//===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the guard widening pass.  The semantics of the
// @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
// more often that it did before the transform.  This optimization is called
// "widening" and can be used hoist and common runtime checks in situations like
// these:
//
//    %cmp0 = 7 u< Length
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
//    call @unknown_side_effects()
//    %cmp1 = 9 u< Length
//    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
//    ...
//
// =>
//
//    %cmp0 = 9 u< Length
//    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
//    call @unknown_side_effects()
//    ...
//
// If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
// generic implementation of the same function, which will have the correct
// semantics from that point onward.  It is always _legal_ to deoptimize (so
// replacing %cmp0 with false is "correct"), though it may not always be
// profitable to do so.
//
// NB! This pass is a work in progress.  It hasn't been tuned to be "production
// ready" yet.  It is known to have quadriatic running time and will not scale
// to large numbers of guards
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/GuardWidening.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/GuardUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <functional>

using namespace llvm;

#define DEBUG_TYPE "guard-widening"

STATISTIC(GuardsEliminated, "Number of eliminated guards");
STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
STATISTIC(FreezeAdded, "Number of freeze instruction introduced");

static cl::opt<bool>
    WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
                      cl::desc("Whether or not we should widen guards  "
                               "expressed as branches by widenable conditions"),
                      cl::init(true));

namespace {

// Get the condition of \p I. It can either be a guard or a conditional branch.
static Value *getCondition(Instruction *I) {
  if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
    assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
           "Bad guard intrinsic?");
    return GI->getArgOperand(0);
  }
  Value *Cond, *WC;
  BasicBlock *IfTrueBB, *IfFalseBB;
  if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
    return Cond;

  return cast<BranchInst>(I)->getCondition();
}

// Set the condition for \p I to \p NewCond. \p I can either be a guard or a
// conditional branch.
static void setCondition(Instruction *I, Value *NewCond) {
  if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
    assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
           "Bad guard intrinsic?");
    GI->setArgOperand(0, NewCond);
    return;
  }
  cast<BranchInst>(I)->setCondition(NewCond);
}

// Eliminates the guard instruction properly.
static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
  GuardInst->eraseFromParent();
  if (MSSAU)
    MSSAU->removeMemoryAccess(GuardInst);
  ++GuardsEliminated;
}

/// Find a point at which the widened condition of \p Guard should be inserted.
/// When it is represented as intrinsic call, we can do it right before the call
/// instruction. However, when we are dealing with widenable branch, we must
/// account for the following situation: widening should not turn a
/// loop-invariant condition into a loop-variant. It means that if
/// widenable.condition() call is invariant (w.r.t. any loop), the new wide
/// condition should stay invariant. Otherwise there can be a miscompile, like
/// the one described at https://github.com/llvm/llvm-project/issues/60234. The
/// safest way to do it is to expand the new condition at WC's block.
static std::optional<BasicBlock::iterator>
findInsertionPointForWideCondition(Instruction *WCOrGuard) {
  if (isGuard(WCOrGuard))
    return WCOrGuard->getIterator();
  if (auto WC = extractWidenableCondition(WCOrGuard))
    return cast<Instruction>(WC)->getIterator();
  return std::nullopt;
}

class GuardWideningImpl {
  DominatorTree &DT;
  PostDominatorTree *PDT;
  LoopInfo &LI;
  AssumptionCache &AC;
  MemorySSAUpdater *MSSAU;

  /// Together, these describe the region of interest.  This might be all of
  /// the blocks within a function, or only a given loop's blocks and preheader.
  DomTreeNode *Root;
  std::function<bool(BasicBlock*)> BlockFilter;

  /// The set of guards and conditional branches whose conditions have been
  /// widened into dominating guards.
  SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;

  /// The set of guards which have been widened to include conditions to other
  /// guards.
  DenseSet<Instruction *> WidenedGuards;

  /// Try to eliminate instruction \p Instr by widening it into an earlier
  /// dominating guard.  \p DFSI is the DFS iterator on the dominator tree that
  /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
  /// maps BasicBlocks to the set of guards seen in that block.
  bool eliminateInstrViaWidening(
      Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
      const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
          &GuardsPerBlock);

  /// Used to keep track of which widening potential is more effective.
  enum WideningScore {
    /// Don't widen.
    WS_IllegalOrNegative,

