//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Eliminate conditions based on constraints collected from dominating // conditions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/ConstraintElimination.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ConstraintSystem.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "constraint-elimination" STATISTIC(NumCondsRemoved, "Number of instructions removed"); DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", "Controls which conditions are eliminated"); static cl::opt MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, cl::desc("Maximum number of rows to keep in constraint system")); static cl::opt DumpReproducers( "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, cl::desc("Dump IR to reproduce successful transformations.")); static int64_t MaxConstraintValue = std::numeric_limits::max(); static int64_t MinSignedConstraintValue = std::numeric_limits::min(); // A helper to multiply 2 signed integers where overflowing is allowed. static int64_t multiplyWithOverflow(int64_t A, int64_t B) { int64_t Result; MulOverflow(A, B, Result); return Result; } // A helper to add 2 signed integers where overflowing is allowed. static int64_t addWithOverflow(int64_t A, int64_t B) { int64_t Result; AddOverflow(A, B, Result); return Result; } static Instruction *getContextInstForUse(Use &U) { Instruction *UserI = cast(U.getUser()); if (auto *Phi = dyn_cast(UserI)) UserI = Phi->getIncomingBlock(U)->getTerminator(); return UserI; } namespace { /// Represents either /// * a condition that holds on entry to a block (=conditional fact) /// * an assume (=assume fact) /// * a use of a compare instruction to simplify. /// It also tracks the Dominator DFS in and out numbers for each entry. struct FactOrCheck { union { Instruction *Inst; Use *U; }; unsigned NumIn; unsigned NumOut; bool HasInst; bool Not; FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool Not) : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), HasInst(true), Not(Not) {} FactOrCheck(DomTreeNode *DTN, Use *U) : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), HasInst(false), Not(false) {} static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, bool Not = false) { return FactOrCheck(DTN, Inst, Not); } static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { return FactOrCheck(DTN, U); } static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { return FactOrCheck(DTN, CI, false); } bool isCheck() const { return !HasInst || match(Inst, m_Intrinsic()); } Instruction *getContextInst() const { if (HasInst) return Inst; return getContextInstForUse(*U); } Instruction *getInstructionToSimplify() const { assert(isCheck()); if (HasInst) return Inst; // The use may have been simplified to a constant already. return dyn_cast(*U); } bool isConditionFact() const { return !isCheck() && isa(Inst); } }; /// Keep state required to build worklist. struct State { DominatorTree &DT; SmallVector WorkList; State(DominatorTree &DT) : DT(DT) {} /// Process block \p BB and add known facts to work-list. void addInfoFor(BasicBlock &BB); /// Returns true if we can add a known condition from BB to its successor /// block Succ. bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); } }; class ConstraintInfo; struct StackEntry { unsigned NumIn; unsigned NumOut; bool IsSigned = false; /// Variables that can be removed from the system once the stack entry gets /// removed. SmallVector ValuesToRelease; StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, SmallVector ValuesToRelease) : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), ValuesToRelease(ValuesToRelease) {} }; /// Struct to express a pre-condition of the form %Op0 Pred %Op1. struct PreconditionTy { CmpInst::Predicate Pred; Value *Op0; Value *Op1; PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) : Pred(Pred), Op0(Op0), Op1(Op1) {} }; struct ConstraintTy { SmallVector Coefficients; SmallVector Preconditions; SmallVector> ExtraInfo; bool IsSigned = false; ConstraintTy() = default; ConstraintTy(SmallVector Coefficients, bool IsSigned, bool IsEq, bool IsNe) : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { } unsigned size() const { return Coefficients.size(); } unsigned empty() const { return Coefficients.empty(); } /// Returns true if all preconditions for this list of constraints are /// satisfied given \p CS and the corresponding \p Value2Index mapping. bool isValid(const ConstraintInfo &Info) const; bool isEq() const { return IsEq; } bool isNe() const { return IsNe; } /// Check if the current constraint is implied by the given ConstraintSystem. /// /// \return true or false if the constraint is proven to be respectively true, /// or false. When the constraint cannot be proven to be either true or false, /// std::nullopt is returned. std::optional isImpliedBy(const ConstraintSystem &CS) const; private: bool IsEq = false; bool IsNe = false; }; /// Wrapper encapsulating separate constraint systems and corresponding