//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Eliminate conditions based on constraints collected from dominating // conditions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/ConstraintElimination.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ConstraintSystem.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Support/MathExtras.h" #include "llvm/Transforms/Scalar.h" #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "constraint-elimination" STATISTIC(NumCondsRemoved, "Number of instructions removed"); DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", "Controls which conditions are eliminated"); static int64_t MaxConstraintValue = std::numeric_limits::max(); static int64_t MinSignedConstraintValue = std::numeric_limits::min(); namespace { class ConstraintInfo; struct StackEntry { unsigned NumIn; unsigned NumOut; bool IsNot; bool IsSigned = false; /// Variables that can be removed from the system once the stack entry gets /// removed. SmallVector ValuesToRelease; StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned, SmallVector ValuesToRelease) : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned), ValuesToRelease(ValuesToRelease) {} }; /// Struct to express a pre-condition of the form %Op0 Pred %Op1. struct PreconditionTy { CmpInst::Predicate Pred; Value *Op0; Value *Op1; PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) : Pred(Pred), Op0(Op0), Op1(Op1) {} }; struct ConstraintTy { SmallVector Coefficients; SmallVector Preconditions; bool IsSigned = false; bool IsEq = false; ConstraintTy() = default; ConstraintTy(SmallVector Coefficients, bool IsSigned) : Coefficients(Coefficients), IsSigned(IsSigned) {} unsigned size() const { return Coefficients.size(); } unsigned empty() const { return Coefficients.empty(); } /// Returns true if any constraint has a non-zero coefficient for any of the /// newly added indices. Zero coefficients for new indices are removed. If it /// returns true, no new variable need to be added to the system. bool needsNewIndices(const DenseMap &NewIndices) { for (unsigned I = 0; I < NewIndices.size(); ++I) { int64_t Last = Coefficients.pop_back_val(); if (Last != 0) return true; } return false; } /// Returns true if all preconditions for this list of constraints are /// satisfied given \p CS and the corresponding \p Value2Index mapping. bool isValid(const ConstraintInfo &Info) const; }; /// Wrapper encapsulating separate constraint systems and corresponding value /// mappings for both unsigned and signed information. Facts are added to and /// conditions are checked against the corresponding system depending on the /// signed-ness of their predicates. While the information is kept separate /// based on signed-ness, certain conditions can be transferred between the two /// systems. class ConstraintInfo { DenseMap UnsignedValue2Index; DenseMap SignedValue2Index; ConstraintSystem UnsignedCS; ConstraintSystem SignedCS; public: DenseMap &getValue2Index(bool Signed) { return Signed ? SignedValue2Index : UnsignedValue2Index; } const DenseMap &getValue2Index(bool Signed) const { return Signed ? SignedValue2Index : UnsignedValue2Index; } ConstraintSystem &getCS(bool Signed) { return Signed ? SignedCS : UnsignedCS; } const ConstraintSystem &getCS(bool Signed) const { return Signed ? SignedCS : UnsignedCS; } void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } void popLastNVariables(bool Signed, unsigned N) { getCS(Signed).popLastNVariables(N); } bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack); /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of /// constraints, using indices from the corresponding constraint system. /// Additional indices for newly discovered values are added to \p NewIndices. ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, DenseMap &NewIndices) const; /// Turn a condition \p CmpI into a vector of constraints, using indices from /// the corresponding constraint system. Additional indices for newly /// discovered values are added to \p NewIndices. ConstraintTy getConstraint(CmpInst *Cmp, DenseMap &NewIndices) const { return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1), NewIndices); } /// Try to add information from \p A \p Pred \p B to the unsigned/signed /// system if \p Pred is signed/unsigned. void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack); }; } // namespace // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The // sum of the pairs equals \p V. The first pair is the constant-factor and X // must be nullptr. If the expression cannot be decomposed, returns an