    /// Widening is performance neutral as far as the cycles spent in check
    /// conditions goes (but can still help, e.g., code layout, having less
    /// deopt state).
    WS_Neutral,

    /// Widening is profitable.
    WS_Positive,

    /// Widening is very profitable.  Not significantly different from \c
    /// WS_Positive, except by the order.
    WS_VeryPositive
  };

  static StringRef scoreTypeToString(WideningScore WS);

  /// Compute the score for widening the condition in \p DominatedInstr
  /// into \p WideningPoint.
  WideningScore computeWideningScore(Instruction *DominatedInstr,
                                     Instruction *ToWiden,
                                     BasicBlock::iterator WideningPoint,
                                     SmallVectorImpl<Value *> &ChecksToHoist,
                                     SmallVectorImpl<Value *> &ChecksToWiden);

  /// Helper to check if \p V can be hoisted to \p InsertPos.
  bool canBeHoistedTo(const Value *V, BasicBlock::iterator InsertPos) const {
    SmallPtrSet<const Instruction *, 8> Visited;
    return canBeHoistedTo(V, InsertPos, Visited);
  }

  bool canBeHoistedTo(const Value *V, BasicBlock::iterator InsertPos,
                      SmallPtrSetImpl<const Instruction *> &Visited) const;

  bool canBeHoistedTo(const SmallVectorImpl<Value *> &Checks,
                      BasicBlock::iterator InsertPos) const {
    return all_of(Checks,
                  [&](const Value *V) { return canBeHoistedTo(V, InsertPos); });
  }
  /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c
  /// canBeHoistedTo returned true.
  void makeAvailableAt(Value *V, BasicBlock::iterator InsertPos) const;

  void makeAvailableAt(const SmallVectorImpl<Value *> &Checks,
                       BasicBlock::iterator InsertPos) const {
    for (Value *V : Checks)
      makeAvailableAt(V, InsertPos);
  }

  /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try
  /// to generate an expression computing the logical AND of \p ChecksToHoist
  /// and \p ChecksToWiden. Return true if the expression computing the AND is
  /// only as expensive as computing one of the set of expressions. If \p
  /// InsertPt is true then actually generate the resulting expression, make it
  /// available at \p InsertPt and return it in \p Result (else no change to the
  /// IR is made).
  std::optional<Value *>
  mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
              SmallVectorImpl<Value *> &ChecksToWiden,
              std::optional<BasicBlock::iterator> InsertPt);

  /// Generate the logical AND of \p ChecksToHoist and \p OldCondition and make
  /// it available at InsertPt
  Value *hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
                     Value *OldCondition, BasicBlock::iterator InsertPt);

  /// Adds freeze to Orig and push it as far as possible very aggressively.
  /// Also replaces all uses of frozen instruction with frozen version.
  Value *freezeAndPush(Value *Orig, BasicBlock::iterator InsertPt);

  /// Represents a range check of the form \c Base + \c Offset u< \c Length,
  /// with the constraint that \c Length is not negative.  \c CheckInst is the
  /// pre-existing instruction in the IR that computes the result of this range
  /// check.
  class RangeCheck {
    const Value *Base;
    const ConstantInt *Offset;
    const Value *Length;
    ICmpInst *CheckInst;

  public:
    explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
                        const Value *Length, ICmpInst *CheckInst)
        : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}

    void setBase(const Value *NewBase) { Base = NewBase; }
    void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }

    const Value *getBase() const { return Base; }
    const ConstantInt *getOffset() const { return Offset; }
    const APInt &getOffsetValue() const { return getOffset()->getValue(); }
    const Value *getLength() const { return Length; };
    ICmpInst *getCheckInst() const { return CheckInst; }

    void print(raw_ostream &OS, bool PrintTypes = false) {
      OS << "Base: ";
      Base->printAsOperand(OS, PrintTypes);
      OS << " Offset: ";
      Offset->printAsOperand(OS, PrintTypes);
      OS << " Length: ";
      Length->printAsOperand(OS, PrintTypes);
    }

    LLVM_DUMP_METHOD void dump() {
      print(dbgs());
      dbgs() << "\n";
    }
  };

  /// Parse \p ToParse into a conjunction (logical-and) of range checks; and
  /// append them to \p Checks.  Returns true on success, may clobber \c Checks
  /// on failure.
  bool parseRangeChecks(SmallVectorImpl<Value *> &ToParse,
                        SmallVectorImpl<RangeCheck> &Checks) {
    for (auto CheckCond : ToParse) {
      if (!parseRangeChecks(CheckCond, Checks))
        return false;
    }
    return true;
  }

  bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks);