value /// mappings for both unsigned and signed information. Facts are added to and /// conditions are checked against the corresponding system depending on the /// signed-ness of their predicates. While the information is kept separate /// based on signed-ness, certain conditions can be transferred between the two /// systems. class ConstraintInfo { ConstraintSystem UnsignedCS; ConstraintSystem SignedCS; const DataLayout &DL; public: ConstraintInfo(const DataLayout &DL, ArrayRef FunctionArgs) : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} DenseMap &getValue2Index(bool Signed) { return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); } const DenseMap &getValue2Index(bool Signed) const { return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); } ConstraintSystem &getCS(bool Signed) { return Signed ? SignedCS : UnsignedCS; } const ConstraintSystem &getCS(bool Signed) const { return Signed ? SignedCS : UnsignedCS; } void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } void popLastNVariables(bool Signed, unsigned N) { getCS(Signed).popLastNVariables(N); } bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack); /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of /// constraints, using indices from the corresponding constraint system. /// New variables that need to be added to the system are collected in /// \p NewVariables. ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, SmallVectorImpl &NewVariables) const; /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of /// constraints using getConstraint. Returns an empty constraint if the result /// cannot be used to query the existing constraint system, e.g. because it /// would require adding new variables. Also tries to convert signed /// predicates to unsigned ones if possible to allow using the unsigned system /// which increases the effectiveness of the signed <-> unsigned transfer /// logic. ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, Value *Op1) const; /// Try to add information from \p A \p Pred \p B to the unsigned/signed /// system if \p Pred is signed/unsigned. void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack); }; /// Represents a (Coefficient * Variable) entry after IR decomposition. struct DecompEntry { int64_t Coefficient; Value *Variable; /// True if the variable is known positive in the current constraint. bool IsKnownNonNegative; DecompEntry(int64_t Coefficient, Value *Variable, bool IsKnownNonNegative = false) : Coefficient(Coefficient), Variable(Variable), IsKnownNonNegative(IsKnownNonNegative) {} }; /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. struct Decomposition { int64_t Offset = 0; SmallVector Vars; Decomposition(int64_t Offset) : Offset(Offset) {} Decomposition(Value *V, bool IsKnownNonNegative = false) { Vars.emplace_back(1, V, IsKnownNonNegative); } Decomposition(int64_t Offset, ArrayRef Vars) : Offset(Offset), Vars(Vars) {} void add(int64_t OtherOffset) { Offset = addWithOverflow(Offset, OtherOffset); } void add(const Decomposition &Other) { add(Other.Offset); append_range(Vars, Other.Vars); } void mul(int64_t Factor) { Offset = multiplyWithOverflow(Offset, Factor); for (auto &Var : Vars) Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); } }; } // namespace static Decomposition decompose(Value *V, SmallVectorImpl &Preconditions, bool IsSigned, const DataLayout &DL); static bool canUseSExt(ConstantInt *CI) { const APInt &Val = CI->getValue(); return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); } static Decomposition decomposeGEP(GEPOperator &GEP, SmallVectorImpl &Preconditions, bool IsSigned, const DataLayout &DL) { // Do not reason about pointers where the index size is larger than 64 bits, // as the coefficients used to encode constraints are 64 bit integers. if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) return &GEP; if (!GEP.isInBounds()) return &GEP; assert(!IsSigned && "The logic below only supports decomposition for " "unsinged predicates at the moment."); Type *PtrTy = GEP.getType()->getScalarType(); unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); MapVector VariableOffsets; APInt ConstantOffset(BitWidth, 0); if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) return &GEP; // Handle the (gep (gep ....), C) case by incrementing the constant // coefficient of the inner GEP, if C is a constant. auto *InnerGEP = dyn_cast(GEP.getPointerOperand()); if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); Result.add(ConstantOffset.getSExtValue()); if (ConstantOffset.isNegative()) { unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); if (ConstantOffsetI % Scale != 0) return &GEP; // Add pre-condition ensuring the GEP is increasing monotonically and // can be de-composed. // Both sides are normalized by being divided by Scale. Preconditions.emplace_back( CmpInst::ICMP_SGE, InnerGEP->getOperand(1), ConstantInt::get(InnerGEP->getOperand(1)->getType(), -1 * (ConstantOffsetI / Scale))); } return