empty // vector. static SmallVector, 4> decompose(Value *V, SmallVector &Preconditions, bool IsSigned) { auto CanUseSExt = [](ConstantInt *CI) { const APInt &Val = CI->getValue(); return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); }; // Decompose \p V used with a signed predicate. if (IsSigned) { if (auto *CI = dyn_cast(V)) { if (CanUseSExt(CI)) return {{CI->getSExtValue(), nullptr}}; } return {{0, nullptr}, {1, V}}; } if (auto *CI = dyn_cast(V)) { if (CI->uge(MaxConstraintValue)) return {}; return {{CI->getZExtValue(), nullptr}}; } auto *GEP = dyn_cast(V); if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { Value *Op0, *Op1; ConstantInt *CI; // If the index is zero-extended, it is guaranteed to be positive. if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ZExt(m_Value(Op0)))) { if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && CanUseSExt(CI)) return {{0, nullptr}, {1, GEP->getPointerOperand()}, {std::pow(int64_t(2), CI->getSExtValue()), Op1}}; if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && CanUseSExt(CI)) return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}, {1, Op1}}; return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; } if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && !CI->isNegative() && CanUseSExt(CI)) return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; SmallVector, 4> Result; if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; else if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) Result = {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; else { Op0 = GEP->getOperand(GEP->getNumOperands() - 1); Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; } // If Op0 is signed non-negative, the GEP is increasing monotonically and // can be de-composed. Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, ConstantInt::get(Op0->getType(), 0)); return Result; } Value *Op0; if (match(V, m_ZExt(m_Value(Op0)))) V = Op0; Value *Op1; ConstantInt *CI; if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) && !CI->uge(MaxConstraintValue)) return {{CI->getZExtValue(), nullptr}, {1, Op0}}; if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && CanUseSExt(CI)) { Preconditions.emplace_back( CmpInst::ICMP_UGE, Op0, ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); return {{CI->getSExtValue(), nullptr}, {1, Op0}}; } if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) return {{0, nullptr}, {1, Op0}, {1, Op1}}; if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) return {{0, nullptr}, {1, Op0}, {-1, Op1}}; return {{0, nullptr}, {1, V}}; } ConstraintTy ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, DenseMap &NewIndices) const { bool IsEq = false; // Try to convert Pred to one of ULE/SLT/SLE/SLT. switch (Pred) { case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: { Pred = CmpInst::getSwappedPredicate(Pred); std::swap(Op0, Op1); break; } case CmpInst::ICMP_EQ: if (match(Op1, m_Zero())) { Pred = CmpInst::ICMP_ULE; } else { IsEq = true; Pred = CmpInst::ICMP_ULE; } break; case CmpInst::ICMP_NE: if (!match(Op1, m_Zero())) return {}; Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); std::swap(Op0, Op1); break; default: break; } // Only ULE and ULT predicates are supported at the moment. if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) return {}; SmallVector Preconditions; bool IsSigned = CmpInst::isSigned(Pred); auto &Value2Index = getValue2Index(IsSigned); auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), Preconditions, IsSigned); auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), Preconditions, IsSigned); // Skip if decomposing either of the values failed. if (ADec.empty() || BDec.empty()) return {}; int64_t Offset1 = ADec[0].first; int64_t Offset2 = BDec[0].first; Offset1 *= -1; // Create iterator ranges that skip the constant-factor. auto VariablesA = llvm::drop_begin(ADec); auto VariablesB = llvm::drop_begin(BDec); // First try to look up \p V in Value2Index and NewIndices. Otherwise add a // new entry to NewIndices. auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { auto V2I = Value2Index.find(V); if (V2I != Value2Index.end()) return V2I->second; auto Insert = NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); return Insert.first->second; }; // Make sure all variables have entries in Value2Index or NewIndices. for (const auto &KV : concat>(VariablesA, VariablesB)) GetOrAddIndex(KV.second); // Build result constraint, by first adding all coefficients from A and then // subtracting all coefficients from B. ConstraintTy Res( SmallVector(Value2Index.size() + NewIndices.size() + 