  /// Combine the checks in \p Checks into a smaller set of checks and append
  /// them into \p CombinedChecks.  Return true on success (i.e. all of checks
  /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks
  /// and \p CombinedChecks on success and on failure.
  bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
                          SmallVectorImpl<RangeCheck> &CombinedChecks) const;

  /// Can we compute the logical AND of \p ChecksToHoist and \p ChecksToWiden
  /// for the price of computing only one of the set of expressions?
  bool isWideningCondProfitable(SmallVectorImpl<Value *> &ChecksToHoist,
                                SmallVectorImpl<Value *> &ChecksToWiden) {
    return mergeChecks(ChecksToHoist, ChecksToWiden, /*InsertPt=*/std::nullopt)
        .has_value();
  }

  /// Widen \p ChecksToWiden to fail if any of \p ChecksToHoist is false
  void widenGuard(SmallVectorImpl<Value *> &ChecksToHoist,
                  SmallVectorImpl<Value *> &ChecksToWiden,
                  Instruction *ToWiden) {
    auto InsertPt = findInsertionPointForWideCondition(ToWiden);
    auto MergedCheck = mergeChecks(ChecksToHoist, ChecksToWiden, InsertPt);
    Value *Result = MergedCheck ? *MergedCheck
                                : hoistChecks(ChecksToHoist,
                                              getCondition(ToWiden), *InsertPt);

    if (isGuardAsWidenableBranch(ToWiden)) {
      setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
      return;
    }
    setCondition(ToWiden, Result);
  }

public:
  explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
                             LoopInfo &LI, AssumptionCache &AC,
                             MemorySSAUpdater *MSSAU, DomTreeNode *Root,
                             std::function<bool(BasicBlock *)> BlockFilter)
      : DT(DT), PDT(PDT), LI(LI), AC(AC), MSSAU(MSSAU), Root(Root),
        BlockFilter(BlockFilter) {}

  /// The entry point for this pass.
  bool run();
};
}

static bool isSupportedGuardInstruction(const Instruction *Insn) {
  if (isGuard(Insn))
    return true;
  if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
    return true;
  return false;
}

bool GuardWideningImpl::run() {
  DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
  bool Changed = false;
  for (auto DFI = df_begin(Root), DFE = df_end(Root);
       DFI != DFE; ++DFI) {
    auto *BB = (*DFI)->getBlock();
    if (!BlockFilter(BB))
      continue;

    auto &CurrentList = GuardsInBlock[BB];

    for (auto &I : *BB)
      if (isSupportedGuardInstruction(&I))
        CurrentList.push_back(cast<Instruction>(&I));

    for (auto *II : CurrentList)
      Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
  }

  assert(EliminatedGuardsAndBranches.empty() || Changed);
  for (auto *I : EliminatedGuardsAndBranches)
    if (!WidenedGuards.count(I)) {
      assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
      if (isSupportedGuardInstruction(I))
        eliminateGuard(I, MSSAU);
      else {
        assert(isa<BranchInst>(I) &&
               "Eliminated something other than guard or branch?");
        ++CondBranchEliminated;
      }
    }

  return Changed;
}

bool GuardWideningImpl::eliminateInstrViaWidening(
    Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
    const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
        &GuardsInBlock) {
  SmallVector<Value *> ChecksToHoist;
  parseWidenableGuard(Instr, ChecksToHoist);
  // Ignore trivial true or false conditions. These instructions will be
  // trivially eliminated by any cleanup pass. Do not erase them because other
  // guards can possibly be widened into them.
  if (ChecksToHoist.empty() ||
      (ChecksToHoist.size() == 1 && isa<ConstantInt>(ChecksToHoist.front())))
    return false;

  Instruction *BestSoFar = nullptr;
  auto BestScoreSoFar = WS_IllegalOrNegative;

  // In the set of dominating guards, find the one we can merge GuardInst with
  // for the most profit.
  for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
    auto *CurBB = DFSI.getPath(i)->getBlock();
    if (!BlockFilter(CurBB))
      break;
    assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
    const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;

    auto I = GuardsInCurBB.begin();
    auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
                                         : GuardsInCurBB.end();