Result; } Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, GEP.getPointerOperand())); for (auto [Index, Scale] : VariableOffsets) { auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); IdxResult.mul(Scale.getSExtValue()); Result.add(IdxResult); // If Op0 is signed non-negative, the GEP is increasing monotonically and // can be de-composed. if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, ConstantInt::get(Index->getType(), 0)); } return Result; } // Decomposes \p V into a constant offset + list of pairs { Coefficient, // Variable } where Coefficient * Variable. The sum of the constant offset and // pairs equals \p V. static Decomposition decompose(Value *V, SmallVectorImpl &Preconditions, bool IsSigned, const DataLayout &DL) { auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, bool IsSignedB) { auto ResA = decompose(A, Preconditions, IsSigned, DL); auto ResB = decompose(B, Preconditions, IsSignedB, DL); ResA.add(ResB); return ResA; }; Type *Ty = V->getType()->getScalarType(); if (Ty->isPointerTy() && !IsSigned) { if (auto *GEP = dyn_cast(V)) return decomposeGEP(*GEP, Preconditions, IsSigned, DL); return V; } // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so // coefficient add/mul may wrap, while the operation in the full bit width // would not. if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) return V; // Decompose \p V used with a signed predicate. if (IsSigned) { if (auto *CI = dyn_cast(V)) { if (canUseSExt(CI)) return CI->getSExtValue(); } Value *Op0; Value *Op1; if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) return MergeResults(Op0, Op1, IsSigned); ConstantInt *CI; if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { auto Result = decompose(Op0, Preconditions, IsSigned, DL); Result.mul(CI->getSExtValue()); return Result; } return V; } if (auto *CI = dyn_cast(V)) { if (CI->uge(MaxConstraintValue)) return V; return int64_t(CI->getZExtValue()); } Value *Op0; bool IsKnownNonNegative = false; if (match(V, m_ZExt(m_Value(Op0)))) { IsKnownNonNegative = true; V = Op0; } Value *Op1; ConstantInt *CI; if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { return MergeResults(Op0, Op1, IsSigned); } if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, ConstantInt::get(Op0->getType(), 0)); if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, ConstantInt::get(Op1->getType(), 0)); return MergeResults(Op0, Op1, IsSigned); } if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && canUseSExt(CI)) { Preconditions.emplace_back( CmpInst::ICMP_UGE, Op0, ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); return MergeResults(Op0, CI, true); } // Decompose or as an add if there are no common bits between the operands. if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && haveNoCommonBitsSet(Op0, CI, DL)) { return MergeResults(Op0, CI, IsSigned); } if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) return {V, IsKnownNonNegative}; auto Result = decompose(Op1, Preconditions, IsSigned, DL); Result.mul(int64_t{1} << CI->getSExtValue()); return Result; } if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && (!CI->isNegative())) { auto Result = decompose(Op1, Preconditions, IsSigned, DL); Result.mul(CI->getSExtValue()); return Result; } if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) return {-1 * CI->getSExtValue(), {{1, Op0}}}; if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) return {0, {{1, Op0}, {-1, Op1}}}; return {V, IsKnownNonNegative}; } ConstraintTy ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, SmallVectorImpl &NewVariables) const { assert(NewVariables.empty() && "NewVariables must be empty when passed in"); bool IsEq = false; bool IsNe = false; // Try to convert Pred to one of ULE/SLT/SLE/SLT. switch (Pred) { case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: { Pred = CmpInst::getSwappedPredicate(Pred); std::swap(Op0, Op1); break; } case CmpInst::ICMP_EQ: if (match(Op1, m_Zero())) { Pred = CmpInst::ICMP_ULE; } else { IsEq = true; Pred = CmpInst::ICMP_ULE; } break; case CmpInst::ICMP_NE: if (match(Op1, m_Zero())) { Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); std::swap(Op0, Op1); } else { IsNe = true; Pred = CmpInst::ICMP_ULE; } break; default: break; } if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) return {}; SmallVector Preconditions; bool IsSigned = CmpInst::isSigned(Pred); auto &Value2Index = getValue2Index(IsSigned); auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), Preconditions, IsSigned, DL); auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), Preconditions, IsSigned, DL); int64_t Offset1 = ADec.Offset; int64_t Offset2 = BDec.Offset; Offset1 *= -1; auto &VariablesA = ADec.Vars; auto &VariablesB = BDec.Vars; // First try to look up \p V in Value2Index and NewVariables. Otherwise add a // new entry to NewVariables. DenseMap NewIndexMap; auto GetOrAddIndex = [&Value2Index, &NewVariables, &NewIndexMap](Value *V) -> unsigned { auto V2I = Value2Index.find(V); if (V2I != Value2Index.end()) return V2I->second; auto Insert = NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); if (Insert.second) NewVariables.push_back(V); return Insert.first->second; }; // Make sure all variables have entries in Value2Index or NewVariables. for (const auto &KV : concat(VariablesA, VariablesB)) GetOrAddIndex(KV.Variable); // Build result constraint, by first adding all coefficients from A and then // subtracting all coefficients from B. ConstraintTy Res( SmallVector(Value2Index.size() + NewVariables.size() + 1, 0), IsSigned, IsEq, IsNe); // Collect variables that are known to be positive in all uses in the // constraint. DenseMap KnownNonNegativeVariables; auto &R = Res.Coefficients; for (const auto &KV : VariablesA) { R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; auto I = KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); I.first->second &= KV.IsKnownNonNegative; } for (const auto &KV : VariablesB) { if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, R[GetOrAddIndex(KV.Variable)])) return {}; auto I = KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); I.first->second &= KV.IsKnownNonNegative; } int64_t OffsetSum; if (AddOverflow(Offset1, Offset2, OffsetSum)) return {}; if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) return {}; R[0] = OffsetSum; Res.Preconditions = std::move(Preconditions); // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new // variables. while (!NewVariables.empty()) { int64_t Last = R.back(); if (Last != 0) break; R.pop_back(); Value *RemovedV = NewVariables.pop_back_val(); NewIndexMap.erase(RemovedV); } // Add extra constraints for variables that are known positive. for (auto &KV : KnownNonNegativeVariables) { if (!KV.second || (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) continue; SmallVector C(Value2Index.size() + NewVariables.size() + 1, 0); C[GetOrAddIndex(KV.first)] = -1; Res.ExtraInfo.push_back(C); } return Res; } ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, Value *Op1) const { // If both operands are known to be non-negative, change signed predicates to // unsigned ones. This increases the reasoning effectiveness in combination // with the signed <-> unsigned transfer logic. if (CmpInst::isSigned(Pred) && isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) Pred = CmpInst::getUnsignedPredicate(Pred); SmallVector NewVariables; ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); if (!NewVariables.empty()) return {}; return R; } bool ConstraintTy::isValid(const ConstraintInfo &Info) const { return Coefficients.size() > 0 && all_of(Preconditions, [&Info](const PreconditionTy &C) { return Info.doesHold(C.Pred, C.Op0, C.Op1); }); } std::optional ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { bool IsConditionImplied = CS.isConditionImplied(Coefficients); if (IsEq || IsNe) { auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); bool IsNegatedOrEqualImplied = !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); // In order to check that `%a == %b` is true (equality), both conditions `%a // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` // is true), we return true if they both hold, false in the other cases. if (IsConditionImplied && IsNegatedOrEqualImplied) return IsEq; auto Negated = ConstraintSystem::negate(Coefficients); bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); bool IsStrictLessThanImplied = !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); // In order to check that `%a != %b` is true (non-equality), either // condition `%a > %b` or `%a < %b` must hold true. When checking for // non-equality (`IsNe` is true), we return true if one of the two holds, // false in the other cases. if (IsNegatedImplied || IsStrictLessThanImplied) return IsNe; return std::nullopt; } if (IsConditionImplied) return true; auto Negated = ConstraintSystem::negate(Coefficients); auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); if (IsNegatedImplied) return false; // Neither the condition nor its negated holds, did not prove anything. return std::nullopt; } bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const { auto R = getConstraintForSolving(Pred, A, B); return R.isValid(*this) && getCS(R.IsSigned).isConditionImplied(R.Coefficients); } void ConstraintInfo::transferToOtherSystem( CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack) { // Check if we can combine facts from the signed and unsigned systems to // derive additional facts. if (!A->getType()->isIntegerTy()) return; // FIXME: This currently depends on the order we add facts. Ideally we // would first add all known facts and only then try to add additional // facts. switch (Pred) { default: break; case CmpInst::ICMP_ULT: // If B is a signed positive constant, A >=s 0 and A getType(), 0))) { addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, NumOut, DFSInStack); addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); } break; case CmpInst::ICMP_SLT: if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); break; case