if (!needsLFTR(L, ExitingBB)) continue; const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); if (isa(ExitCount)) continue; // This was handled above, but as we form SCEVs, we can sometimes refine // existing ones; this allows exit counts to be folded to zero which // weren't when optimizeLoopExits saw them. Arguably, we should iterate // until stable to handle cases like this better. if (ExitCount->isZero()) continue; PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); if (!IndVar) continue; // Avoid high cost expansions. Note: This heuristic is questionable in // that our definition of "high cost" is not exactly principled. if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, TTI, PreHeader->getTerminator())) continue; // Check preconditions for proper SCEVExpander operation. SCEV does not // express SCEVExpander's dependencies, such as LoopSimplify. Instead // any pass that uses the SCEVExpander must do it. This does not work // well for loop passes because SCEVExpander makes assumptions about // all loops, while LoopPassManager only forces the current loop to be // simplified. // // FIXME: SCEV expansion has no way to bail out, so the caller must // explicitly check any assumptions made by SCEV. Brittle. const SCEVAddRecExpr *AR = dyn_cast(ExitCount); if (!AR || AR->getLoop()->getLoopPreheader()) Changed |= linearFunctionTestReplace(L, ExitingBB, ExitCount, IndVar, Rewriter); } } // Clear the rewriter cache, because values that are in the rewriter's cache // can be deleted in the loop below, causing the AssertingVH in the cache to // trigger. Rewriter.clear(); // Now that we're done iterating through lists, clean up any instructions // which are now dead. while (!DeadInsts.empty()) { Value *V = DeadInsts.pop_back_val(); if (PHINode *PHI = dyn_cast_or_null(V)) Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get()); else if (Instruction *Inst = dyn_cast_or_null(V)) Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); } // The Rewriter may not be used from this point on. // Loop-invariant instructions in the preheader that aren't used in the // loop may be sunk below the loop to reduce register pressure. Changed |= sinkUnusedInvariants(L); // rewriteFirstIterationLoopExitValues does not rely on the computation of // trip count and therefore can further simplify exit values in addition to // rewriteLoopExitValues. Changed |= rewriteFirstIterationLoopExitValues(L); // Clean up dead instructions. Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); // Check a post-condition. assert(L->isRecursivelyLCSSAForm(*DT, *LI) && "Indvars did not preserve LCSSA!"); // Verify that LFTR, and any other change have not interfered with SCEV's // ability to compute trip count. We may have *changed* the exit count, but // only by reducing it. #ifndef NDEBUG if (VerifyIndvars && !isa(BackedgeTakenCount)) { SE->forgetLoop(L); const SCEV *NewBECount = SE->getBackedgeTakenCount(L); if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < SE->getTypeSizeInBits(NewBECount->getType())) NewBECount = SE->getTruncateOrNoop(NewBECount, BackedgeTakenCount->getType()); else BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, NewBECount->getType()); assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, NewBECount) && "indvars must preserve SCEV"); } if (VerifyMemorySSA && MSSAU) MSSAU->getMemorySSA()->verifyMemorySSA(); #endif return Changed; } PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { Function *F = L.getHeader()->getParent(); const DataLayout &DL = F->getParent()->getDataLayout(); IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, WidenIndVars && AllowIVWidening); if (!IVS.run(&L)) return PreservedAnalyses::all(); auto PA = getLoopPassPreservedAnalyses(); PA.preserveSet(); if (AR.MSSA) PA.preserve(); return PA; } namespace { struct IndVarSimplifyLegacyPass : public LoopPass { static char ID; // Pass identification, replacement for typeid IndVarSimplifyLegacyPass() : LoopPass(ID) { initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override { if (skipLoop(L)) return false; auto *LI = &getAnalysis().getLoopInfo(); auto *SE = &getAnalysis().getSE(); auto *DT = &getAnalysis().getDomTree(); auto *TLIP = getAnalysisIfAvailable(); auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; auto *TTIP = getAnalysisIfAvailable(); auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); auto *MSSAAnalysis = getAnalysisIfAvailable(); MemorySSA *MSSA = nullptr; if (MSSAAnalysis) MSSA = &MSSAAnalysis->getMSSA(); IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); return IVS.run(L); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addPreserved(); getLoopAnalysisUsage(AU); } }; } // end anonymous namespace char IndVarSimplifyLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", "Induction Variable Simplification", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", "Induction Variable Simplification", false, false) Pass *llvm::createIndVarSimplifyPass() { return new IndVarSimplifyLegacyPass(); }