#ifndef NDEBUG
    {
      unsigned Index = 0;
      for (auto &I : *CurBB) {
        if (Index == GuardsInCurBB.size())
          break;
        if (GuardsInCurBB[Index] == &I)
          Index++;
      }
      assert(Index == GuardsInCurBB.size() &&
             "Guards expected to be in order!");
    }
#endif

    assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");

    for (auto *Candidate : make_range(I, E)) {
      auto WideningPoint = findInsertionPointForWideCondition(Candidate);
      if (!WideningPoint)
        continue;
      SmallVector<Value *> CandidateChecks;
      parseWidenableGuard(Candidate, CandidateChecks);
      auto Score = computeWideningScore(Instr, Candidate, *WideningPoint,
                                        ChecksToHoist, CandidateChecks);
      LLVM_DEBUG(dbgs() << "Score between " << *Instr << " and " << *Candidate
                        << " is " << scoreTypeToString(Score) << "\n");
      if (Score > BestScoreSoFar) {
        BestScoreSoFar = Score;
        BestSoFar = Candidate;
      }
    }
  }

  if (BestScoreSoFar == WS_IllegalOrNegative) {
    LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
    return false;
  }

  assert(BestSoFar != Instr && "Should have never visited same guard!");
  assert(DT.dominates(BestSoFar, Instr) && "Should be!");

  LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
                    << " with score " << scoreTypeToString(BestScoreSoFar)
                    << "\n");
  SmallVector<Value *> ChecksToWiden;
  parseWidenableGuard(BestSoFar, ChecksToWiden);
  widenGuard(ChecksToHoist, ChecksToWiden, BestSoFar);
  auto NewGuardCondition = ConstantInt::getTrue(Instr->getContext());
  setCondition(Instr, NewGuardCondition);
  EliminatedGuardsAndBranches.push_back(Instr);
  WidenedGuards.insert(BestSoFar);
  return true;
}

GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore(
    Instruction *DominatedInstr, Instruction *ToWiden,
    BasicBlock::iterator WideningPoint, SmallVectorImpl<Value *> &ChecksToHoist,
    SmallVectorImpl<Value *> &ChecksToWiden) {
  Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
  Loop *DominatingGuardLoop = LI.getLoopFor(WideningPoint->getParent());
  bool HoistingOutOfLoop = false;

  if (DominatingGuardLoop != DominatedInstrLoop) {
    // Be conservative and don't widen into a sibling loop.  TODO: If the
    // sibling is colder, we should consider allowing this.
    if (DominatingGuardLoop &&
        !DominatingGuardLoop->contains(DominatedInstrLoop))
      return WS_IllegalOrNegative;

    HoistingOutOfLoop = true;
  }

  if (!canBeHoistedTo(ChecksToHoist, WideningPoint))
    return WS_IllegalOrNegative;
  // Further in the GuardWideningImpl::hoistChecks the entire condition might be
  // widened, not the parsed list of checks. So we need to check the possibility
  // of that condition hoisting.
  if (!canBeHoistedTo(getCondition(ToWiden), WideningPoint))
    return WS_IllegalOrNegative;

  // If the guard was conditional executed, it may never be reached
  // dynamically.  There are two potential downsides to hoisting it out of the
  // conditionally executed region: 1) we may spuriously deopt without need and
  // 2) we have the extra cost of computing the guard condition in the common
  // case.  At the moment, we really only consider the second in our heuristic
  // here.  TODO: evaluate cost model for spurious deopt
  // NOTE: As written, this also lets us hoist right over another guard which
  // is essentially just another spelling for control flow.
  if (isWideningCondProfitable(ChecksToHoist, ChecksToWiden))
    return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;

  if (HoistingOutOfLoop)
    return WS_Positive;