CmpInst::ICMP_SGT: { if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, NumOut, DFSInStack); if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); break; } case CmpInst::ICMP_SGE: if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); } break; } } #ifndef NDEBUG static void dumpConstraint(ArrayRef C, const DenseMap &Value2Index) { ConstraintSystem CS(Value2Index); CS.addVariableRowFill(C); CS.dump(); } #endif void State::addInfoFor(BasicBlock &BB) { // True as long as long as the current instruction is guaranteed to execute. bool GuaranteedToExecute = true; // Queue conditions and assumes. for (Instruction &I : BB) { if (auto Cmp = dyn_cast(&I)) { for (Use &U : Cmp->uses()) { auto *UserI = getContextInstForUse(U); auto *DTN = DT.getNode(UserI->getParent()); if (!DTN) continue; WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); } continue; } if (match(&I, m_Intrinsic())) { WorkList.push_back( FactOrCheck::getCheck(DT.getNode(&BB), cast(&I))); continue; } if (isa(&I)) { WorkList.push_back(FactOrCheck::getFact(DT.getNode(&BB), &I)); continue; } Value *Cond; // For now, just handle assumes with a single compare as condition. if (match(&I, m_Intrinsic(m_Value(Cond))) && isa(Cond)) { if (GuaranteedToExecute) { // The assume is guaranteed to execute when BB is entered, hence Cond // holds on entry to BB. WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), cast(Cond))); } else { WorkList.emplace_back( FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); } } GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); } auto *Br = dyn_cast(BB.getTerminator()); if (!Br || !Br->isConditional()) return; Value *Cond = Br->getCondition(); // If the condition is a chain of ORs/AND and the successor only has the // current block as predecessor, queue conditions for the successor. Value *Op0, *Op1; if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { bool IsOr = match(Cond, m_LogicalOr()); bool IsAnd = match(Cond, m_LogicalAnd()); // If there's a select that matches both AND and OR, we need to commit to // one of the options. Arbitrarily pick OR. if (IsOr && IsAnd) IsAnd = false; BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); if (canAddSuccessor(BB, Successor)) { SmallVector CondWorkList; SmallPtrSet SeenCond; auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { if (SeenCond.insert(V).second) CondWorkList.push_back(V); }; QueueValue(Op1); QueueValue(Op0); while (!CondWorkList.empty()) { Value *Cur = CondWorkList.pop_back_val(); if (auto *Cmp = dyn_cast(Cur)) { WorkList.emplace_back( FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); continue; } if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { QueueValue(Op1); QueueValue(Op0); continue; } if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { QueueValue(Op1); QueueValue(Op0); continue; } } } return; } auto *CmpI = dyn_cast(Br->getCondition()); if (!CmpI) return; if (canAddSuccessor(BB, Br->getSuccessor(0))) WorkList.emplace_back( FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); if (canAddSuccessor(BB, Br->getSuccessor(1))) WorkList.emplace_back( FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); } namespace { /// Helper to keep track of a condition and if it should be treated as negated /// for reproducer construction. /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. struct ReproducerEntry { ICmpInst::Predicate Pred; Value *LHS; Value *RHS; ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) : Pred(Pred), LHS(LHS), RHS(RHS) {} }; } // namespace /// Helper function to generate a reproducer function for simplifying \p Cond. /// The reproducer function contains a series of @llvm.assume calls, one for /// each condition in \p Stack. For each condition, the operand instruction are /// cloned until we reach operands that have an entry in \p Value2Index. Those /// will then be added as function arguments. \p DT is used to order cloned /// instructions. The reproducer function will get added to \p M, if it is /// non-null. Otherwise no reproducer function is generated. static void generateReproducer(CmpInst *Cond, Module *M, ArrayRef Stack, ConstraintInfo &Info, DominatorTree &DT) { if (!M) return; LLVMContext &Ctx = Cond->getContext(); LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); ValueToValueMapTy Old2New; SmallVector Args; SmallPtrSet Seen; // Traverse Cond and its operands recursively until we reach a value that's in // Value2Index or not an instruction, or not a operation that // ConstraintElimination can decompose. Such values will be considered as // external inputs to the reproducer, they are collected and added as function // arguments later. auto CollectArguments = [&](ArrayRef Ops, bool IsSigned) { auto &Value2Index = Info.getValue2Index(IsSigned); SmallVector WorkList(Ops); while (!WorkList.empty()) { Value *V = WorkList.pop_back_val(); if (!Seen.insert(V).second) continue; if (Old2New.find(V) != Old2New.end()) continue; if (isa(V)) continue; auto *I = dyn_cast(V); if (Value2Index.contains(V) || !I || !isa(V)) { Old2New[V] = V; Args.push_back(V); LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); } else { append_range(WorkList, I->operands()); } } }; for (auto &Entry : Stack) if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); SmallVector ParamTys; for (auto *P : Args) ParamTys.push_back(P->getType()); FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, /*isVarArg=*/false); Function *F = Function::Create(FTy, Function::ExternalLinkage, Cond->getModule()->getName() + Cond->getFunction()->getName() + "repro", M); // Add arguments to the reproducer function for each external value collected. for (unsigned I = 0; I < Args.size(); ++I) { F->getArg(I)->setName(Args[I]->getName()); Old2New[Args[I]] = F->getArg(I); } BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); IRBuilder<> Builder(Entry); Builder.CreateRet(Builder.getTrue()); Builder.SetInsertPoint(Entry->getTerminator()); // Clone instructions in \p Ops and their operands recursively until reaching // an value in Value2Index (external input to the reproducer). Update Old2New // mapping for the original and cloned instructions. Sort instructions to // clone by dominance, then insert the cloned instructions in the function. auto CloneInstructions = [&](ArrayRef Ops, bool IsSigned) { SmallVector WorkList(Ops); SmallVector ToClone; auto &Value2Index = Info.getValue2Index(IsSigned); while (!WorkList.empty()) { Value *V = WorkList.pop_back_val(); if (Old2New.find(V) != Old2New.end()) continue; auto *I = dyn_cast(V); if (!Value2Index.contains(V) && I) { Old2New[V] = nullptr; ToClone.push_back(I); append_range(WorkList, I->operands()); } } sort(ToClone, [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); for (Instruction *I : ToClone) { Instruction *Cloned = I->clone(); Old2New[I] = Cloned; Old2New[I]->setName(I->getName()); Cloned->insertBefore(&*Builder.GetInsertPoint()); Cloned->dropUnknownNonDebugMetadata(); Cloned->setDebugLoc({}); } }; // Materialize the assumptions for the reproducer using the entries in Stack. // That is, first clone the operands of the condition recursively until we // reach an external input to the reproducer and add them to the reproducer // function. Then add an ICmp for the condition (with the inverse predicate if // the entry is negated) and an assert using the ICmp. for (auto &Entry : Stack) { if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) continue; LLVM_DEBUG( dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); Builder.CreateAssumption(Cmp); } // Finally, clone the condition to reproduce and remap instruction operands in // the reproducer using Old2New. CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); Entry->getTerminator()->setOperand(0, Cond); remapInstructionsInBlocks({Entry}, Old2New); assert(!verifyFunction(*F, &dbgs())); } static std::optional checkCondition(CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, Instruction *ContextInst) { LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); CmpInst::Predicate Pred = Cmp->getPredicate(); Value *A = Cmp->getOperand(0); Value *B = Cmp->getOperand(1); auto R = Info.getConstraintForSolving(Pred, A, B); if (R.empty() || !R.isValid(Info)){ LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); return std::nullopt; } auto &CSToUse = Info.getCS(R.IsSigned); // If there was extra information collected during decomposition, apply // it now and remove it immediately once we are done with reasoning // about the constraint. for (auto &Row : R.ExtraInfo) CSToUse.addVariableRow(Row); auto InfoRestorer = make_scope_exit([&]() { for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) CSToUse.popLastConstraint(); }); if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { if (!DebugCounter::shouldExecute(EliminatedCounter)) return std::nullopt; LLVM_DEBUG({ if (*ImpliedCondition) { dbgs() << "Condition " << *Cmp; } else { auto InversePred = Cmp->getInversePredicate(); dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " << *A << ", " << *B; } dbgs() << " implied by dominating constraints\n"; CSToUse.dump(); }); return ImpliedCondition; } return std::nullopt; } static bool checkAndReplaceCondition( CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, Instruction *ContextInst, Module *ReproducerModule, ArrayRef ReproducerCondStack, DominatorTree &DT) { auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); Constant *ConstantC = ConstantInt::getBool( CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, ContextInst](Use &U) { auto *UserI = getContextInstForUse(U); auto *DTN = DT.getNode(UserI->getParent()); if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) return false; if (UserI->getParent() == ContextInst->getParent() && UserI->comesBefore(ContextInst)) return false; // Conditions in an assume trivially simplify to true. Skip uses // in assume calls to not destroy the available information. auto *II = dyn_cast(U.getUser()); return !II || II->getIntrinsicID() != Intrinsic::assume; }); NumCondsRemoved++; return true; }; if (auto ImpliedCondition = checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); return false; } static void removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, Module *ReproducerModule, SmallVectorImpl &ReproducerCondStack, SmallVectorImpl &DFSInStack) { Info.popLastConstraint(E.IsSigned); // Remove variables in the system that went out of scope. auto &Mapping = Info.getValue2Index(E.IsSigned); for (Value *V : E.ValuesToRelease) Mapping.erase(V); Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); DFSInStack.pop_back(); if (ReproducerModule) ReproducerCondStack.pop_back(); } /// Check if the first condition for an AND implies the second. static bool checkAndSecondOpImpliedByFirst( FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, SmallVectorImpl &ReproducerCondStack, SmallVectorImpl &DFSInStack) { CmpInst::Predicate Pred; Value *A, *B; Instruction *And = CB.getContextInst(); if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) return false; // Optimistically add fact from first condition. unsigned OldSize = DFSInStack.size(); Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); if (OldSize == DFSInStack.size()) return false; bool Changed = false; // Check if the second condition can be simplified now. if (auto ImpliedCondition = checkCondition(cast(And->getOperand(1)), Info, CB.NumIn, CB.NumOut, CB.getContextInst())) { And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); Changed = true; } // Remove entries again. while (OldSize < DFSInStack.size()) { StackEntry E = DFSInStack.back(); removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, DFSInStack); } return Changed; } void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, unsigned NumOut, SmallVectorImpl &DFSInStack) { // If the constraint has a pre-condition, skip the constraint if it does not // hold. SmallVector NewVariables; auto R = getConstraint(Pred, A, B, NewVariables); // TODO: Support non-equality for facts as well. if (!R.isValid(*this) || R.isNe()) return; LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; A->printAsOperand(dbgs(), false); dbgs() << ", "; B->printAsOperand(dbgs(), false); dbgs() << "'\n"); bool Added = false; auto &CSToUse = getCS(R.IsSigned); if (R.Coefficients.empty()) return; Added |= CSToUse.addVariableRowFill(R.Coefficients); // If R has been added to the system, add the new variables and queue it for // removal once it goes out-of-scope. if (Added) { SmallVector ValuesToRelease; auto &Value2Index = getValue2Index(R.IsSigned); for (Value *V : NewVariables) { Value2Index.insert({V, Value2Index.size() + 1}); ValuesToRelease.push_back(V); } LLVM_DEBUG({ dbgs() << " constraint: "; dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); dbgs() << "\n"; }); DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, std::move(ValuesToRelease)); if (R.isEq()) { // Also add the inverted constraint for equality constraints. for (auto &Coeff : R.Coefficients) Coeff *= -1; CSToUse.addVariableRowFill(R.Coefficients); DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, SmallVector()); } } } static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, SmallVectorImpl &ToRemove) { bool Changed = false; IRBuilder<> Builder(II->getParent(), II->getIterator()); Value *Sub = nullptr; for (User *U : make_early_inc_range(II->users())) { if (match(U, m_ExtractValue<0>(m_Value()))) { if (!Sub) Sub = Builder.CreateSub(A, B); U->replaceAllUsesWith(Sub); Changed = true; } else if (match(U, m_ExtractValue<1>(m_Value()))) { U->replaceAllUsesWith(Builder.getFalse()); Changed = true; } else continue; if (U->use_empty()) { auto *I = cast(U); ToRemove.push_back(I); I->setOperand(0, PoisonValue::get(II->getType())); Changed = true; } } if (II->use_empty()) { II->eraseFromParent(); Changed = true; } return Changed; } static bool tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, SmallVectorImpl &ToRemove) { auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, ConstraintInfo &Info) { auto R = Info.getConstraintForSolving(Pred, A, B); if (R.size() < 2 || !R.isValid(Info)) return false; auto &CSToUse = Info.getCS(R.IsSigned); return CSToUse.isConditionImplied(R.Coefficients); }; bool Changed = false; if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and // can be simplified to a regular sub. Value *A = II->getArgOperand(0); Value *B = II->getArgOperand(1); if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || !DoesConditionHold(CmpInst::ICMP_SGE, B, ConstantInt::get(A->getType(), 0), Info)) return false; Changed = replaceSubOverflowUses(II, A, B, ToRemove); } return Changed; } static bool eliminateConstraints(Function &F, DominatorTree &DT, OptimizationRemarkEmitter &ORE) { bool Changed = false; DT.updateDFSNumbers(); SmallVector FunctionArgs; for (Value &Arg : F.args()) FunctionArgs.push_back(&Arg); ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); State S(DT); std::unique_ptr