1, 0), IsSigned); Res.IsEq = IsEq; auto &R = Res.Coefficients; for (const auto &KV : VariablesA) R[GetOrAddIndex(KV.second)] += KV.first; for (const auto &KV : VariablesB) R[GetOrAddIndex(KV.second)] -= KV.first; int64_t OffsetSum; if (AddOverflow(Offset1, Offset2, OffsetSum)) return {}; if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) return {}; R[0] = OffsetSum; Res.Preconditions = std::move(Preconditions); return Res; } bool ConstraintTy::isValid(const ConstraintInfo &Info) const { return Coefficients.size() > 0 && all_of(Preconditions, [&Info](const PreconditionTy &C) { return Info.doesHold(C.Pred, C.Op0, C.Op1); }); } bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const { DenseMap NewIndices; auto R = getConstraint(Pred, A, B, NewIndices); if (!NewIndices.empty()) return false; // TODO: properly check NewIndices. return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq && !R.empty() && getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients); } void ConstraintInfo::transferToOtherSystem( CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack) { // Check if we can combine facts from the signed and unsigned systems to // derive additional facts. if (!A->getType()->isIntegerTy()) return; // FIXME: This currently depends on the order we add facts. Ideally we // would first add all known facts and only then try to add additional // facts. switch (Pred) { default: break; case CmpInst::ICMP_ULT: // If B is a signed positive constant, A >=s 0 and A getType(), 0))) { addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), IsNegated, NumIn, NumOut, DFSInStack); addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack); } break; case CmpInst::ICMP_SLT: if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack); break; case CmpInst::ICMP_SGT: if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), IsNegated, NumIn, NumOut, DFSInStack); break; case CmpInst::ICMP_SGE: if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack); } break; } } namespace { /// Represents either a condition that holds on entry to a block or a basic /// block, with their respective Dominator DFS in and out numbers. struct ConstraintOrBlock { unsigned NumIn; unsigned NumOut; bool IsBlock; bool Not; union { BasicBlock *BB; CmpInst *Condition; }; ConstraintOrBlock(DomTreeNode *DTN) : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), BB(DTN->getBlock()) {} ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), Not(Not), Condition(Condition) {} }; /// Keep state required to build worklist. struct State { DominatorTree &DT; SmallVector WorkList; State(DominatorTree &DT) : DT(DT) {} /// Process block \p BB and add known facts to work-list. void addInfoFor(BasicBlock &BB); /// Returns true if we can add a known condition from BB to its successor /// block Succ. Each predecessor of Succ can either be BB or be dominated /// by Succ (e.g. the case when adding a condition from a pre-header to a /// loop header). bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { if (BB.getSingleSuccessor()) { assert(BB.getSingleSuccessor() == Succ); return DT.properlyDominates(&BB, Succ); } return any_of(successors(&BB), [Succ](const BasicBlock *S) { return S != Succ; }) && all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { return Pred == &BB || DT.dominates(Succ, Pred); }); } }; } // namespace #ifndef NDEBUG static void dumpWithNames(const ConstraintSystem &CS, DenseMap &Value2Index) { SmallVector Names(Value2Index.size(), ""); for (auto &KV : Value2Index) { Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); } CS.dump(Names); } static void dumpWithNames(ArrayRef C, DenseMap &Value2Index) { ConstraintSystem CS; CS.addVariableRowFill(C); dumpWithNames(CS, Value2Index); } #endif void State::addInfoFor(BasicBlock &BB) { WorkList.emplace_back(DT.getNode(&BB)); // True as long as long as the current instruction is guaranteed to execute. bool GuaranteedToExecute = true; // Scan BB for assume calls. // TODO: also use this scan to queue conditions to simplify, so we can // interleave facts from assumes and conditions to simplify in a single // basic block. And to skip another traversal of each basic block when // simplifying. for (Instruction &I : BB) { Value *Cond; // For now, just handle assumes with a single compare as condition. if (match(&I, m_Intrinsic(m_Value(Cond))) && isa(Cond)) { if (GuaranteedToExecute) { // The assume is guaranteed to execute when BB is entered, hence Cond // holds on entry to BB. WorkList.emplace_back(DT.getNode(&BB), cast(Cond), false); } else { // Otherwise the condition only holds in the successors. for (BasicBlock *Succ : successors(&BB)) { if (!canAddSuccessor(BB, Succ)) continue; WorkList.emplace_back(DT.getNode(Succ), cast(Cond), false); } } } GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); } auto *Br = dyn_cast(BB.getTerminator()); if (!Br || !Br->isConditional()) return; // If the condition is an OR of 2 compares and the false successor only has // the current block as predecessor, queue both negated conditions for the // false successor. Value *Op0, *Op1; if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && isa(Op0) && isa(Op1)) { BasicBlock *FalseSuccessor = Br->getSuccessor(1); if (canAddSuccessor(BB, FalseSuccessor)) { WorkList.emplace_back(DT.getNode(FalseSuccessor), cast(Op0), true); WorkList.emplace_back(DT.getNode(FalseSuccessor), cast(Op1), true); } return; } // If the condition is an AND of 2 compares and the true successor only has // the current block as predecessor, queue both conditions for the true // successor. if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && isa(Op0) && isa(Op1)) { BasicBlock *TrueSuccessor = Br->getSuccessor(0); if (canAddSuccessor(BB, TrueSuccessor)) { WorkList.emplace_back(DT.getNode(TrueSuccessor), cast(Op0), false); WorkList.emplace_back(DT.getNode(TrueSuccessor), cast(Op1), false); } return; } auto *CmpI = dyn_cast(Br->getCondition()); if (!CmpI) return; if (canAddSuccessor(BB, Br->getSuccessor(0))) WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); if (canAddSuccessor(BB, Br->getSuccessor(1))) WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); } void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack) { // If the constraint has a pre-condition, skip the constraint if it does not // hold. DenseMap NewIndices; auto R = getConstraint(Pred, A, B, NewIndices); if (!R.isValid(*this)) return; //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n"); bool Added = false; assert(CmpInst::isSigned(Pred) == R.IsSigned && "condition and constraint signs must match"); auto &CSToUse = getCS(R.IsSigned); if (R.Coefficients.empty()) return; Added |= CSToUse.addVariableRowFill(R.Coefficients); // If R has been added to the system, queue it for removal once it goes // out-of-scope. if (Added) { SmallVector ValuesToRelease; for (auto &KV : NewIndices) { getValue2Index(R.IsSigned).insert(KV); ValuesToRelease.push_back(KV.first); } LLVM_DEBUG({ dbgs() << " constraint: "; dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); }); DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, ValuesToRelease); if (R.IsEq) { // Also add the inverted constraint for equality constraints. for (auto &Coeff : R.Coefficients) Coeff *= -1; CSToUse.addVariableRowFill(R.Coefficients); DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, SmallVector()); } } } static void tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, SmallVectorImpl &ToRemove) { auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, ConstraintInfo &Info) { DenseMap NewIndices; auto R = Info.getConstraint(Pred, A, B, NewIndices); if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info)) return false; auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred)); return CSToUse.isConditionImplied(R.Coefficients); }; if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and // can be simplified to a regular sub. Value *A = II->getArgOperand(0); Value *B = II->getArgOperand(1); if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || !DoesConditionHold(CmpInst::ICMP_SGE, B, ConstantInt::get(A->getType(), 0), Info)) return; IRBuilder<> Builder(II->getParent(), II->getIterator()); Value *Sub = nullptr; for (User *U : make_early_inc_range(II->users())) { if (match(U, m_ExtractValue<0>(m_Value()))) { if (!Sub) Sub = Builder.CreateSub(A, B); U->replaceAllUsesWith(Sub); } else if (match(U, m_ExtractValue<1>(m_Value()))) U->replaceAllUsesWith(Builder.getFalse()); else continue; if (U->use_empty()) { auto *I = cast(U); ToRemove.push_back(I); I->setOperand(0, PoisonValue::get(II->getType())); } } if (II->use_empty()) II->eraseFromParent(); } } static bool eliminateConstraints(Function &F, DominatorTree &DT) { bool Changed = false; DT.updateDFSNumbers(); ConstraintInfo Info; State S(DT); // First, collect conditions implied by branches and blocks with their // Dominator DFS in and out numbers. for (BasicBlock &BB : F) { if (!DT.getNode(&BB)) continue; S.addInfoFor(BB); } // Next, sort worklist by dominance, so that dominating blocks and conditions // come before blocks and conditions dominated by them. If a block and