  // For a given basic block \p BB, return its successor which is guaranteed or
  // highly likely will be taken as its successor.
  auto GetLikelySuccessor = [](const BasicBlock * BB)->const BasicBlock * {
    if (auto *UniqueSucc = BB->getUniqueSuccessor())
      return UniqueSucc;
    auto *Term = BB->getTerminator();
    Value *Cond = nullptr;
    const BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
    using namespace PatternMatch;
    if (!match(Term, m_Br(m_Value(Cond), m_BasicBlock(IfTrue),
                          m_BasicBlock(IfFalse))))
      return nullptr;
    // For constant conditions, only one dynamical successor is possible
    if (auto *ConstCond = dyn_cast<ConstantInt>(Cond))
      return ConstCond->isAllOnesValue() ? IfTrue : IfFalse;
    // If one of successors ends with deopt, another one is likely.
    if (IfFalse->getPostdominatingDeoptimizeCall())
      return IfTrue;
    if (IfTrue->getPostdominatingDeoptimizeCall())
      return IfFalse;
    // TODO: Use branch frequency metatada to allow hoisting through non-deopt
    // branches?
    return nullptr;
  };

  // Returns true if we might be hoisting above explicit control flow into a
  // considerably hotter block.  Note that this completely ignores implicit
  // control flow (guards, calls which throw, etc...).  That choice appears
  // arbitrary (we assume that implicit control flow exits are all rare).
  auto MaybeHoistingToHotterBlock = [&]() {
    const auto *DominatingBlock = WideningPoint->getParent();
    const auto *DominatedBlock = DominatedInstr->getParent();

    // Descend as low as we can, always taking the likely successor.
    assert(DT.isReachableFromEntry(DominatingBlock) && "Unreached code");
    assert(DT.isReachableFromEntry(DominatedBlock) && "Unreached code");
    assert(DT.dominates(DominatingBlock, DominatedBlock) && "No dominance");
    while (DominatedBlock != DominatingBlock) {
      auto *LikelySucc = GetLikelySuccessor(DominatingBlock);
      // No likely successor?
      if (!LikelySucc)
        break;
      // Only go down the dominator tree.
      if (!DT.properlyDominates(DominatingBlock, LikelySucc))
        break;
      DominatingBlock = LikelySucc;
    }

    // Found?
    if (DominatedBlock == DominatingBlock)
      return false;
    // We followed the likely successor chain and went past the dominated
    // block. It means that the dominated guard is in dead/very cold code.
    if (!DT.dominates(DominatingBlock, DominatedBlock))
      return true;
    // TODO: diamond, triangle cases
    if (!PDT)
      return true;
    return !PDT->dominates(DominatedBlock, DominatingBlock);
  };

  return MaybeHoistingToHotterBlock() ? WS_IllegalOrNegative : WS_Neutral;
}

bool GuardWideningImpl::canBeHoistedTo(
    const Value *V, BasicBlock::iterator Loc,
    SmallPtrSetImpl<const Instruction *> &Visited) const {
  auto *Inst = dyn_cast<Instruction>(V);
  if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
    return true;

  if (!isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) ||
      Inst->mayReadFromMemory())
    return false;

  Visited.insert(Inst);

  // We only want to go _up_ the dominance chain when recursing.
  assert(!isa<PHINode>(Loc) &&
         "PHIs should return false for isSafeToSpeculativelyExecute");
  assert(DT.isReachableFromEntry(Inst->getParent()) &&
         "We did a DFS from the block entry!");
  return all_of(Inst->operands(),
                [&](Value *Op) { return canBeHoistedTo(Op, Loc, Visited); });
}

void GuardWideningImpl::makeAvailableAt(Value *V,
                                        BasicBlock::iterator Loc) const {
  auto *Inst = dyn_cast<Instruction>(V);
  if (!Inst || DT.dominates(Inst, Loc))
    return;

  assert(isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) &&
         !Inst->mayReadFromMemory() &&
         "Should've checked with canBeHoistedTo!");

  for (Value *Op : Inst->operands())
    makeAvailableAt(Op, Loc);

  Inst->moveBefore(*Loc->getParent(), Loc);
}

// Return Instruction before which we can insert freeze for the value V as close
// to def as possible. If there is no place to add freeze, return empty.
static std::optional<BasicBlock::iterator>
getFreezeInsertPt(Value *V, const DominatorTree &DT) {
  auto *I = dyn_cast<Instruction>(V);
  if (!I)
    return DT.getRoot()->getFirstNonPHIOrDbgOrAlloca()->getIterator();

  std::optional<BasicBlock::iterator> Res = I->getInsertionPointAfterDef();
  // If there is no place to add freeze - return nullptr.
  if (!Res || !DT.dominates(I, &**Res))
    return std::nullopt;

  Instruction *ResInst = &**Res;