ReproducerModule( DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); // First, collect conditions implied by branches and blocks with their // Dominator DFS in and out numbers. for (BasicBlock &BB : F) { if (!DT.getNode(&BB)) continue; S.addInfoFor(BB); } // Next, sort worklist by dominance, so that dominating conditions to check // and facts come before conditions and facts dominated by them. If a // condition to check and a fact have the same numbers, conditional facts come // first. Assume facts and checks are ordered according to their relative // order in the containing basic block. Also make sure conditions with // constant operands come before conditions without constant operands. This // increases the effectiveness of the current signed <-> unsigned fact // transfer logic. stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { auto HasNoConstOp = [](const FactOrCheck &B) { return !isa(B.Inst->getOperand(0)) && !isa(B.Inst->getOperand(1)); }; // If both entries have the same In numbers, conditional facts come first. // Otherwise use the relative order in the basic block. if (A.NumIn == B.NumIn) { if (A.isConditionFact() && B.isConditionFact()) { bool NoConstOpA = HasNoConstOp(A); bool NoConstOpB = HasNoConstOp(B); return NoConstOpA < NoConstOpB; } if (A.isConditionFact()) return true; if (B.isConditionFact()) return false; auto *InstA = A.getContextInst(); auto *InstB = B.getContextInst(); return InstA->comesBefore(InstB); } return A.NumIn < B.NumIn; }); SmallVector ToRemove; // Finally, process ordered worklist and eliminate implied conditions. SmallVector DFSInStack; SmallVector ReproducerCondStack; for (FactOrCheck &CB : S.WorkList) { // First, pop entries from the stack that are out-of-scope for CB. Remove // the corresponding entry from the constraint system. while (!DFSInStack.empty()) { auto &E = DFSInStack.back(); LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut << "\n"); LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); assert(E.NumIn <= CB.NumIn); if (CB.NumOut <= E.NumOut) break; LLVM_DEBUG({ dbgs() << "Removing "; dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), Info.getValue2Index(E.IsSigned)); dbgs() << "\n"; }); removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, DFSInStack); } LLVM_DEBUG(dbgs() << "Processing "); // For a block, check if any CmpInsts become known based on the current set // of constraints. if (CB.isCheck()) { Instruction *Inst = CB.getInstructionToSimplify(); if (!Inst) continue; LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); if (auto *II = dyn_cast(Inst)) { Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); } else if (auto *Cmp = dyn_cast(Inst)) { bool Simplified = checkAndReplaceCondition( Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), ReproducerModule.get(), ReproducerCondStack, S.DT); if (!Simplified && match(CB.getContextInst(), m_LogicalAnd(m_Value(), m_Specific(Inst)))) { Simplified = checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), ReproducerCondStack, DFSInStack); } Changed |= Simplified; } continue; } LLVM_DEBUG(dbgs() << "fact to add to the system: " << *CB.Inst << "\n"); auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { LLVM_DEBUG( dbgs() << "Skip adding constraint because system has too many rows.\n"); return; } Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) ReproducerCondStack.emplace_back(Pred, A, B); Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { // Add dummy entries to ReproducerCondStack to keep it in sync with // DFSInStack. for (unsigned I = 0, E = (DFSInStack.size() - ReproducerCondStack.size()); I < E; ++I) { ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr); } } }; ICmpInst::Predicate Pred; if (auto *MinMax = dyn_cast(CB.Inst)) { Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); AddFact(Pred, MinMax, MinMax->getLHS()); AddFact(Pred, MinMax, MinMax->getRHS()); continue; } Value *A, *B; Value *Cmp = CB.Inst; match(Cmp, m_Intrinsic(m_Value(Cmp))); if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { // Use the inverse predicate if required. if (CB.Not) Pred = CmpInst::getInversePredicate(Pred); AddFact(Pred, A, B); } } if (ReproducerModule && !ReproducerModule->functions().empty()) { std::string S; raw_string_ostream StringS(S); ReproducerModule->print(StringS, nullptr); StringS.flush(); OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); Rem << ore::NV("module") << S; ORE.emit(Rem); } #ifndef NDEBUG unsigned SignedEntries = count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && "updates to CS and DFSInStack are out of sync"); assert(Info.getCS(true).size() == SignedEntries && "updates to CS and DFSInStack are out of sync"); #endif for (Instruction *I : ToRemove) I->eraseFromParent(); return Changed; } PreservedAnalyses ConstraintEliminationPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); auto &ORE = AM.getResult(F); if (!eliminateConstraints(F, DT, ORE)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserveSet(); return PA; }