a // condition have the same numbers, the condition comes before the block, as // it holds on entry to the block. stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); }); SmallVector ToRemove; // Finally, process ordered worklist and eliminate implied conditions. SmallVector DFSInStack; for (ConstraintOrBlock &CB : S.WorkList) { // First, pop entries from the stack that are out-of-scope for CB. Remove // the corresponding entry from the constraint system. while (!DFSInStack.empty()) { auto &E = DFSInStack.back(); LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut << "\n"); LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); assert(E.NumIn <= CB.NumIn); if (CB.NumOut <= E.NumOut) break; LLVM_DEBUG({ dbgs() << "Removing "; dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), Info.getValue2Index(E.IsSigned)); dbgs() << "\n"; }); Info.popLastConstraint(E.IsSigned); // Remove variables in the system that went out of scope. auto &Mapping = Info.getValue2Index(E.IsSigned); for (Value *V : E.ValuesToRelease) Mapping.erase(V); Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); DFSInStack.pop_back(); } LLVM_DEBUG({ dbgs() << "Processing "; if (CB.IsBlock) dbgs() << *CB.BB; else dbgs() << *CB.Condition; dbgs() << "\n"; }); // For a block, check if any CmpInsts become known based on the current set // of constraints. if (CB.IsBlock) { for (Instruction &I : make_early_inc_range(*CB.BB)) { if (auto *II = dyn_cast(&I)) { tryToSimplifyOverflowMath(II, Info, ToRemove); continue; } auto *Cmp = dyn_cast(&I); if (!Cmp) continue; DenseMap NewIndices; auto R = Info.getConstraint(Cmp, NewIndices); if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) || !R.isValid(Info)) continue; auto &CSToUse = Info.getCS(R.IsSigned); if (CSToUse.isConditionImplied(R.Coefficients)) { if (!DebugCounter::shouldExecute(EliminatedCounter)) continue; LLVM_DEBUG({ dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); }); Cmp->replaceUsesWithIf( ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { // Conditions in an assume trivially simplify to true. Skip uses // in assume calls to not destroy the available information. auto *II = dyn_cast(U.getUser()); return !II || II->getIntrinsicID() != Intrinsic::assume; }); NumCondsRemoved++; Changed = true; } if (CSToUse.isConditionImplied( ConstraintSystem::negate(R.Coefficients))) { if (!DebugCounter::shouldExecute(EliminatedCounter)) continue; LLVM_DEBUG({ dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); }); Cmp->replaceAllUsesWith( ConstantInt::getFalse(F.getParent()->getContext())); NumCondsRemoved++; Changed = true; } } continue; } // Set up a function to restore the predicate at the end of the scope if it // has been negated. Negate the predicate in-place, if required. auto *CI = dyn_cast(CB.Condition); auto PredicateRestorer = make_scope_exit([CI, &CB]() { if (CB.Not && CI) CI->setPredicate(CI->getInversePredicate()); }); if (CB.Not) { if (CI) { CI->setPredicate(CI->getInversePredicate()); } else { LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); continue; } } ICmpInst::Predicate Pred; Value *A, *B; if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { // Otherwise, add the condition to the system and stack, if we can // transform it into a constraint. Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack); Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack); } } #ifndef NDEBUG unsigned SignedEntries = count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && "updates to CS and DFSInStack are out of sync"); assert(Info.getCS(true).size() == SignedEntries && "updates to CS and DFSInStack are out of sync"); #endif for (Instruction *I : ToRemove) I->eraseFromParent(); return Changed; } PreservedAnalyses ConstraintEliminationPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); if (!eliminateConstraints(F, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserveSet(); return PA; } namespace { class ConstraintElimination : public FunctionPass { public: static char ID; ConstraintElimination() : FunctionPass(ID) { initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { auto &DT = getAnalysis().getDomTree(); return eliminateConstraints(F, DT); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } }; } // end anonymous namespace char ConstraintElimination::ID = 0; INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", "Constraint Elimination", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", "Constraint Elimination", false, false) FunctionPass *llvm::createConstraintEliminationPass() { return new ConstraintElimination(); }