  // If there is a User dominated by original I, then it should be dominated
  // by Freeze instruction as well.
  if (any_of(I->users(), [&](User *U) {
        Instruction *User = cast<Instruction>(U);
        return ResInst != User && DT.dominates(I, User) &&
               !DT.dominates(ResInst, User);
      }))
    return std::nullopt;
  return Res;
}

Value *GuardWideningImpl::freezeAndPush(Value *Orig,
                                        BasicBlock::iterator InsertPt) {
  if (isGuaranteedNotToBePoison(Orig, nullptr, InsertPt, &DT))
    return Orig;
  std::optional<BasicBlock::iterator> InsertPtAtDef =
      getFreezeInsertPt(Orig, DT);
  if (!InsertPtAtDef) {
    FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
    FI->insertBefore(*InsertPt->getParent(), InsertPt);
    return FI;
  }
  if (isa<Constant>(Orig) || isa<GlobalValue>(Orig)) {
    BasicBlock::iterator InsertPt = *InsertPtAtDef;
    FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
    FI->insertBefore(*InsertPt->getParent(), InsertPt);
    return FI;
  }

  SmallSet<Value *, 16> Visited;
  SmallVector<Value *, 16> Worklist;
  SmallSet<Instruction *, 16> DropPoisonFlags;
  SmallVector<Value *, 16> NeedFreeze;
  DenseMap<Value *, FreezeInst *> CacheOfFreezes;

  // A bit overloaded data structures. Visited contains constant/GV
  // if we already met it. In this case CacheOfFreezes has a freeze if it is
  // required.
  auto handleConstantOrGlobal = [&](Use &U) {
    Value *Def = U.get();
    if (!isa<Constant>(Def) && !isa<GlobalValue>(Def))
      return false;

    if (Visited.insert(Def).second) {
      if (isGuaranteedNotToBePoison(Def, nullptr, InsertPt, &DT))
        return true;
      BasicBlock::iterator InsertPt = *getFreezeInsertPt(Def, DT);
      FreezeInst *FI = new FreezeInst(Def, Def->getName() + ".gw.fr");
      FI->insertBefore(*InsertPt->getParent(), InsertPt);
      CacheOfFreezes[Def] = FI;
    }

    if (CacheOfFreezes.count(Def))
      U.set(CacheOfFreezes[Def]);
    return true;
  };

  Worklist.push_back(Orig);
  while (!Worklist.empty()) {
    Value *V = Worklist.pop_back_val();
    if (!Visited.insert(V).second)
      continue;

    if (isGuaranteedNotToBePoison(V, nullptr, InsertPt, &DT))
      continue;

    Instruction *I = dyn_cast<Instruction>(V);
    if (!I || canCreateUndefOrPoison(cast<Operator>(I),
                                     /*ConsiderFlagsAndMetadata*/ false)) {
      NeedFreeze.push_back(V);
      continue;
    }
    // Check all operands. If for any of them we cannot insert Freeze,
    // stop here. Otherwise, iterate.
    if (any_of(I->operands(), [&](Value *Op) {
          return isa<Instruction>(Op) && !getFreezeInsertPt(Op, DT);
        })) {
      NeedFreeze.push_back(I);
      continue;
    }
    DropPoisonFlags.insert(I);
    for (Use &U : I->operands())
      if (!handleConstantOrGlobal(U))
        Worklist.push_back(U.get());
  }
  for (Instruction *I : DropPoisonFlags)
    I->dropPoisonGeneratingAnnotations();

  Value *Result = Orig;
  for (Value *V : NeedFreeze) {
    BasicBlock::iterator FreezeInsertPt = *getFreezeInsertPt(V, DT);
    FreezeInst *FI = new FreezeInst(V, V->getName() + ".gw.fr");
    FI->insertBefore(*FreezeInsertPt->getParent(), FreezeInsertPt);
    ++FreezeAdded;
    if (V == Orig)
      Result = FI;
    V->replaceUsesWithIf(
        FI, [&](const Use & U)->bool { return U.getUser() != FI; });
  }

  return Result;
}

std::optional<Value *>
GuardWideningImpl::mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
                               SmallVectorImpl<Value *> &ChecksToWiden,
                               std::optional<BasicBlock::iterator> InsertPt) {
  using namespace llvm::PatternMatch;

  Value *Result = nullptr;
  {
    // L >u C0 && L >u C1  ->  L >u max(C0, C1)
    ConstantInt *RHS0, *RHS1;
    Value *LHS;
    ICmpInst::Predicate Pred0, Pred1;
    // TODO: Support searching for pairs to merge from both whole lists of
    // ChecksToHoist and ChecksToWiden.
    if (ChecksToWiden.size() == 1 && ChecksToHoist.size() == 1 &&
        match(ChecksToWiden.front(),
              m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
        match(ChecksToHoist.front(),
              m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {

      ConstantRange CR0 =
          ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
      ConstantRange CR1 =
          ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());

      // Given what we're doing here and the semantics of guards, it would
      // be correct to use a subset intersection, but that may be too
      // aggressive in cases we care about.
      if (std::optional<ConstantRange> Intersect =
              CR0.exactIntersectWith(CR1)) {
        APInt NewRHSAP;
        CmpInst::Predicate Pred;
        if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
          if (InsertPt) {
            ConstantInt *NewRHS =
                ConstantInt::get((*InsertPt)->getContext(), NewRHSAP);
            assert(canBeHoistedTo(LHS, *InsertPt) && "must be");
            makeAvailableAt(LHS, *InsertPt);
            Result = new ICmpInst(*InsertPt, Pred, LHS, NewRHS, "wide.chk");
          }
          return Result;
        }
      }
    }
  }

  {
    SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
    if (parseRangeChecks(ChecksToWiden, Checks) &&
        parseRangeChecks(ChecksToHoist, Checks) &&
        combineRangeChecks(Checks, CombinedChecks)) {
      if (InsertPt) {
        for (auto &RC : CombinedChecks) {
          makeAvailableAt(RC.getCheckInst(), *InsertPt);
          if (Result)
            Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
                                               *InsertPt);
          else
            Result = RC.getCheckInst();
        }
        assert(Result && "Failed to find result value");
        Result->setName("wide.chk");
        Result = freezeAndPush(Result, *InsertPt);
      }
      return Result;
    }
  }
  // We were not able to compute ChecksToHoist AND ChecksToWiden for the price
  // of one.
  return std::nullopt;
}

Value *GuardWideningImpl::hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
                                      Value *OldCondition,
                                      BasicBlock::iterator InsertPt) {
  assert(!ChecksToHoist.empty());
  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
  makeAvailableAt(ChecksToHoist, InsertPt);
  makeAvailableAt(OldCondition, InsertPt);
  Value *Result = Builder.CreateAnd(ChecksToHoist);
  Result = freezeAndPush(Result, InsertPt);
  Result = Builder.CreateAnd(OldCondition, Result);
  Result->setName("wide.chk");
  return Result;
}

bool GuardWideningImpl::parseRangeChecks(
    Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks) {
  using namespace llvm::PatternMatch;

  auto *IC = dyn_cast<ICmpInst>(CheckCond);
  if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
      (IC->getPredicate() != ICmpInst::ICMP_ULT &&
       IC->getPredicate() != ICmpInst::ICMP_UGT))
    return false;

  const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
  if (IC->getPredicate() == ICmpInst::ICMP_UGT)
    std::swap(CmpLHS, CmpRHS);

  auto &DL = IC->getDataLayout();

  GuardWideningImpl::RangeCheck Check(
      CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
      CmpRHS, IC);

  if (!isKnownNonNegative(Check.getLength(), DL))
    return false;

  // What we have in \c Check now is a correct interpretation of \p CheckCond.
  // Try to see if we can move some constant offsets into the \c Offset field.

  bool Changed;
  auto &Ctx = CheckCond->getContext();

  do {
    Value *OpLHS;
    ConstantInt *OpRHS;
    Changed = false;

#ifndef NDEBUG
    auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
    assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
           "Unreachable instruction?");
#endif

    if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
      Check.setBase(OpLHS);
      APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
      Check.setOffset(ConstantInt::get(Ctx, NewOffset));
      Changed = true;
    } else if (match(Check.getBase(),
                     m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
      KnownBits Known = computeKnownBits(OpLHS, DL);
      if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
        Check.setBase(OpLHS);
        APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
        Check.setOffset(ConstantInt::get(Ctx, NewOffset));
        Changed = true;
      }
    }
  } while (Changed);

  Checks.push_back(Check);
  return true;
}

bool GuardWideningImpl::combineRangeChecks(
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
    SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
  unsigned OldCount = Checks.size();
  while (!Checks.empty()) {
    // Pick all of the range checks with a specific base and length, and try to
    // merge them.
    const Value *CurrentBase = Checks.front().getBase();
    const Value *CurrentLength = Checks.front().getLength();

    SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;

    auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
      return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
    };

    copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
    erase_if(Checks, IsCurrentCheck);

    assert(CurrentChecks.size() != 0 && "We know we have at least one!");

    if (CurrentChecks.size() < 3) {
      llvm::append_range(RangeChecksOut, CurrentChecks);
      continue;
    }

    // CurrentChecks.size() will typically be 3 here, but so far there has been
    // no need to hard-code that fact.

    llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
                                  const GuardWideningImpl::RangeCheck &RHS) {
      return LHS.getOffsetValue().slt(RHS.getOffsetValue());
    });

    // Note: std::sort should not invalidate the ChecksStart iterator.

    const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
    const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();

    unsigned BitWidth = MaxOffset->getValue().getBitWidth();
    if ((MaxOffset->getValue() - MinOffset->getValue())
            .ugt(APInt::getSignedMinValue(BitWidth)))
      return false;

    APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
    const APInt &HighOffset = MaxOffset->getValue();
    auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
      return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
    };

    if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
      return false;

    // We have a series of f+1 checks as:
    //
    //   I+k_0 u< L   ... Chk_0
    //   I+k_1 u< L   ... Chk_1
    //   ...
    //   I+k_f u< L   ... Chk_f
    //
    //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0
    //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1
    //          k_f != k_0                             ... Precond_2
    //
    // Claim:
    //   Chk_0 AND Chk_f  implies all the other checks
    //
    // Informal proof sketch:
    //
    // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
    // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
    // thus I+k_f is the greatest unsigned value in that range.
    //
    // This combined with Ckh_(f+1) shows that everything in that range is u< L.
    // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
    // lie in [I+k_0,I+k_f], this proving our claim.
    //
    // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
    // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
    // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping
    // range by definition, and the latter case is impossible:
    //
    //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
    //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    //
    // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
    // with 'x' above) to be at least >u INT_MIN.

    RangeChecksOut.emplace_back(CurrentChecks.front());
    RangeChecksOut.emplace_back(CurrentChecks.back());
  }

  assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
  return RangeChecksOut.size() != OldCount;
}

#ifndef NDEBUG
StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
  switch (WS) {
  case WS_IllegalOrNegative:
    return "IllegalOrNegative";
  case WS_Neutral:
    return "Neutral";
  case WS_Positive:
    return "Positive";
  case WS_VeryPositive:
    return "VeryPositive";
  }

  llvm_unreachable("Fully covered switch above!");
}
#endif

PreservedAnalyses GuardWideningPass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  // Avoid requesting analyses if there are no guards or widenable conditions.
  auto *GuardDecl = F.getParent()->getFunction(
      Intrinsic::getName(Intrinsic::experimental_guard));
  bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
  auto *WCDecl = F.getParent()->getFunction(
      Intrinsic::getName(Intrinsic::experimental_widenable_condition));
  bool HasWidenableConditions = WCDecl && !WCDecl->use_empty();
  if (!HasIntrinsicGuards && !HasWidenableConditions)
    return PreservedAnalyses::all();
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
  std::unique_ptr<MemorySSAUpdater> MSSAU;
  if (MSSAA)
    MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
  if (!GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
                         DT.getRootNode(), [](BasicBlock *) { return true; })
           .run())
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<MemorySSAAnalysis>();
  return PA;
}

PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
                                         LoopStandardAnalysisResults &AR,
                                         LPMUpdater &U) {
  BasicBlock *RootBB = L.getLoopPredecessor();
  if (!RootBB)
    RootBB = L.getHeader();
  auto BlockFilter = [&](BasicBlock *BB) {
    return BB == RootBB || L.contains(BB);
  };
  std::unique_ptr<MemorySSAUpdater> MSSAU;
  if (AR.MSSA)
    MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
  if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.AC,
                         MSSAU ? MSSAU.get() : nullptr, AR.DT.getNode(RootBB),
                         BlockFilter)
           .run())
    return PreservedAnalyses::all();

  auto PA = getLoopPassPreservedAnalyses();
  if (AR.MSSA)
    PA.preserve<MemorySSAAnalysis>();
  return PA;
}